1
|
Massey AJ. Chk1 inhibitor-induced DNA damage increases BFL1 and decreases BIM but does not protect human cancer cell lines from Chk1 inhibitor-induced apoptosis. Am J Cancer Res 2022; 12:2293-2309. [PMID: 35693081 PMCID: PMC9185625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 04/24/2022] [Indexed: 01/09/2023] Open
Abstract
V158411 is a potent, selective Chk1 inhibitor currently in pre-clinical development. We utilised RNA-sequencing to evaluate the gene responses to V158411 treatment. BCL2A1 was highly upregulated in U2OS cells in response to V158411 treatment with BCL2A1 mRNA increased > 400-fold in U2OS but not HT29 cells. Inhibitors of Chk1, Wee1 and topoisomerases but not other DNA damaging agents or inhibitors of ATR, ATM or DNA-PKcs increased BFL1 and decreased BIM protein. Increased BFL1 appeared limited to a subset of approximately 35% of U2OS cells. Out of 24 cell lines studied, U2OS cells were unique in being the only cell line with low basal BFL1 levels to be increased in response to DNA damage. Induction of BFL1 in U2OS cells appeared dependent on PI3K/AKT/mTOR/MEK pathway signalling but independent of NF-κB transcription factors. Inhibitors of MEK, mTOR and PI3K effectively blocked the increase in BFL1 following V15841 treatment. Increased BFL1 expression did not block apoptosis in U2OS cells in response to V158411 treatment and cells with high basal expression of BFL1 readily underwent caspase-dependent apoptosis following Chk1 inhibitor therapy. BFL1 induction in response to Chk1 inhibition appeared to be a rare event that was dependent on MEK/PI3K/AKT/mTOR signalling.
Collapse
|
2
|
Brooks T, Wayne J, Massey AJ. Checkpoint Kinase 1 (Chk1) inhibition fails to activate the Stimulator of Interferon Genes (STING) innate immune signalling in a human coculture cancer system. MOLECULAR BIOMEDICINE 2021; 2:19. [PMID: 35006469 PMCID: PMC8607375 DOI: 10.1186/s43556-021-00044-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 05/12/2021] [Indexed: 01/01/2023] Open
Abstract
Utilising Checkpoint Kinase 1 (Chk1) inhibitors to increase cytoplasmic DNA may be a potential strategy to increase the sensitivity of tumours to immune checkpoint modulators. The appearance of DNA in the cytoplasm can drive Cyclic GMP-AMP Synthase-2',3'-Cyclic Guanosine Monophosphate-Adenosine Monophosphate-Stimulator of Interferon Genes (cGAS-cGAMP-STING) inflammatory, anti-tumour T-cell activity via a type I interferon (IFN) and nuclear factor-κB response. In the THP1-Dual reporter cell line, the STING agonist cGAMP activated both reporters, and increased phosphorylation of the innate immune pathway signallers Tank Binding Kinase 1 (TBK1) and Interferon Regulatory Factor (IRF) 3. Inhibition of Chk1 increased TBK1 but not IRF3 phosphorylation and did not induce IRF or NF-κB reporter activation. cGAMP induced a Type I IFN response in THP1 cells whereas inhibition of Chk1 did not. HT29 or HCC1937 cell treatment with a Chk1 inhibitor increased cytoplasmic dsDNA in treated HCC1937 but not HT29 cells and increased IRF reporter activation in cocultured THP1-Dual cells. HT29 cells pre-treated with gemcitabine or camptothecin had elevated cytoplasmic dsDNA and IRF reporter activation in cocultured THP1-Dual cells. Camptothecin or gemcitabine plus a Chk1 inhibitor increased cytoplasmic dsDNA but Chk1 inhibition suppressed IRF reporter activation in cocultured THP1 cells. In THP1-Dual cells treated with cGAMP, Chk1 inhibition suppressed the activation of the IRF reporter compared to cGAMP alone. These results suggest that, in some cellular models, there is little evidence to support the combination of Chk1 inhibitors with immune checkpoint modulators and, in some combination regimes, may even prove deleterious.
Collapse
Affiliation(s)
- Teresa Brooks
- Vernalis (R&D) Ltd, Granta Park, Abington, Cambridge, CB21 6GB, UK
| | - Joanne Wayne
- Vernalis (R&D) Ltd, Granta Park, Abington, Cambridge, CB21 6GB, UK
| | - Andrew J Massey
- Vernalis (R&D) Ltd, Granta Park, Abington, Cambridge, CB21 6GB, UK.
| |
Collapse
|
3
|
Brooks T, Wayne J, Massey AJ. Chk1 inhibition induces a DNA damage bystander effect in cocultured tumour cells. DNA Repair (Amst) 2021; 101:103099. [PMID: 33740539 DOI: 10.1016/j.dnarep.2021.103099] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 03/08/2021] [Accepted: 03/10/2021] [Indexed: 11/29/2022]
Abstract
Inhibitors of Chk1 kinase, a key effector of the DNA damage response pathway, are currently undergoing Phase 1 and 2 clinical trials as single agents and in combination with cytotoxic chemotherapy. Understanding the biological effects of Chk1 inhibitors on cancer cells is critical for their continued clinical development. Treatment of adherent HT29 or HCC1937 cancer cells or suspension Jurkat or THP1 cells with a Chk1 inhibitor increased γH2AX in these cells. Chk1i pre-treated HCC1937 or HT29 cells resulted in γH2AX induction in cocultured Jurkat or THP1 cells despite these cells never being treated with a Chk1i. Pre-treatment of HT29 cells with camptothecin or gemcitabine followed by a Chk1i increased the DNA damage bystander effect in naïve cocultured THP1 cells compared to camptothecin or gemcitabine alone. This bystander effect appeared to occur through soluble factors via ATR, ATM, and DNA-PKcs activation in the bystander cells. Chk1 silencing by siRNA in HCC1937 or HT29 cells induced a DNA damage bystander effect in cocultured THP1 cells. However, this bystander effect induced by siRNA appeared mechanistically different to that induced by the Chk1 inhibitor. This work suggests that a Chk1 inhibitor-induced bystander effect may increase the clinical effectiveness of Chk1 inhibitors by inducing additional DNA damage or replication stress in cancer cells not directly exposed to the inhibitor. Conversely, it may also contribute to Chk1 inhibitor toxicity by increasing DNA damage in non-tumour cells.
Collapse
Affiliation(s)
- Teresa Brooks
- Vernalis (R&D) Ltd, Granta Park, Abington, Cambridge, CB21 6GB, UK
| | - Joanne Wayne
- Vernalis (R&D) Ltd, Granta Park, Abington, Cambridge, CB21 6GB, UK
| | - Andrew J Massey
- Vernalis (R&D) Ltd, Granta Park, Abington, Cambridge, CB21 6GB, UK.
| |
Collapse
|
4
|
Wayne J, Brooks T, Landras A, Massey AJ. Targeting DNA damage response pathways to activate the STING innate immune signaling pathway in human cancer cells. FEBS J 2021; 288:4507-4540. [DOI: 10.1111/febs.15747] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 12/21/2020] [Accepted: 02/01/2021] [Indexed: 12/14/2022]
|
5
|
Alhmoud JF, Mustafa AG, Malki MI. Targeting DNA Repair Pathways in Hematological Malignancies. Int J Mol Sci 2020; 21:ijms21197365. [PMID: 33036137 PMCID: PMC7582413 DOI: 10.3390/ijms21197365] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 09/25/2020] [Accepted: 10/01/2020] [Indexed: 12/19/2022] Open
Abstract
DNA repair plays an essential role in protecting cells that are repeatedly exposed to endogenous or exogenous insults that can induce varying degrees of DNA damage. Any defect in DNA repair mechanisms results in multiple genomic changes that ultimately may result in mutation, tumor growth, and/or cell apoptosis. Furthermore, impaired repair mechanisms can also lead to genomic instability, which can initiate tumorigenesis and development of hematological malignancy. This review discusses recent findings and highlights the importance of DNA repair components and the impact of their aberrations on hematological malignancies.
Collapse
Affiliation(s)
- Jehad F. Alhmoud
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, Al-Ahliyya Amman University, Amman 19328, Jordan;
| | - Ayman G. Mustafa
- College of Medicine, QU Health, Qatar University, P. O. Box 2713 Doha, Qatar;
| | - Mohammed Imad Malki
- College of Medicine, QU Health, Qatar University, P. O. Box 2713 Doha, Qatar;
- Correspondence: ; Tel.: +97-44403-7847
| |
Collapse
|
6
|
Nojima H, Homma H, Onozato Y, Kaida A, Harada H, Miura M. Differential properties of mitosis-associated events following CHK1 and WEE1 inhibitor treatments in human tongue carcinoma cells. Exp Cell Res 2020; 386:111720. [DOI: 10.1016/j.yexcr.2019.111720] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 11/08/2019] [Accepted: 11/10/2019] [Indexed: 10/25/2022]
|
7
|
Koppenhafer SL, Goss KL, Terry WW, Gordon DJ. Inhibition of the ATR-CHK1 Pathway in Ewing Sarcoma Cells Causes DNA Damage and Apoptosis via the CDK2-Mediated Degradation of RRM2. Mol Cancer Res 2020; 18:91-104. [PMID: 31649026 PMCID: PMC6942212 DOI: 10.1158/1541-7786.mcr-19-0585] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 09/23/2019] [Accepted: 10/21/2019] [Indexed: 02/07/2023]
Abstract
Inhibition of ribonucleotide reductase (RNR), the rate-limiting enzyme in the synthesis of deoxyribonucleotides, causes DNA replication stress and activates the ataxia telangiectasia and rad3-related protein (ATR)-checkpoint kinase 1 (CHK1) pathway. Notably, a number of different cancers, including Ewing sarcoma tumors, are sensitive to the combination of RNR and ATR-CHK1 inhibitors. However, multiple, overlapping mechanisms are reported to underlie the toxicity of ATR-CHK1 inhibitors, both as single agents and in combination with RNR inhibitors, toward cancer cells. Here, we identified a feedback loop in Ewing sarcoma cells in which inhibition of the ATR-CHK1 pathway depletes RRM2, the small subunit of RNR, and exacerbates the DNA replication stress and DNA damage caused by RNR inhibitors. Mechanistically, we identified that the inhibition of ATR-CHK1 activates CDK2, which targets RRM2 for degradation via the proteasome. Similarly, activation of CDK2 by inhibition or knockdown of the WEE1 kinase also depletes RRM2 and causes DNA damage and apoptosis. Moreover, we show that the concurrent inhibition of ATR and WEE1 has a synergistic effect in Ewing sarcoma cells. Overall, our results provide novel insight into the response to DNA replication stress, as well as a rationale for targeting the ATR, CHK1, and WEE1 pathways, in Ewing sarcoma tumors. IMPLICATIONS: Targeting the ATR, CHK1, and WEE1 kinases in Ewing sarcoma cells activates CDK2 and increases DNA replication stress by promoting the proteasome-mediated degradation of RRM2.
Collapse
Affiliation(s)
- Stacia L Koppenhafer
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, University of Iowa, Iowa City, Iowa
| | - Kelli L Goss
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, University of Iowa, Iowa City, Iowa
| | - William W Terry
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, University of Iowa, Iowa City, Iowa
| | - David J Gordon
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, University of Iowa, Iowa City, Iowa.
| |
Collapse
|
8
|
González Besteiro MA, Calzetta NL, Loureiro SM, Habif M, Bétous R, Pillaire MJ, Maffia A, Sabbioneda S, Hoffmann JS, Gottifredi V. Chk1 loss creates replication barriers that compromise cell survival independently of excess origin firing. EMBO J 2019; 38:e101284. [PMID: 31294866 DOI: 10.15252/embj.2018101284] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 06/11/2019] [Accepted: 06/19/2019] [Indexed: 01/18/2023] Open
Abstract
The effectiveness of checkpoint kinase 1 (Chk1) inhibitors at killing cancer cells is considered to be fully dependent on their effect on DNA replication initiation. Chk1 inhibition boosts origin firing, presumably limiting the availability of nucleotides and in turn provoking the slowdown and subsequent collapse of forks, thus decreasing cell viability. Here we show that slow fork progression in Chk1-inhibited cells is not an indirect effect of excess new origin firing. Instead, fork slowdown results from the accumulation of replication barriers, whose bypass is impeded by CDK-dependent phosphorylation of the specialized DNA polymerase eta (Polη). Also in contrast to the linear model, the accumulation of DNA damage in Chk1-deficient cells depends on origin density but is largely independent of fork speed. Notwithstanding this, origin dysregulation contributes only mildly to the poor proliferation rates of Chk1-depleted cells. Moreover, elimination of replication barriers by downregulation of helicase components, but not their bypass by Polη, improves cell survival. Our results thus shed light on the molecular basis of the sensitivity of tumors to Chk1 inhibition.
Collapse
Affiliation(s)
- Marina A González Besteiro
- Fundación Instituto Leloir - Instituto de Investigaciones Bioquímicas de Buenos Aires, Consejo de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Nicolás L Calzetta
- Fundación Instituto Leloir - Instituto de Investigaciones Bioquímicas de Buenos Aires, Consejo de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Sofía M Loureiro
- Fundación Instituto Leloir - Instituto de Investigaciones Bioquímicas de Buenos Aires, Consejo de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Martín Habif
- Fundación Instituto Leloir - Instituto de Investigaciones Bioquímicas de Buenos Aires, Consejo de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Rémy Bétous
- Equipe «Labellisée LA LIGUE CONTRE LE CANCER», Laboratoire d'Excellence Toulouse Cancer LABEX TOUCAN - Cancer Research Center of Toulouse, Inserm U1037, CNRS ERL5294, University Paul Sabatier, Toulouse, France
| | - Marie-Jeanne Pillaire
- Equipe «Labellisée LA LIGUE CONTRE LE CANCER», Laboratoire d'Excellence Toulouse Cancer LABEX TOUCAN - Cancer Research Center of Toulouse, Inserm U1037, CNRS ERL5294, University Paul Sabatier, Toulouse, France
| | - Antonio Maffia
- Istituto di Genetica Molecolare "Luigi Luca Cavalli-Sforza" - CNR, Pavia, Italy
| | - Simone Sabbioneda
- Istituto di Genetica Molecolare "Luigi Luca Cavalli-Sforza" - CNR, Pavia, Italy
| | - Jean-Sébastien Hoffmann
- Equipe «Labellisée LA LIGUE CONTRE LE CANCER», Laboratoire d'Excellence Toulouse Cancer LABEX TOUCAN - Cancer Research Center of Toulouse, Inserm U1037, CNRS ERL5294, University Paul Sabatier, Toulouse, France
| | - Vanesa Gottifredi
- Fundación Instituto Leloir - Instituto de Investigaciones Bioquímicas de Buenos Aires, Consejo de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| |
Collapse
|
9
|
Koppenhafer SL, Goss KL, Terry WW, Gordon DJ. mTORC1/2 and Protein Translation Regulate Levels of CHK1 and the Sensitivity to CHK1 Inhibitors in Ewing Sarcoma Cells. Mol Cancer Ther 2018; 17:2676-2688. [PMID: 30282812 DOI: 10.1158/1535-7163.mct-18-0260] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 06/04/2018] [Accepted: 09/28/2018] [Indexed: 12/12/2022]
Abstract
The treatment of Ewing sarcoma has changed very little in the past two decades and novel treatment approaches are needed. We recently identified that Ewing sarcoma cells are uniquely vulnerable to inhibitors of ribonucleotide reductase (RNR), the rate-limiting enzyme in the synthesis of deoxyribonucleotides. We subsequently found that the inhibition of checkpoint kinase 1 (CHK1) increases the sensitivity of Ewing sarcoma cells to inhibitors of RNR, such as gemcitabine. However, Ewing sarcoma cells exhibit high levels of the CHK1 protein, which may represent an adaptive response to elevated levels of endogenous DNA replication stress. Consequently, we began this work with the aim of determining the impact of CHK1 levels on drug sensitivity, as well as identifying the mechanisms and pathways that regulate CHK1 levels in Ewing sarcoma cells. In this report, we show that the high levels of the CHK1 protein in Ewing sarcoma cells limit the efficacy of CHK1 inhibitors. However, inhibition of mTORC1/2 activates the translational repressor 4E-BP1, reduces protein synthesis, and decreases levels of the CHK1 protein in Ewing sarcoma cells. Similarly, we identified that the CHK1 inhibitor prexasertib also activates 4E-BP1, inhibits protein synthesis, and reduces CHK1 protein levels in Ewing sarcoma cells. Moreover, the combination of prexasertib and gemcitabine was synergistic in vitro, caused tumor regression in vivo, and significantly prolonged mouse survival in a Ewing sarcoma xenograft experiment. Overall, our results provide insight into Ewing sarcoma biology and support further investigation of the CHK1 pathway as a therapeutic target in Ewing sarcoma tumors.
Collapse
Affiliation(s)
- Stacia L Koppenhafer
- Department of Pediatrics, Division of Pediatric Hematology/Oncology, University of Iowa, Iowa City, Iowa
| | - Kelli L Goss
- Department of Pediatrics, Division of Pediatric Hematology/Oncology, University of Iowa, Iowa City, Iowa
| | - William W Terry
- Department of Pediatrics, Division of Pediatric Hematology/Oncology, University of Iowa, Iowa City, Iowa
| | - David J Gordon
- Department of Pediatrics, Division of Pediatric Hematology/Oncology, University of Iowa, Iowa City, Iowa.
| |
Collapse
|
10
|
Massey AJ. A high content, high throughput cellular thermal stability assay for measuring drug-target engagement in living cells. PLoS One 2018; 13:e0195050. [PMID: 29617433 PMCID: PMC5884524 DOI: 10.1371/journal.pone.0195050] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 03/15/2018] [Indexed: 01/08/2023] Open
Abstract
Determining and understanding drug target engagement is critical for drug discovery. This can be challenging within living cells as selective readouts are often unavailable. Here we describe a novel method for measuring target engagement in living cells based on the principle of altered protein thermal stabilization / destabilization in response to ligand binding. This assay (HCIF-CETSA) utilizes high content, high throughput single cell immunofluorescent detection to determine target protein levels following heating of adherent cells in a 96 well plate format. We have used target engagement of Chk1 by potent small molecule inhibitors to validate the assay. Target engagement measured by this method was subsequently compared to target engagement measured by two alternative methods (autophosphorylation and CETSA). The HCIF-CETSA method appeared robust and a good correlation in target engagement measured by this method and CETSA for the selective Chk1 inhibitor V158411 was observed. However, these EC50 values were 23- and 12-fold greater than the autophosphorylation IC50. The described method is therefore a valuable advance in the CETSA method allowing the high throughput determination of target engagement in adherent cells.
Collapse
|
11
|
Oo ZY, Stevenson AJ, Proctor M, Daignault SM, Walpole S, Lanagan C, Chen J, Škalamera D, Spoerri L, Ainger SA, Sturm RA, Haass NK, Gabrielli B. Endogenous Replication Stress Marks Melanomas Sensitive to CHEK1 Inhibitors In Vivo. Clin Cancer Res 2018. [PMID: 29535131 DOI: 10.1158/1078-0432.ccr-17-2701] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Purpose: Checkpoint kinase 1 inhibitors (CHEK1i) have single-agent activity in vitro and in vivo Here, we have investigated the molecular basis of this activity.Experimental Design: We have assessed a panel of melanoma cell lines for their sensitivity to the CHEK1i GNE-323 and GDC-0575 in vitro and in vivo The effects of these compounds on responses to DNA replication stress were analyzed in the hypersensitive cell lines.Results: A subset of melanoma cell lines is hypersensitive to CHEK1i-induced cell death in vitro, and the drug effectively inhibits tumor growth in vivo In the hypersensitive cell lines, GNE-323 triggers cell death without cells entering mitosis. CHEK1i treatment triggers strong RPA2 hyperphosphorylation and increased DNA damage in only hypersensitive cells. The increased replication stress was associated with a defective S-phase cell-cycle checkpoint. The number and intensity of pRPA2 Ser4/8 foci in untreated tumors appeared to be a marker of elevated replication stress correlated with sensitivity to CHEK1i.Conclusions: CHEK1i have single-agent activity in a subset of melanomas with elevated endogenous replication stress. CHEK1i treatment strongly increased this replication stress and DNA damage, and this correlated with increased cell death. The level of endogenous replication is marked by the pRPA2Ser4/8 foci in the untreated tumors, and may be a useful marker of replication stress in vivoClin Cancer Res; 24(12); 2901-12. ©2018 AACR.
Collapse
Affiliation(s)
- Zay Yar Oo
- Mater Research Institute, The University of Queensland, Brisbane, Queensland, Australia.,The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, Queensland. Australia
| | - Alexander J Stevenson
- Mater Research Institute, The University of Queensland, Brisbane, Queensland, Australia
| | - Martina Proctor
- Mater Research Institute, The University of Queensland, Brisbane, Queensland, Australia
| | - Sheena M Daignault
- The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, Queensland. Australia
| | - Sebastian Walpole
- The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, Queensland. Australia
| | - Catherine Lanagan
- Mater Research Institute, The University of Queensland, Brisbane, Queensland, Australia
| | - James Chen
- The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, Queensland. Australia
| | - Dubravka Škalamera
- Mater Research Institute, The University of Queensland, Brisbane, Queensland, Australia
| | - Loredana Spoerri
- The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, Queensland. Australia
| | - Stephen A Ainger
- The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, Queensland. Australia
| | - Richard A Sturm
- The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, Queensland. Australia
| | - Nikolas K Haass
- The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, Queensland. Australia
| | - Brian Gabrielli
- Mater Research Institute, The University of Queensland, Brisbane, Queensland, Australia. .,The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, Queensland. Australia
| |
Collapse
|
12
|
Brill E, Yokoyama T, Nair J, Yu M, Ahn YR, Lee JM. Prexasertib, a cell cycle checkpoint kinases 1 and 2 inhibitor, increases in vitro toxicity of PARP inhibition by preventing Rad51 foci formation in BRCA wild type high-grade serous ovarian cancer. Oncotarget 2017; 8:111026-111040. [PMID: 29340034 PMCID: PMC5762302 DOI: 10.18632/oncotarget.22195] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 08/31/2017] [Indexed: 12/17/2022] Open
Abstract
PARP inhibitors (PARPi) have been effective in high-grade serous ovarian cancer (HGSOC), although clinical activity is limited against BRCA wild type HGSOC. The nearly universal loss of normal p53 regulation in HGSOCs causes dysfunction in the G1/S checkpoint, making tumor cells reliant on Chk1-mediated G2/M cell cycle arrest for DNA repair. Therefore, Chk1 is a reasonable target for a combination strategy with PARPi in treating BRCA wild type HGSOC. Here we investigated the combination of prexasertib mesylate monohydrate (LY2606368), a Chk1 and Chk2 inhibitor, and a PARP inhibitor, olaparib, in HGSOC cell lines (OVCAR3, OV90, PEO1 and PEO4) using clinically attainable concentrations. Our findings showed combination treatment synergistically decreased cell viability in all cell lines and induced greater DNA damage and apoptosis than the control and/or monotherapies (p<0.05). Treatment with olaparib in BRCA wild type HGSOC cells caused formation of Rad51 foci, whereas the combination treatment with prexasertib inhibited transnuclear localization of Rad51, a key protein in homologous recombination repair. Overall, our data provide evidence that prexasertib and olaparib combination resulted in synergistic cytotoxic effects against BRCA wild type HGSOC cells through reduced Rad51 foci formation and greater induction of apoptosis. This may be a novel therapeutic strategy for HGSOC.
Collapse
Affiliation(s)
- Ethan Brill
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Takuhei Yokoyama
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Jayakumar Nair
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Minshu Yu
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Yeong-Ran Ahn
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Jung-Min Lee
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| |
Collapse
|
13
|
Geneste CC, Massey AJ. Cell Density Affects the Detection of Chk1 Target Engagement by the Selective Inhibitor V158411. SLAS DISCOVERY 2017; 23:144-153. [PMID: 29048945 DOI: 10.1177/2472555217738534] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Understanding drug target engagement and the relationship to downstream pharmacology is critical for drug discovery. Here we have evaluated target engagement of Chk1 by the small-molecule inhibitor V158411 using two different target engagement methods (autophosphorylation and cellular thermal shift assay [CETSA]). Target engagement measured by these methods was subsequently related to Chk1 inhibitor-dependent pharmacology. Inhibition of autophosphorylation was a robust method for measuring V158411 Chk1 target engagement. In comparison, while target engagement determined using CETSA appeared robust, the V158411 CETSA target engagement EC50 values were 43- and 19-fold greater than the autophosphorylation IC50 values. This difference was attributed to the higher cell density in the CETSA assay configuration. pChk1 (S296) IC50 values determined using the CETSA assay conditions were 54- and 33-fold greater than those determined under standard conditions and were equivalent to the CETSA EC50 values. Cellular conditions, especially cell density, influenced the target engagement of V158411 for Chk1. The effects of high cell density on apparent compound target engagement potency should be evaluated when using target engagement assays that necessitate high cell densities (such as the CETSA conditions used in this study). In such cases, the subsequent relation of these data to downstream pharmacological changes should therefore be interpreted with care.
Collapse
|
14
|
Babiker HM, McBride A, Cooke LS, Mahadevan D. Therapeutic potential of investigational CHK-1 inhibitors for the treatment of solid tumors. Expert Opin Investig Drugs 2017; 26:1063-1072. [DOI: 10.1080/13543784.2017.1360275] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Hani M. Babiker
- Phase I Program, University of Arizona Cancer Center, Tucson, AZ, USA
- Department of Molecular Medicine, Translational Genomics Research Institute, Phoenix, AZ, USA
- Banner University Medical Center, Tucson, AZ, USA
| | - Ali McBride
- Banner University Medical Center, Tucson, AZ, USA
- Department of Pharmacy, University of Arizona, Tucson, AZ, USA
| | - Laurence S. Cooke
- Phase I Program, University of Arizona Cancer Center, Tucson, AZ, USA
| | - Daruka Mahadevan
- Phase I Program, University of Arizona Cancer Center, Tucson, AZ, USA
| |
Collapse
|
15
|
Goss KL, Koppenhafer SL, Harmoney KM, Terry WW, Gordon DJ. Inhibition of CHK1 sensitizes Ewing sarcoma cells to the ribonucleotide reductase inhibitor gemcitabine. Oncotarget 2017; 8:87016-87032. [PMID: 29152060 PMCID: PMC5675612 DOI: 10.18632/oncotarget.18776] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 05/22/2017] [Indexed: 12/22/2022] Open
Abstract
Ewing sarcoma is a bone and soft tissue sarcoma that occurs in children and young adults. The EWS-FLI1 gene fusion is the driver mutation in most Ewing sarcoma tumors and functions, in part, as an aberrant transcription factor. We recently identified that Ewing sarcoma cells are sensitive to inhibition of ribonucleotide reductase (RNR), which catalyzes the formation of deoxyribonucleotides from ribonucleotides. In this report, we show that Ewing sarcoma cells are sensitive to treatment with clofarabine, which is a nucleoside analogue and allosteric inhibitor of RNR. However, clofarabine is a reversible inhibitor of RNR and we found that the effect of clofarabine is limited when using a short (6-hour) drug treatment. Gemcitabine, on the other hand, is an irreversible inhibitor of the RRM1 subunit of RNR and this drug induces apoptosis in Ewing sarcoma cells when used in both 6-hour and longer drug treatments. Treatment of Ewing sarcoma cells with gemcitabine also results in activation of checkpoint kinase 1 (CHK1), which is a critical mediator of cell survival in the setting of impaired DNA replication. Notably, inhibition of CHK1 function in Ewing sarcoma cells using a small-molecule CHK1 inhibitor, or siRNA knockdown, in combination with gemcitabine results in increased toxicity both in vitro and in vivo in a mouse xenograft experiment. Overall, our results provide insight into Ewing sarcoma biology and identify a candidate therapeutic target, and drug combination, in Ewing sarcoma.
Collapse
Affiliation(s)
- Kelli L Goss
- Department of Pediatrics, Division of Pediatric Hematology/Oncology, University of Iowa, Iowa City, Iowa 52242, USA
| | - Stacia L Koppenhafer
- Department of Pediatrics, Division of Pediatric Hematology/Oncology, University of Iowa, Iowa City, Iowa 52242, USA
| | - Kathryn M Harmoney
- Department of Pediatrics, Division of Pediatric Hematology/Oncology, University of Iowa, Iowa City, Iowa 52242, USA
| | - William W Terry
- Department of Pediatrics, Division of Pediatric Hematology/Oncology, University of Iowa, Iowa City, Iowa 52242, USA
| | - David J Gordon
- Department of Pediatrics, Division of Pediatric Hematology/Oncology, University of Iowa, Iowa City, Iowa 52242, USA
| |
Collapse
|
16
|
Alternative Chk1-independent S/M checkpoint in somatic cells that prevents premature mitotic entry. Med Oncol 2017; 34:70. [PMID: 28349497 DOI: 10.1007/s12032-017-0932-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 03/23/2017] [Indexed: 12/22/2022]
Abstract
Genomic instability is the hallmark of cancer. Checkpoint kinase-1 (Chk1) is required for cell cycle delay after DNA damage or blocked DNA replication. Chk1-depleted tumor cells undergo premature mitosis and apoptosis. Here we analyzed the depletion of Chk1 in normal somatic cells in the absence of DNA damage in order to investigate alternative cell cycle checkpoint mechanism(s). By means of adenoviruses, flow cytometry, immunofluorescence and Western blotting, Chk1-depleted mouse embryonic fibroblasts (MEFs) were investigated. Chk1-/- MEFs arrested at the S/G2 boundary of the cell cycle with decreased protein levels of many cell cycle key players. Cyclin B1 was predominantly cytoplasmic. Interestingly, overexpression of nuclear dominant Cyclin B1 leads to nuclear translocation and premature mitosis. Chk1-/- MEFs exhibited the absence of double-strand breaks, yet cells showed delayed DNA damage recovery with pan-nuclear immunostaining pattern of Histone H2AX. Activation of this checkpoint would elicit a senescent-like phenotype. Taken together, our elaborated data revealed the existence of an additional S/M checkpoint functioning via γH2AX signaling and cytoplasmic retention of Cyclin B1 in somatic cells.
Collapse
|