1
|
Bozic D, Živanović J, Živančević K, Baralić K, Đukić-Ćosić D. Trends in Anti-Tumor Effects of Pseudomonas aeruginosa Mannose-Sensitive-Hemagglutinin (PA-MSHA): An Overview of Positive and Negative Effects. Cancers (Basel) 2024; 16:524. [PMID: 38339275 PMCID: PMC10854591 DOI: 10.3390/cancers16030524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/13/2024] [Accepted: 01/16/2024] [Indexed: 02/12/2024] Open
Abstract
Cancer is a leading cause of death worldwide, for which finding the optimal therapy remains an ongoing challenge. Drug resistance, toxic side effects, and a lack of specificity pose significant difficulties in traditional cancer treatments, leading to suboptimal clinical outcomes and high mortality rates among cancer patients. The need for alternative therapies is crucial, especially for those resistant to conventional methods like chemotherapy and radiotherapy or for patients where surgery is not possible. Over the past decade, a novel approach known as bacteria-mediated cancer therapy has emerged, offering potential solutions to the limitations of conventional treatments. An increasing number of in vitro and in vivo studies suggest that the subtype of highly virulent Pseudomonas aeruginosa bacterium called Pseudomonas aeruginosa mannose-sensitive-hemagglutinin (PA-MSHA) can successfully inhibit the progression of various cancer types, such as breast, lung, and bladder cancer, as well as hepatocellular carcinoma. PA-MSHA inhibits the growth and proliferation of tumor cells and induces their apoptosis. Proposed mechanisms of action include cell-cycle arrest and activation of pro-apoptotic pathways regulated by caspase-9 and caspase-3. Moreover, clinical studies have shown that PA-MSHA improved the effectiveness of chemotherapy and promoted the activation of the immune response in cancer patients without causing severe side effects. Reported adverse reactions were fever, skin irritation, and pain, attributed to the overactivation of the immune response. This review aims to summarize the current knowledge obtained from in vitro, in vivo, and clinical studies available at PubMed, Google Scholar, and ClinicalTrials.gov regarding the use of PA-MSHA in cancer treatment in order to further elucidate its pharmacological and toxicological properties.
Collapse
Affiliation(s)
- Dragica Bozic
- Department of Toxicology “Akademik Danilo Soldatović”, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia; (J.Ž.); (K.Ž.); (K.B.); (D.Đ.-Ć.)
| | - Jovana Živanović
- Department of Toxicology “Akademik Danilo Soldatović”, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia; (J.Ž.); (K.Ž.); (K.B.); (D.Đ.-Ć.)
| | - Katarina Živančević
- Department of Toxicology “Akademik Danilo Soldatović”, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia; (J.Ž.); (K.Ž.); (K.B.); (D.Đ.-Ć.)
- Center for Laser Microscopy, Faculty of Biology, Institute of Physiology and Biochemistry “Ivan Djaja”, University of Belgrade, Studentski trg 16, 11158 Belgrade, Serbia
| | - Katarina Baralić
- Department of Toxicology “Akademik Danilo Soldatović”, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia; (J.Ž.); (K.Ž.); (K.B.); (D.Đ.-Ć.)
| | - Danijela Đukić-Ćosić
- Department of Toxicology “Akademik Danilo Soldatović”, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia; (J.Ž.); (K.Ž.); (K.B.); (D.Đ.-Ć.)
- Center for Toxicological Risk Assessment, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia
| |
Collapse
|
2
|
Gupta KH, Nowicki C, Giurini EF, Marzo AL, Zloza A. Bacterial-Based Cancer Therapy (BBCT): Recent Advances, Current Challenges, and Future Prospects for Cancer Immunotherapy. Vaccines (Basel) 2021; 9:vaccines9121497. [PMID: 34960243 PMCID: PMC8707929 DOI: 10.3390/vaccines9121497] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 11/22/2021] [Indexed: 12/19/2022] Open
Abstract
Currently approximately 10 million people die each year due to cancer, and cancer is the cause of every sixth death worldwide. Tremendous efforts and progress have been made towards finding a cure for cancer. However, numerous challenges have been faced due to adverse effects of chemotherapy, radiotherapy, and alternative cancer therapies, including toxicity to non-cancerous cells, the inability of drugs to reach deep tumor tissue, and the persistent problem of increasing drug resistance in tumor cells. These challenges have increased the demand for the development of alternative approaches with greater selectivity and effectiveness against tumor cells. Cancer immunotherapy has made significant advancements towards eliminating cancer. Our understanding of cancer-directed immune responses and the mechanisms through which immune cells invade tumors have extensively helped us in the development of new therapies. Among immunotherapies, the application of bacteria and bacterial-based products has promising potential to be used as treatments that combat cancer. Bacterial targeting of tumors has been developed as a unique therapeutic option that meets the ongoing challenges of cancer treatment. In comparison with other cancer therapeutics, bacterial-based therapies have capabilities for suppressing cancer. Bacteria are known to accumulate and proliferate in the tumor microenvironment and initiate antitumor immune responses. We are currently well-informed regarding various methods by which bacteria can be manipulated by simple genetic engineering or synthetic bioengineering to induce the production of anti-cancer drugs. Further, bacterial-based cancer therapy (BBCT) can be either used as a monotherapy or in combination with other anticancer therapies for better clinical outcomes. Here, we review recent advances, current challenges, and prospects of bacteria and bacterial products in the development of BBCTs.
Collapse
Affiliation(s)
- Kajal H. Gupta
- Division of Hematology, Oncology, and Cell Therapy, Department of Internal Medicine, Rush University Medical Center, Chicago, IL 60612, USA; (K.H.G.); (C.N.); (E.F.G.); (A.L.M.)
- Division of Translational and Precision Medicine, Department of Internal Medicine, Rush University Medical Center, Chicago, IL 60612, USA
| | - Christina Nowicki
- Division of Hematology, Oncology, and Cell Therapy, Department of Internal Medicine, Rush University Medical Center, Chicago, IL 60612, USA; (K.H.G.); (C.N.); (E.F.G.); (A.L.M.)
- Division of Translational and Precision Medicine, Department of Internal Medicine, Rush University Medical Center, Chicago, IL 60612, USA
| | - Eileena F. Giurini
- Division of Hematology, Oncology, and Cell Therapy, Department of Internal Medicine, Rush University Medical Center, Chicago, IL 60612, USA; (K.H.G.); (C.N.); (E.F.G.); (A.L.M.)
- Division of Translational and Precision Medicine, Department of Internal Medicine, Rush University Medical Center, Chicago, IL 60612, USA
| | - Amanda L. Marzo
- Division of Hematology, Oncology, and Cell Therapy, Department of Internal Medicine, Rush University Medical Center, Chicago, IL 60612, USA; (K.H.G.); (C.N.); (E.F.G.); (A.L.M.)
- Division of Translational and Precision Medicine, Department of Internal Medicine, Rush University Medical Center, Chicago, IL 60612, USA
| | - Andrew Zloza
- Division of Hematology, Oncology, and Cell Therapy, Department of Internal Medicine, Rush University Medical Center, Chicago, IL 60612, USA; (K.H.G.); (C.N.); (E.F.G.); (A.L.M.)
- Division of Translational and Precision Medicine, Department of Internal Medicine, Rush University Medical Center, Chicago, IL 60612, USA
- Correspondence:
| |
Collapse
|
3
|
Zhou R, Xu J, He J, Gong Y, Wang H, Linghu H. Topical Application of Pseudomonas aeruginosa-Mannose Sensitive Hemagglutinin (PA-MSHA) for Refractory Lymphatic Leakage Following Lymphadenectomy in Patients with Gynecological Malignancies. Cancer Manag Res 2021; 13:4873-4878. [PMID: 34188540 PMCID: PMC8232861 DOI: 10.2147/cmar.s307700] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 05/20/2021] [Indexed: 01/02/2023] Open
Abstract
PURPOSE To observe the feasibility and efficacy of Pseudomonas aeruginosa-mannose sensitive hemagglutinin (PA-MSHA) in refractory lymphatic leakage following lymphadenectomy among patients with gynecological cancers. PATIENTS AND METHODS Ten cases with post-operative massive lymphatic leakage were collected, in which patients failed to respond to conservative treatment. Topical PA-MSHA injection of a single dose (2mL) was performed through drainage tube or transvaginal catheter into pelvic or peritoneal cavity. Drainage volumes and side effects were recorded. RESULTS The incidence of refractory lymphatic leakage following pelvic and para-aortic lymphadenectomy was 2.44% (10/409). All ten patients (100%) had quick recovery and were discharged within 72 hours. Among them, one patient (10%) experienced fever and six patients (60%) experienced abdominal pain, one of which was moderate and relieved by routine analgesic treatment. During 11 (6-38) months of follow-up time, no long-term side effect was observed. CONCLUSION Topical injection of PA-MSHA of a single dose appears a feasible and effective treatment for refractory post-operative lymphatic leakage.
Collapse
Affiliation(s)
- Rong Zhou
- Department of Obstetrics & Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People’s Republic of China
| | - Jie Xu
- Department of Obstetrics & Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People’s Republic of China
| | - Jingke He
- Department of Obstetrics & Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People’s Republic of China
| | - Yao Gong
- Department of Obstetrics & Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People’s Republic of China
| | - Hui Wang
- Department of Obstetrics & Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People’s Republic of China
| | - Hua Linghu
- Department of Obstetrics & Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People’s Republic of China
| |
Collapse
|
4
|
Mughal MJ, Kwok HF. Multidimensional role of bacteria in cancer: Mechanisms insight, diagnostic, preventive and therapeutic potential. Semin Cancer Biol 2021; 86:1026-1044. [PMID: 34119644 DOI: 10.1016/j.semcancer.2021.06.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 05/28/2021] [Accepted: 06/08/2021] [Indexed: 02/08/2023]
Abstract
The active role of bacteria in oncogenesis has long been a topic of debate. Although, it was speculated to be a transmissible cause of cancer as early as the 16th-century, yet the idea about the direct involvement of bacteria in cancer development has only been explored in recent decades. More recently, several studies have uncovered the mechanisms behind the carcinogenic potential of bacteria which are inflammation, immune evasion, pro-carcinogenic metabolite production, DNA damage and genomic instability. On the other side, the recent development on the understanding of tumor microenvironment and technological advancements has turned this enemy into an ally. Studies using bacteria for cancer treatment and detection have shown noticeable effects. Therapeutic abilities of bioengineered live bacteria such as high specificity, selective cytotoxicity to cancer cells, responsiveness to external signals and control after ingestion have helped to overcome the challenges faced by conventional cancer therapies and highlighted the bacterial based therapy as an ideal approach for cancer treatment. In this review, we have made an effort to compile substantial evidence to support the multidimensional role of bacteria in cancer. We have discussed the multifaceted role of bacteria in cancer by highlighting the wide impact of bacteria on different cancer types, their mechanisms of actions in inducing carcinogenicity, followed by the diagnostic and therapeutic potential of bacteria in cancers. Moreover, we have also highlighted the existing gaps in the knowledge of the association between bacteria and cancer as well as the limitation and advantage of bacteria-based therapies in cancer. A better understanding of these multidimensional roles of bacteria in cancer can open up the new doorways to develop early detection strategies, prevent cancer, and develop therapeutic tactics to cure this devastating disease.
Collapse
Affiliation(s)
- Muhammad Jameel Mughal
- Cancer Centre, Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau
| | - Hang Fai Kwok
- Cancer Centre, Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau; MOE Frontiers Science Center for Precision Oncology, University of Macau, Avenida de Universidade, Taipa, Macau.
| |
Collapse
|
5
|
Qi JL, He JR, Jin SM, Yang X, Bai HM, Liu CB, Ma YB. P. aeruginosa Mediated Necroptosis in Mouse Tumor Cells Induces Long-Lasting Systemic Antitumor Immunity. Front Oncol 2021; 10:610651. [PMID: 33643911 PMCID: PMC7908819 DOI: 10.3389/fonc.2020.610651] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 12/21/2020] [Indexed: 01/12/2023] Open
Abstract
Necroptosis is a form of programmed cell death (PCD) characterized by RIP3 mediated MLKL activation and increased membrane permeability via MLKL oligomerization. Tumor cell immunogenic cell death (ICD) has been considered to be essential for the anti-tumor response, which is associated with DC recruitment, activation, and maturation. In this study, we found that P. aeruginosa showed its potential to suppress tumor growth and enable long-lasting anti-tumor immunity in vivo. What's more, phosphorylation- RIP3 and MLKL activation induced by P. aeruginosa infection resulted in tumor cell necrotic cell death and HMGB1 production, indicating that P. aeruginosa can cause immunogenic cell death. The necrotic cell death can further drive a robust anti-tumor response via promoting tumor cell death, inhibiting tumor cell proliferation, and modulating systemic immune responses and local immune microenvironment in tumor. Moreover, dying tumor cells killed by P. aeruginosa can catalyze DC maturation, which enhanced the antigen-presenting ability of DC cells. These findings demonstrate that P. aeruginosa can induce immunogenic cell death and trigger a robust long-lasting anti-tumor response along with reshaping tumor microenvironment.
Collapse
Affiliation(s)
- Jia-long Qi
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| | - Jin-rong He
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
- Institute of Medical Biology, Kunming Medical University, Kunming, China
| | - Shu-mei Jin
- Department of Pathology, Yunnan Institute of Materia, Kunming, China
| | - Xu Yang
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| | - Hong-mei Bai
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| | - Cun-bao Liu
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| | - Yan-bing Ma
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| |
Collapse
|
6
|
Ma Y, Zeng C, Hou P, Wei T, Zhu J, Gong R, Li Z. Pseudomonas aeruginosa injection decreases drainage in lateral neck dissection for metastatic thyroid cancer. Gland Surg 2020; 9:1543-1550. [PMID: 33224830 DOI: 10.21037/gs-20-731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Background Pseudomonas aeruginosa injection (PAI) has been proven effective against chylous fistula but not in decreasing drainage after lateral neck dissection (LND). To verify the safety of spraying PAI onto the surface of the traumatic cavity after total thyroidectomy with LND and to evaluate whether its application can reduce the drainage volume. Methods A total of 85 patients with metastatic papillary thyroid cancer (PTC) who agreed to total thyroidectomy with unilateral LND were recruited from March 2016 to September 2017. During the operation, PAI was applied in 44 patients, while 41 remaining patients served as the control group. The thyroid function and parathyroid function, drainage volume, hospital stay, and incidence of complications were compared between the two groups. Results The groups had few differences in age, gender, BMI, thyroid function, parathyroid function, diameter of tumor, and the number of the harvested lymph nodes. The median total drainage volume was significantly smaller and the mean hospital stay was obviously shorter in the PAI group compared to the non-PAI group. But the median volumes of peak 24-hour drainage which appeared during the first day after operation had few differences in the two groups. Postoperative fever in the PAI group was higher than in the non-PAI group. None of the patients had permanent recurrent laryngeal nerve paralysis and tumor recurrence on the 12th month after operation. Conclusions The application of PAI to the wound cavity after LND is safe and effective for reducing the drainage volume and hospital stay.
Collapse
Affiliation(s)
- Yu Ma
- Thyroid and Parathyroid Surgery Center, West China Hospital, Sichuan University, Chengdu, China
| | - Cuifang Zeng
- Thyroid Surgery Department, Chengdu Shangjin Nan Fu Hospital, West China Hospital, Sichuan University, Chengdu, China
| | - Ping Hou
- Thyroid Surgery Department, Chengdu Shangjin Nan Fu Hospital, West China Hospital, Sichuan University, Chengdu, China
| | - Tao Wei
- Thyroid and Parathyroid Surgery Center, West China Hospital, Sichuan University, Chengdu, China
| | - Jingqiang Zhu
- Thyroid and Parathyroid Surgery Center, West China Hospital, Sichuan University, Chengdu, China
| | - Rixiang Gong
- Thyroid and Parathyroid Surgery Center, West China Hospital, Sichuan University, Chengdu, China
| | - Zhihui Li
- Thyroid and Parathyroid Surgery Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
7
|
Dróżdż M, Makuch S, Cieniuch G, Woźniak M, Ziółkowski P. Obligate and facultative anaerobic bacteria in targeted cancer therapy: Current strategies and clinical applications. Life Sci 2020; 261:118296. [PMID: 32822716 DOI: 10.1016/j.lfs.2020.118296] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/06/2020] [Accepted: 08/15/2020] [Indexed: 02/07/2023]
Abstract
Traditional methods for cancer therapy, including radiotherapy, chemotherapy, and immunotherapy are characterized by inherent limitations. Bacteria-mediated tumor therapy is becoming a promising approach in cancer treatment due to the ability of obligate or facultative anaerobic microorganisms to penetrate and proliferate in hypoxic regions of tumors. It is widely known that anaerobic bacteria cause the regression of tumors and inhibition of metastasis through a variety of mechanisms, including toxin production, anaerobic lifestyle and synergy with anti-cancer drugs. These features have the potential to be used as a supplement to conventional cancer treatment. To the best of our knowledge, no reports have been published regarding the most common tumor-targeting bacterial agents with special consideration of obligate anaerobes (such as Clostridium sp., Bifidobacterium sp.) and facultative anaerobes (including Salmonella sp., Listeria monocytogenes, Lactobacillus sp., Escherichia coli, Corynebacterium diphtheriae and Pseudomonas sp). In this review, we summarize the latest literature on the role of these bacteria in cancer treatment.
Collapse
Affiliation(s)
- Mateusz Dróżdż
- Department of Microbiology, Institute of Genetics and Microbiology, Wroclaw, Poland
| | - Sebastian Makuch
- Department of Pathology, Wroclaw Medical University, Wroclaw, Poland.
| | - Gabriela Cieniuch
- Department of Microbiology, Institute of Genetics and Microbiology, Wroclaw, Poland
| | - Marta Woźniak
- Department of Pathology, Wroclaw Medical University, Wroclaw, Poland
| | - Piotr Ziółkowski
- Department of Pathology, Wroclaw Medical University, Wroclaw, Poland
| |
Collapse
|
8
|
Heterometrus Spinifer: An Untapped Source of Anti-Tumor Molecules. BIOLOGY 2020; 9:biology9070150. [PMID: 32630812 PMCID: PMC7408436 DOI: 10.3390/biology9070150] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/28/2020] [Accepted: 05/29/2020] [Indexed: 12/11/2022]
Abstract
Despite intensive research, cancer incidence and mortality continue to rise. Consequently, the necessity to develop effective anti-cancer therapy is apparent. We have recently shown that the gut bacteria of animals living in polluted environments, such as crocodiles, are a potential source of novel anti-tumor molecules. To extend this work to other resilient species, we investigated the anti-tumor effects of gut bacteria of Heterometrus spinifer (a scorpion). Bacteria from the feces and gut were isolated, identified and evaluated for their anti-tumor effects. Bacterial-conditioned media was prepared in Roswell Park Memorial Institute (RPMI) 1640 media, and cytotoxicity and growth inhibitory properties were examined against cervical (HeLa) cancer cells. Liquid chromatography–mass spectrometry (LC-MS) was conducted to establish the identity of the molecules. Eighteen bacteria species from the gut (HSG01-18) and ten bacteria species from feces (HSF01-10) were tested for anti-tumor effects. Bacterial-conditioned media from scorpion gut and feces exhibited significant growth inhibitory effects against HeLa cells of 66.9% and 83.8%, respectively. Microscopic analysis of cancer cells treated with conditioned media HSG12 and HSG16 revealed apoptosis-like effects. HSG12 was identified as Pseudomonas aeruginosa and HSG16 was identified as Bacillus subtilis. Both conditioned media exhibited 100% growth inhibitory effects versus a selection of cancer cells, comprising cervical, breast and prostate cancer cells. LC–MS indicated the presence of 72 and 38 compounds, detected from HSG12 and HSG16, respectively. Out of these compounds, 47 were successfully identified while the remainder were unidentified and are possibly novel. This study suggests that the fecal and gut microbiota of scorpions might possess molecules with anti-cancer properties, however, further intensive research is needed to assess these expectations.
Collapse
|
9
|
Xiu D, Cheng M, Zhang W, Ma X, Liu L. Pseudomonas aeruginosa-mannose-sensitive hemagglutinin inhibits chemical-induced skin cancer through suppressing hedgehog signaling. Exp Biol Med (Maywood) 2020; 245:213-220. [PMID: 31903775 DOI: 10.1177/1535370219897240] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Pseudomonas aeruginosa-mannose-sensitive hemagglutinin (PAM) is an inactivate P. aeruginosa with mannose-sensitive hemagglutinin. Recently, the anticancer properties of PAM against many cancers have been reported across a range of studies. However, the exact mechanism through which PAM prevents skin cancer remains unclear. The aim of this study is to show to what extent PAM could inhibit the dimethylbenzanthracene (DMBA)/12-O-tetradecanoylphorbol-13-acetate (TPA)-induced skin cancer. JB6 cells were treated by TPA so as to establish an in vitro model. The effects of PAM on proliferation of the cells were analyzed using cell counting kit-8 assays. Effects on epithelial–mesenchymal transition (EMT) were assayed by real-time PCR and Western blotting. A DMBA/TPA-induced skin cancer mouse model was also established. The results showed that TPA promoted EMT changes through the activation of the hedgehog (Hh) pathway, which was reversed by PAM. Moreover, PAM inhibited the cancer growth and Hh pathway in vivo. These data indicate that PAM may serve as a potential anticancer agent for the treatment of skin cancer. Impact statement Pseudomonas aeruginosa-mannose-sensitive hemagglutinin (PAM) restrained the chemical-induced skin cancer cells in vitro and in vivo partly through suppressing the Hh signaling pathway, indicating that PAM may be a promising anticancer agent for treating skin cancer.
Collapse
Affiliation(s)
- Dianhui Xiu
- Department of Radiology, China-Japan Union Hospital, Jilin University, Changchun 130033, China
| | - Min Cheng
- Department of Radiology, China-Japan Union Hospital, Jilin University, Changchun 130033, China
| | - Wenlei Zhang
- Department of Interventional Therapy, First Hospital of Jilin University, Changchun 13021, China
| | - Xibo Ma
- Department of Otorhinolaryngology, Jilin Province People's Hospital, Changchun 130000, China
| | - Lin Liu
- Department of Radiology, China-Japan Union Hospital, Jilin University, Changchun 130033, China
| |
Collapse
|
10
|
Ou X, Zhang GT, Xu Z, Chen JS, Xie Y, Liu JK, Liu XP. Desumoylating Isopeptidase 2 (DESI2) Inhibits Proliferation and Promotes Apoptosis of Pancreatic Cancer Cells through Regulating PI3K/AKT/mTOR Signaling Pathway. Pathol Oncol Res 2018; 25:635-646. [DOI: 10.1007/s12253-018-0487-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 10/09/2018] [Indexed: 12/24/2022]
|
11
|
Apatinib-induced protective autophagy and apoptosis through the AKT-mTOR pathway in anaplastic thyroid cancer. Cell Death Dis 2018; 9:1030. [PMID: 30301881 PMCID: PMC6177436 DOI: 10.1038/s41419-018-1054-3] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 08/28/2018] [Accepted: 09/10/2018] [Indexed: 12/19/2022]
Abstract
Apatinib, an inhibitor of vascular endothelial growth factor receptor-2, has been shown to promote anti-cancer action across a wide range of malignancies, including gastric, lung, and breast cancers. Our previous study showed that apatinib increases apoptosis in anaplastic thyroid carcinoma (ATC), but the direct functional mechanism of tumor lethality mediated by apatinib is still unknown. In this study, we demonstrated that apatinib induced both autophagy and apoptosis in human ATC cells through downregulation of p-AKT and p-mTOR signals via the AKT/mTOR pathway. Moreover, inhibition of apatinib-induced autophagy increased apatinib-induced apoptosis in ATC cells, and additional tumor suppression was critically produced by the combination of apatinib and the autophagy inhibitor chloroquine in vivo and in vitro. These findings showed that both autophagy and AKT/mTOR signals were engaged in ATC cell death evoked by apatinib. ATC patients might benefit from the new anti-cancer drug, and molecular targeted treatment in combination with autophagy inhibitors shows promise as a treatment improvement.
Collapse
|
12
|
Cheng X, Feng H, Wu H, Jin Z, Shen X, Kuang J, Huo Z, Chen X, Gao H, Ye F, Ji X, Jing X, Zhang Y, Zhang T, Qiu W, Zhao R. Targeting autophagy enhances apatinib-induced apoptosis via endoplasmic reticulum stress for human colorectal cancer. Cancer Lett 2018; 431:105-114. [PMID: 29859300 DOI: 10.1016/j.canlet.2018.05.046] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 05/24/2018] [Accepted: 05/25/2018] [Indexed: 12/15/2022]
Abstract
Apatinib, a novel tyrosine kinase inhibitor (TKI), has been confirmed for its efficacy and safety in the treatment of advanced gastric carcinoma and some other solid tumors. However, the direct functional mechanisms of tumor lethality mediated by apatinib have not yet been fully characterized, and the precise mechanisms of drug resistance are largely unknown. Here, in this study, we demonstrated that apatinib could induce both apoptosis and autophagy in human colorectal cancer (CRC) via a mechanism that involved endoplasmic reticulum (ER) stress. Moreover, activation of the IRE1α pathway from apatinib-induced ER stress is responsible for the induction of autophagy; however, blocking autophagy could enhance the apoptosis in apatinib-treated human CRC cell lines. Furthermore, the combination of apatinib with autophagy inhibitor chloroquine (CQ) tends to have the most significant anti-tumor effect of CRC both in vitro and in vivo. Overall, our data show that because apatinib treatment could induce ER stress-related apoptosis and protective autophagy in human CRC cell lines, targeting autophagy is a promising therapeutic strategy to relieve apatinib drug resistance in CRC.
Collapse
Affiliation(s)
- Xi Cheng
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China; Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China; Department of General Surgery, Ruijin North Hospital, Shanghai Jiaotong University School of Medicine, 201801, Shanghai, China
| | - Haoran Feng
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China; Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Haoxuan Wu
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China; Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Zhijian Jin
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China; Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xiaonan Shen
- Department of Gastroenterology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200001, China
| | - Jie Kuang
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China; Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Zhen Huo
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China; Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xianze Chen
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China; Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Haoji Gao
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China; Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Feng Ye
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China; Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xiaopin Ji
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China; Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xiaoqian Jing
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China; Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yaqi Zhang
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China; Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Tao Zhang
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China; Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Weihua Qiu
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China; Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Ren Zhao
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China; Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China; Department of General Surgery, Ruijin North Hospital, Shanghai Jiaotong University School of Medicine, 201801, Shanghai, China.
| |
Collapse
|
13
|
Bactibilia in diseases of the biliary tract and pancreatic gland in patients older than 80 years: a STROBE-retrospective cohort study in a teaching hospital in Italy. Eur J Clin Microbiol Infect Dis 2018; 37:953-958. [PMID: 29484561 DOI: 10.1007/s10096-018-3213-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Accepted: 02/13/2018] [Indexed: 12/15/2022]
Abstract
Bile is a lipid-rich sterile solution produced in the liver that can be infected resulting in bactibilia. A higher incidence of postoperative infectious complications has been seen in patients with bactibilia. Recently, gram-negative bacteria have been linked to a tumor-associated inflammatory status. This study is a retrospective cohort study of 39 patients, who are over 80 years of age only (53.85% males and 46.15% females), hospitalized with diseases of the biliopancreatic system in one teaching hospital in Italy from January 2011 to December 2012 with a follow-up of 5 years. The most common biliary diseases after surgery were pancreatic head cancer (p < 0.0001) and gallbladder cancer (p = 0.0051), while the most common bacteria in the bile were E. coli (p = 0.0180) and Pseudomonas spp. (p < 0.0001). Uni- and multivariate linear correlation analysis revealed that patients with pancreatic head cancer had low survival times compared to patients with other diseases. Moreover, the bacterium type was a positive predictor of survival time compared to other variables. Our data confirm E. coli as a pathogen in patients with gallbladder and pancreatic cancer. Although the influence of bactibilia in developing surgical complications is limited, we consider that its composition is crucial to properly address the antibiotic treatment in biliary tract infections, especially in the elderly.
Collapse
|
14
|
Zhou J, Zhao T, Ma L, Liang M, Guo YJ, Zhao LM. Cucurbitacin B and SCH772984 exhibit synergistic anti-pancreatic cancer activities by suppressing EGFR, PI3K/Akt/mTOR, STAT3 and ERK signaling. Oncotarget 2017; 8:103167-103181. [PMID: 29262554 PMCID: PMC5732720 DOI: 10.18632/oncotarget.21704] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 09/21/2017] [Indexed: 01/05/2023] Open
Abstract
Cucurbitacin B (CuB) is a natural tetracyclic triterpene product and displays antitumor activity across a wide array of cancers. In this study, we explored the anti-pancreatic cancer activity of CuB alone and in combination with SCH772984, an ERK inhibitor, in vitro and in vivo. CuB inhibited proliferation of pancreatic cancer cells by arresting them in the G2/M cell cycle phase. This was associated with inhibition of EGFR expression and activity and downstream signaling, including PI3K/Akt/mTOR and STAT3. Interestingly, ERK activity was markedly enhanced by activating AMPK signaling after 12 h of CuB treatment. SCH772984 potentiates the cytotoxic effect of CuB on pancreatic cancer cells through complementary inhibition of EGFR, PI3K/Akt/mTOR, STAT3 and ERK signaling, followed by an increase in the pro-apoptotic protein Bim and a decrease in the anti-apoptotic proteins Mcl-1, Bcl-2, Bcl-xl and survivin. Furthermore, combined therapy with CuB and SCH772984 resulted in highly significant growth inhibition of pancreatic cancer xenografts. These results may provide a basis for further development of combining CuB and ERK inhibitors to treat pancreatic cancer.
Collapse
Affiliation(s)
- Jingkai Zhou
- Department of Pharmacy, Shengjing Hospital of China Medical University, Shenyang, China
| | - Tiangang Zhao
- School of Life Sciences, Jilin University, Changchun, China
| | - Linfeng Ma
- School of Life Sciences, Jilin University, Changchun, China
| | - Min Liang
- School of Life Sciences, Jilin University, Changchun, China
| | - Ying-Jie Guo
- School of Life Sciences, Jilin University, Changchun, China
| | - Li-Mei Zhao
- Department of Pharmacy, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
15
|
Cheng X, Wu H, Jin ZJ, Ma D, Yuen S, Jing XQ, Shi MM, Shen BY, Peng CH, Zhao R, Qiu WH. Up-regulation of chemokine receptor CCR4 is associated with Human Hepatocellular Carcinoma malignant behavior. Sci Rep 2017; 7:12362. [PMID: 28959024 PMCID: PMC5620046 DOI: 10.1038/s41598-017-10267-4] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 07/19/2017] [Indexed: 02/08/2023] Open
Abstract
Studies indicate that the chemokine receptor is responsible for poor prognosis of hepatocellular carcinoma (HCC) patients. In this study, we initially demonstrated that CCR4 is overexpressed in HCC specimens, and its elevation in HCC tissues positively correlates with tumor capsule breakthrough and vascular invasion. Although overexpression of CCR4 failed to influent proliferation of HCC cells in vitro apparently, the prominent acceleration on HCC tumor growth in vivo was remarkable. The underlying mechanism may be involved in neovascularization. Interestingly, different from effect on proliferation, CCR4 overexpression could trigger HCC metastasis both in vitro and in vivo also induced HCC cell epithelial-mesenchymal transition (EMT) as well. Then we identified matrix metalloproteinase 2 (MMP2) as a direct target of CCR4 which plays an important role in CCR4-mediated HCC cell invasion, which was up-regulated by ERK/AKT signaling. Positive correlation between CCR4 and MMP2 expression was also observed in HCC tissues. In conclusion, our study suggested that chemokine receptor CCR4 promotes HCC malignancy and facilitated HCC cell metastases via ERK/AKT/MMP2 pathway. These findings suggest that CCR4 may be a potential new diagnostic and prognostic marker in HCC, and targeting CCR4 may be a potential therapeutic option for blocking HCC metastasis.
Collapse
Affiliation(s)
- Xi Cheng
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.,Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.,Department of General Surgery, Ruijin North Hospital Shanghai Jiaotong University School of Medicine, Shanghai, 201800, China
| | - Huo Wu
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.,Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Zhi-Jian Jin
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.,Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Ding Ma
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.,Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Stanley Yuen
- Biology chemistry major, University At Albany, New York, United States
| | - Xiao-Qian Jing
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.,Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Min-Min Shi
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.,Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Bai-Yong Shen
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.,Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Cheng-Hong Peng
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China. .,Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Ren Zhao
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China. .,Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China. .,Department of General Surgery, Ruijin North Hospital Shanghai Jiaotong University School of Medicine, Shanghai, 201800, China.
| | - Wei-Hua Qiu
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China. .,Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
16
|
Wei J, Zhang L, Ren L, Zhang J, Liu J, Duan J, Yu Y, Li Y, Peng C, Zhou X, Sun Z. Endosulfan induces cell dysfunction through cycle arrest resulting from DNA damage and DNA damage response signaling pathways. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 589:97-106. [PMID: 28273598 DOI: 10.1016/j.scitotenv.2017.02.154] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 02/07/2017] [Accepted: 02/18/2017] [Indexed: 06/06/2023]
Abstract
Our previous study showed that endosulfan increases the risk of cardiovascular disease. To identify toxic mechanism of endosulfan, we conducted an animal study for which 32 male Wistar rats were randomly and equally divided into four groups: Control group (corn oil only) and three treatment groups (1, 5 and 10mgkg-1·d-1). The results showed that exposure to endosulfan resulted in injury of cardiac tissue with impaired mitochondria integrity and elevated 8-OHdG expression in myocardial cells. Moreover, endosulfan increased the expressions of Fas, FasL, Caspase-8, Cleaved Caspase-8, Caspase-3 and Cleaved Caspase-3 in cardiac tissue. In vitro, human umbilical vein endothelial cells (HUVECs) were treated with different concentrations of endosulfan (1, 6 and 12μgmL-1) for 24h. An inhibitor for Ataxia Telangiectasia Mutated Protein (ATM) (Ku-55933, 10μM) was added in 12μgmL-1 group for 2h before exposure to endosulfan. Results showed that endosulfan induced DNA damage and activated DNA damage response signaling pathway (ATM/Chk2 and ATR/Chk1) and consequent cell cycle checkpoint. Furthermore, endosulfan promoted the cell apoptosis through death receptor pathway resulting from oxidative stress. The results provide a new insight for mechanism of endosulfan-induced cardiovascular toxicity which will be helpful in future prevention of cardiovascular diseases induced by endosulfan.
Collapse
Affiliation(s)
- Jialiu Wei
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, 100069 Beijing, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Lianshuang Zhang
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, 100069 Beijing, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Lihua Ren
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, 100069 Beijing, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Jin Zhang
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, 100069 Beijing, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Jianhui Liu
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, 100069 Beijing, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Junchao Duan
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, 100069 Beijing, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Yang Yu
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, 100069 Beijing, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Yanbo Li
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, 100069 Beijing, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Cheng Peng
- National Research Centre for Environmental Toxicology (Entox), Queensland Alliance for Environmental Health Science (QAEHS), The University of Queensland, Coopers Plains, Brisbane, QLD 4108, Australia
| | - Xianqing Zhou
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, 100069 Beijing, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China.
| | - Zhiwei Sun
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, 100069 Beijing, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| |
Collapse
|