1
|
Guo M, Ying Y, Chen Y, Miao X, Yu Z. Asiaticoside inhibits breast cancer progression and tumor angiogenesis via YAP1/VEGFA signal pathway. Heliyon 2024; 10:e37169. [PMID: 39309801 PMCID: PMC11416243 DOI: 10.1016/j.heliyon.2024.e37169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 08/25/2024] [Accepted: 08/28/2024] [Indexed: 09/25/2024] Open
Abstract
Objective Breast cancer poses a major health risk to millions of females globally. Asiaticoside (AC) is a naturally occurring compound derived from Centella asiatica, a widely used medicinal plant in the oriental countries and has potential antitumor properties. The primary aim of this study was to investigate the anti-cancer effects of synthesized AC at the cellular level and assess its ability to inhibit tumor growth and angiogenesis in breast cancer. Methods The proliferative capacities of MCF-7 and MDA-MB-231 cells were determined using CCK-8 assay. To analyze invasion and migration, Transwell assays were conducted on the same cell lines. Additionally, apoptosis was analyzed in vitro using flow cytometry. Real-time RT-PCR was used to examine mRNA expression, and Western-blotting assay was employed to examine protein expression. Subcutaneous injection of MDA-MB-231 cells into female BALB/c nude mice was followed by treatment with AC to study its anti-tumor effects in vivo. Results AC treatment reduced cell proliferation and triggered apoptosis in MCF-7 and MDA-MB-231 cells. The invasive and pro-angiogenesis ability were also impaired upon AC treatment. AC administration also impeded the tumor growth and tumor-associated angiogenesis of MDA-MB-231 cells in nude mice, which was accompanied by the decreased levels of YAP1 and VEGFA. Conclusion Taken together, our results demonstrated the anti-cancer activity of AC in breast cancer. AC is able to suppress the malignancy of breast cancercells via YAP1/VEGFA signal pathway.
Collapse
Affiliation(s)
- Mengmeng Guo
- General Surgery Department, Nantong Hospital Affiliated to Nanjing University of Chinese Medicine, No.41, Jianshe Road, Chongchuan District, Nantong, 220000, Jiangsu, China
| | - Yu Ying
- Breast Disease Department, Jiangsu Provincial Hospital of Traditional Chinese Medicine, No. 155, Hanzhong Road, Qinhuai District, Nanjing, Jiangsu, China
| | - Yun Chen
- Department of Medical Oncology, Jiangsu Cancer Hospital, No. 42, Baizi Pavilion, Kunlun Road, Xuanwu District, Nanjing, Jiangsu, China
| | - Xian Miao
- Oncology Department, Nantong Hospital Affiliated to Nanjing University of Chinese Medicine, No.41, Jianshe Road, Chongchuan District, Nantong, 226000, Jiangsu, China
| | - Zhenghong Yu
- Rheumatology and Immunology Department, Jinling Clinical Medical College, Nanjing University of Chinese Medicine, No. 278, Central Road, Nanjing City, China
| |
Collapse
|
2
|
Piórkowska K, Zygmunt K, Hunter W, Wróblewska K. MALAT1: A Long Non-Coding RNA with Multiple Functions and Its Role in Processes Associated with Fat Deposition. Genes (Basel) 2024; 15:479. [PMID: 38674413 PMCID: PMC11049917 DOI: 10.3390/genes15040479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/05/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
Metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) belongs to the lncRNA molecules, which are involved in transcriptional and epigenetic regulation and the control of gene expression, including the mechanism of chromatin remodeling. MALAT1 was first discovered during carcinogenesis in lung adenocarcinoma, hence its name. In humans, 66 of its isoforms have been identified, and in pigs, only 2 are predicted, for which information is available in Ensembl databases (Ensembl Release 111). MALAT1 is expressed in numerous tissues, including adipose, adrenal gland, heart, kidney, liver, ovary, pancreas, sigmoid colon, small intestine, spleen, and testis. MALAT1, as an lncRNA, shows a wide range of functions. It is involved in the regulation of the cell cycle, where it has pro-proliferative effects and high cellular levels during the G1/S and mitotic (M) phases. Moreover, it is involved in invasion, metastasis, and angiogenesis, and it has a crucial function in alternative splicing during carcinogenesis. In addition, MALAT1 plays a significant role in the processes of fat deposition and adipogenesis. The human adipose tissue stem cells, during differentiation into adipocytes, secrete MALAT1 as one the most abundant lncRNAs in the exosomes. MALAT1 expression in fat tissue is positively correlated with adipogenic FABP4 and LPL. This lncRNA is involved in the regulation of PPARγ at the transcription stage, fatty acid metabolism, and insulin signaling. The wide range of MALAT1 functions makes it an interesting target in studies searching for drugs to prevent obesity development in humans. In turn, in farm animals, it can be a source of selection markers to control the fat tissue content.
Collapse
Affiliation(s)
- Katarzyna Piórkowska
- National Research Institute of Animal Production, Animal Molecular Biology, 31-047 Cracow, Poland; (K.Z.); (K.W.)
| | - Karolina Zygmunt
- National Research Institute of Animal Production, Animal Molecular Biology, 31-047 Cracow, Poland; (K.Z.); (K.W.)
| | - Walter Hunter
- Faculty of Biotechnology and Horticulture, University of Agriculture in Cracow, 31-120 Cracow, Poland;
| | - Ksenia Wróblewska
- National Research Institute of Animal Production, Animal Molecular Biology, 31-047 Cracow, Poland; (K.Z.); (K.W.)
| |
Collapse
|
3
|
Suwardjo S, Permana KG, Aryandono T, Heriyanto DS, Anwar SL. Long-Noncoding-RNA HOTAIR Upregulation is Associated with Poor Breast Cancer Outcome: A Systematic Review and Meta Analysis. Asian Pac J Cancer Prev 2024; 25:1169-1182. [PMID: 38679975 PMCID: PMC11162707 DOI: 10.31557/apjcp.2024.25.4.1169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 04/14/2024] [Indexed: 05/01/2024] Open
Abstract
BACKGROUND Breast cancer is the most frequent cancer among women worldwide with significant disproportionate mortality rates in developing countries. Although clinical management of breast cancer has been immensely improved, refinement in the prognostic and recurrent markers is still needed. Long non-coding RNAs (lncRNA) HOTAIR has recently been associated with poor outcome and is potentially used as a prognostic marker in breast cancer. METHODS We comprehensively reviewed studies evaluating lncRNA HOTAIR in association with overall and disease-free survivals in breast cancers. Systematic searches were performed in Pubmed, ProQuest, ScienceDirect, Scopus, Google Scholar, Semantic Scholar, Springer, Nature, Sage Journals, and Wiley databases using combination keywords "long non-coding RNA," "lncRNA," "HOX transcript antisense RNA," "HOTAIR," "breast can-cer," "carcinoma mammae," "prognosis," and "survival." Risk of bias score was used to assess quality of studies, I2 test was conducted to assess heterogeneity. Meta-analysis was performed to compare HOTAIR expression with breast cancer survival rates using STATA v.17 software. RESULTS Of the total 1,504 screened studies, seven studies were included in the meta-analysis involving 533 patients. High expression of HOTAIR was associated with poor survival rates (pooled HR: 1.69; 95%CI: 1.11-2.59; p=0.015), shorter overall survival (OS) (pooled HR: 1.33; 95%CI: 0.78-2.26; p=0.455), poor disease-free survival (DFS) (pooled HR: 2.40; 95%CI: 1.63-3.53; p<0.001), poor distant metastatic-free survival (MFS) (HR: 1.75; 95%CI: 1.13-2.71; p=0.012). In addition, overexpression of HOTAIR was associated with positive lymph node infiltration (pooled OR: 2.38; 95%CI: 0.53-10.69; p=0.26) and ductal type cancer (pooled OR: 3.27; 95%CI: 1.15-9.30; p=0.03). CONCLUSION Upregulation of lncRNA HOTAIR is associated with worse DFS aand MFS that can potentially be used as a prognostic marker in breast cancer patients.
Collapse
Affiliation(s)
- Suwardjo Suwardjo
- Division of Surgical Oncology Department of Surgery, Dr Sardjito Hospital / Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Indonesia.
| | - Kavi Gilang Permana
- Division of Surgical Oncology Department of Surgery, Dr Sardjito Hospital / Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Indonesia.
| | - Teguh Aryandono
- Division of Surgical Oncology Department of Surgery, Dr Sardjito Hospital / Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Indonesia.
| | - Didik Setyo Heriyanto
- Department of Pathological Anatomy, Dr Sardjito Hospital / Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Indonesia.
| | - Sumadi Lukman Anwar
- Division of Surgical Oncology Department of Surgery, Dr Sardjito Hospital / Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Indonesia.
| |
Collapse
|
4
|
Loe AKH, Rao-Bhatia A, Wei Z, Kim JE, Guan B, Qin Y, Hong M, Kwak HS, Liu X, Zhang L, Wrana JL, Guo H, Kim TH. YAP targetome reveals activation of SPEM in gastric pre-neoplastic progression and regeneration. Cell Rep 2023; 42:113497. [PMID: 38041813 DOI: 10.1016/j.celrep.2023.113497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 06/25/2023] [Accepted: 11/09/2023] [Indexed: 12/04/2023] Open
Abstract
Peptic ulcer disease caused by environmental factors increases the risk of developing gastric cancer (GC), one of the most common and deadly cancers in the world. However, the mechanisms underlying this association remain unclear. A major type of GC uniquely undergoes spasmolytic polypeptide-expressing metaplasia (SPEM) followed by intestinal metaplasia. Notably, intestinal-type GC patients with high levels of YAP signaling exhibit a lower survival rate and poor prognosis. YAP overexpression in gastric cells induces atrophy, metaplasia, and hyperproliferation, while its deletion in a Notch-activated gastric adenoma model suppresses them. By defining the YAP targetome genome-wide, we demonstrate that YAP binds to active chromatin elements of SPEM-related genes, which correlates with the activation of their expression in both metaplasia and ulcers. Single-cell analysis combined with our YAP signature reveals that YAP signaling is activated during SPEM, demonstrating YAP as a central regulator of SPEM in gastric neoplasia and regeneration.
Collapse
Affiliation(s)
- Adrian K H Loe
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Abilasha Rao-Bhatia
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Zhao Wei
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan 250012, Shandong, China; Shandong Engineering Research Center of Biomarker and Artificial Intelligence Application, Jinan, China
| | - Jung-Eun Kim
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Bingxin Guan
- Department of Pathology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250033, Shandong, China
| | - Yan Qin
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Minji Hong
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Hyo Sang Kwak
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Xiaoyu Liu
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250033, Shandong, China; Shandong Engineering & Technology Research Center for Tumor Marker Detection, Jinan 250033, Shandong, China; Shandong Provincial Clinical Medicine Research Center for Clinical Laboratory, Jinan 250033, Shandong, China
| | - Leyi Zhang
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Jeffrey L Wrana
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada; Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - Haiyang Guo
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250033, Shandong, China; Shandong Engineering & Technology Research Center for Tumor Marker Detection, Jinan 250033, Shandong, China; Shandong Provincial Clinical Medicine Research Center for Clinical Laboratory, Jinan 250033, Shandong, China.
| | - Tae-Hee Kim
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
5
|
Thrash HL, Pendergast AM. Multi-Functional Regulation by YAP/TAZ Signaling Networks in Tumor Progression and Metastasis. Cancers (Basel) 2023; 15:4701. [PMID: 37835395 PMCID: PMC10572014 DOI: 10.3390/cancers15194701] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/14/2023] [Accepted: 09/22/2023] [Indexed: 10/15/2023] Open
Abstract
The Hippo pathway transcriptional co-activators, YES-associated protein (YAP) and Transcriptional Co-Activator with PDZ Binding Motif (TAZ), have both been linked to tumor progression and metastasis. These two proteins possess overlapping and distinct functions, and their activities lead to the expression of genes involved in multiple cellular processes, including cell proliferation, survival, and migration. The dysregulation of YAP/TAZ-dependent cellular processes can result in altered tumor growth and metastasis. In addition to their well-documented roles in the regulation of cancer cell growth, survival, migration, and invasion, the YAP/TAZ-dependent signaling pathways have been more recently implicated in cellular processes that promote metastasis and therapy resistance in several solid tumor types. This review highlights the role of YAP/TAZ signaling networks in the regulation of tumor cell plasticity mediated by hybrid and reversible epithelial-mesenchymal transition (EMT) states, and the promotion of cancer stem cell/progenitor phenotypes. Mechanistically, YAP and TAZ regulate these cellular processes by targeting transcriptional networks. In this review, we detail recently uncovered mechanisms whereby YAP and TAZ mediate tumor growth, metastasis, and therapy resistance, and discuss new therapeutic strategies to target YAP/TAZ function in various solid tumor types. Understanding the distinct and overlapping roles of YAP and TAZ in multiple cellular processes that promote tumor progression to metastasis is expected to enable the identification of effective therapies to treat solid tumors through the hyper-activation of YAP and TAZ.
Collapse
Affiliation(s)
| | - Ann Marie Pendergast
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
6
|
Xiang F, Zhang M, Hao W, Liu R, Li Q, Gu Q, Zhu Z, Chen Z, Li X, Kang X, Wu R. Ursolic Acid Inhibits the Growth of Gastric Cancer by Targeting KLF4/YAP1. J Food Biochem 2023; 2023:1-11. [DOI: 10.1155/2023/7729962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Krüppel-like factor 4 (KLF4) is a zinc-finger transcription factor which has various mechanisms in different tumors. Ursolic acid (UA), a natural compound that exists in many herbs, is known to prevent tumor progression and has anticancer effects on many human cancers. The present study was to evaluate the antitumor effect of UA on gastric cancer (GC) through KLF4 and the Hippo pathway. Our data showed that UA inhibited the growth of GC in vivo and in vitro. UA treatment significantly increased the expression of KLF4 and decreased the expression of CTGF. The overexpression of KLF4 inhibited the proliferation and cell cycle of GC and decreased the expression of CTGF, whereas the knockdown of KLF4 attenuated the effects of UA. Furthermore, the inhibition of CTGF arrested tumor cells in G2/M which blocked proliferation progress. Confocal laser scanning and molecular simulation software MOE showed that KLF4 combined with YAP1 which may block the formation of the TEADs-YAP1 complex to interrupt the expression of CTGF and the downstream oncogenic process. In conclusion, UA can inhibit GC growth both in vivo and in vitro, and it activated KLF4 which may competitively bind with YAP1 against TEADs and block the oncogenic Hippo pathways.
Collapse
Affiliation(s)
- Fenfen Xiang
- Laboratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| | - Mengzhe Zhang
- Laboratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| | - Wenbin Hao
- Laboratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| | - Rongrong Liu
- Laboratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| | - Qian Li
- Laboratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| | - Qing Gu
- Laboratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| | - Zhaowei Zhu
- Laboratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| | - Zixi Chen
- Laboratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| | - Xiaoxiao Li
- Laboratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| | - Xiangdong Kang
- Laboratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| | - Rong Wu
- Laboratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| |
Collapse
|
7
|
Xu Q, Xu X, Tang H, Yan J, Li J, Bao H, Wu X, Shao Y, Luo C, Wen H, Jin J, Ying J. Exploring potential molecular resistance and clonal evolution in advanced HER2-positive gastric cancer under trastuzumab therapy. Oncogenesis 2023; 12:21. [PMID: 37072406 PMCID: PMC10113330 DOI: 10.1038/s41389-023-00466-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 03/28/2023] [Accepted: 03/30/2023] [Indexed: 04/20/2023] Open
Abstract
HER2-positive gastric cancer (GC) makes up 15-20% of all GC incidences, and targeted therapy with trastuzumab is the standard of treatment. However, the mechanisms of resistance to trastuzumab are still not fully understood and presents a significant challenge in clinical practice. In this study, whole exome sequencing (WES) was performed on paired tumor tissues before trastuzumab treatment (at baseline) and at progressive disease (PD) in 23 GC patients. Clinicopathological and molecular features that may be associated with primary and/or acquired resistance to trastuzumab were identified. Lauren classification of intestinal type was associated with a more prolonged progression-free survival (PFS) than diffuse type (HR = 0.29, P = 0.019). Patients with low tumor mutation burden (TMB) showed significantly worse PFS, while high chromosome instability (CIN) was correlated with prolonged OS (HR = 0.27; P = 0.044). Patients who responded to treatment had a higher CIN than nonresponders, and a positive trend towards increasing CIN was observed as response improved (P = 0.019). In our cohort, the most common genes to acquire mutations are AURKA, MYC, STK11, and LRP6 with four patients each. We also discovered an association between clonal branching pattern and survival, with an extensive clonal branching pattern being more closely related to a shorter PFS than other branching patterns (HR = 4.71; P = 0.008). We identified potential molecular and clinical factors that provide insight regarding potential association to trastuzumab resistance in advanced HER2-positive GC patients.
Collapse
Affiliation(s)
- Qi Xu
- Department of Hepato-Pancreato-Biliary & Gastric Medical Oncology, Zhejiang Cancer Hospital, 310022, Hangzhou, China
- Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, 310022, Hangzhou, China
| | - Xiaoqing Xu
- Department of Hepato-Pancreato-Biliary & Gastric Medical Oncology, Zhejiang Cancer Hospital, 310022, Hangzhou, China
- Department of Medical Oncology, The Second Clinical Medical College of Zhejiang Chinese Medical University, 310053, Hangzhou, China
| | - Haimeng Tang
- Geneseeq Research Institute, Nanjing Geneseeq Technology Inc., 210031, Nanjing, China
| | - Junrong Yan
- Geneseeq Research Institute, Nanjing Geneseeq Technology Inc., 210031, Nanjing, China
| | - Jingjing Li
- Department of Hepato-Pancreato-Biliary & Gastric Medical Oncology, Zhejiang Cancer Hospital, 310022, Hangzhou, China
- Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, 310022, Hangzhou, China
| | - Hua Bao
- Geneseeq Research Institute, Nanjing Geneseeq Technology Inc., 210031, Nanjing, China
| | - Xue Wu
- Geneseeq Research Institute, Nanjing Geneseeq Technology Inc., 210031, Nanjing, China
| | - Yang Shao
- Geneseeq Research Institute, Nanjing Geneseeq Technology Inc., 210031, Nanjing, China
- School of Public Health, Nanjing Medical University, 211166, Nanjing, Jiangsu, China
| | - Cong Luo
- Department of Hepato-Pancreato-Biliary & Gastric Medical Oncology, Zhejiang Cancer Hospital, 310022, Hangzhou, China
- Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, 310022, Hangzhou, China
| | - Haimin Wen
- Department of Hepato-Pancreato-Biliary & Gastric Medical Oncology, Zhejiang Cancer Hospital, 310022, Hangzhou, China
- Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, 310022, Hangzhou, China
| | - Jianying Jin
- Department of Medical Oncology, Taizhou Hospital of Zhejiang Province, 317000, Taizhou, China.
| | - Jieer Ying
- Department of Hepato-Pancreato-Biliary & Gastric Medical Oncology, Zhejiang Cancer Hospital, 310022, Hangzhou, China.
- Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, 310022, Hangzhou, China.
- Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, 310022, Hangzhou, China.
| |
Collapse
|
8
|
Chen LJ, Chen X, Niu XH, Peng XF. LncRNAs in colorectal cancer: Biomarkers to therapeutic targets. Clin Chim Acta 2023; 543:117305. [PMID: 36966964 DOI: 10.1016/j.cca.2023.117305] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 03/18/2023] [Accepted: 03/20/2023] [Indexed: 03/29/2023]
Abstract
Colorectal cancer (CRC) is the third leading cause of cancer-related death in men and women worldwide. As early detection is associated with lower mortality, novel biomarkers are urgently needed for timely diagnosis and appropriate management of patients to achieve the best therapeutic response. Long noncoding RNAs (lncRNAs) have been reported to play essential roles in CRC progression. Accordingly, the regulatory roles of lncRNAs should be better understood in general and for identifying diagnostic, prognostic and predictive biomarkers in CRC specifically. In this review, the latest advances on the potential diagnostic and prognostic lncRNAs as biomarkers in CRC samples were highlighted, Current knowledge on dysregulated lncRNAs and their potential molecular mechanisms were summarized. The potential therapeutic implications and challenges for future and ongoing research in the field were also discussed. Finally, novel insights on the underlying mechanisms of lncRNAs were examined as to their potential role as biomarkers and therapeutic targets in CRC. This review may be used to design future studies and advanced investigations on lncRNAs as biomarkers for the diagnosis, prognosis and therapy in CRC.
Collapse
Affiliation(s)
- Ling-Juan Chen
- Department of Clinical Laboratory, Qingyuan People's Hospital, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan 511518, Guangdong Province, China
| | - Xiang Chen
- Department of General Surgery, Qingyuan People's Hospital, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan 511518, Guangdong Province, China
| | - Xiao-Hua Niu
- Department of General Surgery, Qingyuan People's Hospital, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan 511518, Guangdong Province, China
| | - Xiao-Fei Peng
- Department of General Surgery, Qingyuan People's Hospital, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan 511518, Guangdong Province, China.
| |
Collapse
|
9
|
Araújo D, Ribeiro E, Amorim I, Vale N. Repurposed Drugs in Gastric Cancer. MOLECULES (BASEL, SWITZERLAND) 2022; 28:molecules28010319. [PMID: 36615513 PMCID: PMC9822219 DOI: 10.3390/molecules28010319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 12/21/2022] [Accepted: 12/25/2022] [Indexed: 01/04/2023]
Abstract
Gastric cancer (GC) is one of the major causes of death worldwide, ranking as the fifth most incident cancer in 2020 and the fourth leading cause of cancer mortality. The majority of GC patients are in an advanced stage at the time of diagnosis, presenting a poor prognosis and outcome. Current GC treatment approaches involve endoscopic detection, gastrectomy and chemotherapy or chemoradiotherapy in an adjuvant or neoadjuvant setting. Drug development approaches demand extreme effort to identify molecular mechanisms of action of new drug candidates. Drug repurposing is based on the research of new therapeutic indications of drugs approved for other pathologies. In this review, we explore GC and the different drugs repurposed for this disease.
Collapse
Affiliation(s)
- Diana Araújo
- OncoPharma Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
- Institute of Biomedical Sciences Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
- Institute for Research and Innovation in Health (i3S), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- Institute of Molecular Pathology and Immunology, University of Porto (IPATIMUP), Rua Júlio Amaral de Carvalho, 45, 4200-135 Porto, Portugal
| | - Eduarda Ribeiro
- OncoPharma Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
- Institute of Biomedical Sciences Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Irina Amorim
- Institute of Biomedical Sciences Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
- Institute for Research and Innovation in Health (i3S), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- Institute of Molecular Pathology and Immunology, University of Porto (IPATIMUP), Rua Júlio Amaral de Carvalho, 45, 4200-135 Porto, Portugal
| | - Nuno Vale
- OncoPharma Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
- Department of Community Medicine, Health Information and Decision (MEDCIDS), Faculty of Medicine, University of Porto, Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
- Correspondence: ; Tel.: +351-220426537
| |
Collapse
|
10
|
Relationship between Yes-Associated Protein 1 and Prognosis of Digestive System Neoplasm: Quantitative Analysis and Bioinformatics Analysis Based on 4023 Patients. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:3798694. [PMID: 35911146 PMCID: PMC9325623 DOI: 10.1155/2022/3798694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/07/2022] [Accepted: 06/14/2022] [Indexed: 11/18/2022]
Abstract
Yes-associated protein 1 (YAP1) is involved in the development of a variety of malignancies. However, the prognosis of malignant digestive tumors with YAP1 expression is still controversial. This study searched 31 articles with 36 data sets of 4023 patients to explore the role of YAP1 expression on the prognosis of digestive malignant tumors by searching the PubMed, Embase, Web of Science, Google Scholar, and Cochrane Library databases. Specifically, relevant cancer expression matrix data were downloaded from The Cancer Genome Atlas (TCGA) database. In this meta-analysis, quantitative analysis showed that the overexpression of YAP1 was not conducive to OS (1.62, 95% CI (1.38, 1.90), P=0.001) and DFS (1.59, 95% CI (1.31, 1.93), P=0.001) in patients with digestive malignant tumors. In addition, TCGA database analysis showed that YAP1 was overexpressed in gastric cancer, cholangiocarcinoma, and colorectal cancer. Survival analysis showed that the patients with high expression of YAP1 in pancreatic cancer have a poor OS (MST: 394 vs. 691 days, P < 0.0001) and DFS (MST: 371 vs. 542 days, P=0.026) prognosis. YAP1 may be a molecular marker that effectively predicts the survival of malignant digestive tumors, especially pancreatic cancer, and is a potential therapeutic target for malignant digestive tumors.
Collapse
|
11
|
Guo X, Li Y, Wan B, Lv Y, Wang X, Liu G, Wang P. KAT7 promoted gastric cancer progression through promoting YAP1 activation. Pathol Res Pract 2022; 237:154020. [PMID: 35868058 DOI: 10.1016/j.prp.2022.154020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 07/05/2022] [Accepted: 07/12/2022] [Indexed: 11/29/2022]
Abstract
Lysine acetyltransferase 7 (KAT7) was upregulated in gastric cancer (GC) patient tissues, and associated with poor prognosis and metastasis. However, its specific role in GC remains unclear. This study aimed to annotate the role of KAT7 in GC cells. The results showed that the overexpression of KAT7 promoted cell growth, migration, and invasion, while KAT7 inhibition has the opposite effect. Besides, KAT7 participated in cell cycle phase distribution and epithelial-mesenchymal transition (EMT) process of GC cells. In addition, KAT7 promoted the transcription and nuclear translocation of Yes-associated protein 1 (YAP1) in MKN45 cells. Silence of YAP1 partly reversed the promoting effect of KAT7 on GC cells progression. In summary, this study indicates that KAT7 promoted GC cells progression through promoting YAP1 activation, contributes to understand the specific role of KAT7 in GC.
Collapse
Affiliation(s)
- Xueyan Guo
- Department of Gastroenterology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi province 710068, China
| | - Yulong Li
- Department of Gastroenterology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi province 710068, China
| | - Bingbing Wan
- Department of Gastroenterology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi province 710068, China
| | - Yifei Lv
- Department of Gastroenterology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi province 710068, China
| | - Xue Wang
- Department of Gastroenterology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi province 710068, China
| | - Guisheng Liu
- Department of Gastroenterology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi province 710068, China
| | - Ping Wang
- Department of Gastroenterology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi province 710068, China.
| |
Collapse
|
12
|
Long Noncoding RNA MALAT1 Promotes Laryngocarcinoma Development by Targeting miR-708-5p/BRD4 Axis to Regulate YAP1-Mediated Epithelial-Mesenchymal Transition. BIOMED RESEARCH INTERNATIONAL 2022; 2022:8093949. [PMID: 35601153 PMCID: PMC9119785 DOI: 10.1155/2022/8093949] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 04/01/2022] [Accepted: 04/20/2022] [Indexed: 12/29/2022]
Abstract
Objective. The objective of this study was to investigate whether long noncoding RNA Metastasis-Associated Lung Adenocarcinoma Transcript 1 (MALAT1) contributes to laryngocarcinoma development via regulating the Yes-associated protein 1- (YAP1-) mediated epithelial-mesenchymal transition (EMT) and the underlying mechanism. Methods. The effects of MALAT1 suppression and BET inhibitor JQ1 on the malignant phenotypes and cancer stem cell- (CSC-) like properties of laryngocarcinoma cells as well as the expression of bromodomain-containing protein 4 (BRD4), YAP1, and EMT markers were investigated. Moreover, the relationships between MALAT1 and miR-708-5p as well as between miR-708-5p and BRD4 were explored. Furthermore, whether MALAT1 regulated the malignant phenotypes of laryngocarcinoma cells via sponging miR-708-5p to target BRD4 was revealed by both in vitro and in vivo experiments. Results. MALAT1 suppression inhibited the malignant phenotypes of laryngocarcinoma cells, such as decreased proliferation, promoted apoptosis, suppressed migration, and inhibited the CSC properties. Suppression of MALAT1 increased miR-708-5p expression and decreased the expression of BRD4 and YAP1 and inhibited EMT. Moreover, there were target relationships between MALAT1 and miR-708-5p as well as between miR-708-5p and BRD4. miR-708-5p overexpression and MALAT1 suppression had synergistic inhibitory effects on the malignant phenotypes of laryngocarcinoma cells and the expression of BRD4, YAP1, and EMT. Furthermore, in vivo experiments confirmed that MALAT1/miR-708-5p regulated tumorigenicity by regulating BRD4 and YAP1-mediated EMT. Conclusions. Our results indicate that suppression of MALAT1 may inhibit laryngocarcinoma development by sponging miR-708-5p/BRD4 to regulate YAP1-mediated EMT. Targeting MALAT1/miR-708-5p/BRD4 axis may provide a promising therapeutic strategy for laryngocarcinoma.
Collapse
|
13
|
LINC00922 promotes deterioration of gastric cancer. PLoS One 2022; 17:e0267798. [PMID: 35511773 PMCID: PMC9070913 DOI: 10.1371/journal.pone.0267798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 04/12/2022] [Indexed: 12/24/2022] Open
Abstract
Several studies have demonstrated the association of lncRNAs with a variety of cancers. Here, we explored the role of LINC00922 in gastric cancer (GC) using bioinformatics approaches and in vitro experiments. We examined the expression of LINC00922 and the prognosis of GC patients based on data from The Cancer Genome Atlas (TCGA) and Gene Expression Profiling Interactive Analysis (GEPIA). LINC00922-related genes were identified by the Multi Experiment Matrix (MEM) database and The Atlas of Noncoding RNAs in Cancer (TANRIC), followed by Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) and protein-protein interaction analysis. The significance of LINC00922 in cell proliferation, apoptosis, invasion and migration was assessed by MTT assay, flow cytometry, Transwell assay and wound-healing assay. The expression of LINC00922 was increased in GC tissues compared with adjacent non-tumor tissues, and increased LINC00922 expression was correlated with poor overall survival and disease-free survival. In addition, 336 overlapping genes were identified by the MEM database and TANRIC and found to be involved in GC-related biological processes, such as cell adhesion and migration, as well as TGF-β signaling. In the protein-protein interaction network, hub genes, such as FSTL3 and LAMC1, were identified. LINC00922 overexpression significantly promoted cell proliferation and invasion in vitro, whereas LINC00922 knockdown exerted opposite effects. In summary, our findings indicate that LINC00922 is overexpressed in GC tissues, suggesting that it might play a role in the development and progression of GC, and thus, it might serve as a prognostic indicator of GC.
Collapse
|
14
|
Seeneevassen L, Dubus P, Gronnier C, Varon C. Hippo in Gastric Cancer: From Signalling to Therapy. Cancers (Basel) 2022; 14:cancers14092282. [PMID: 35565411 PMCID: PMC9105983 DOI: 10.3390/cancers14092282] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/12/2022] [Accepted: 04/20/2022] [Indexed: 12/12/2022] Open
Abstract
The Hippo pathway is one of the most important ones in mammals. Its key functions in cell proliferation, tissue growth, repair, and homeostasis make it the most crucial one to be controlled. Many means have been deployed for its regulation, since this pathway is not only composed of core regulatory components, but it also communicates with and regulates various other pathways, making this signalisation even more complex. Its role in cancer has been studied more and more over the past few years, and it presents YAP/TAZ as the major oncogenic actors. In this review, we relate how vital this pathway is for different organs, and how regulatory mechanisms have been bypassed to lead to cancerous states. Most studies present an upregulation status of YAP/TAZ, and urge the need to target them. A focus is made here on gastric carcinogenesis, its main dysregulations, and the major strategies adopted and tested to counteract Hippo pathway disbalance in this disease. Hippo pathway targeting can be achieved by various means, which are described in this review. Many studies have tested different potential molecules, which are detailed hereby. Though not all tested in gastric cancer, they could represent a real interest.
Collapse
Affiliation(s)
- Lornella Seeneevassen
- BRIC (BoRdeaux Institute of onCology), UMR1312, INSERM, University of Bordeaux, F-33000 Bordeaux, France; (L.S.); (P.D.); (C.G.)
| | - Pierre Dubus
- BRIC (BoRdeaux Institute of onCology), UMR1312, INSERM, University of Bordeaux, F-33000 Bordeaux, France; (L.S.); (P.D.); (C.G.)
- Department of Histology and Pathology, CHU Bordeaux, F-33000 Bordeaux, France
| | - Caroline Gronnier
- BRIC (BoRdeaux Institute of onCology), UMR1312, INSERM, University of Bordeaux, F-33000 Bordeaux, France; (L.S.); (P.D.); (C.G.)
- Department of Digestive Surgery, Haut-Lévêque Hospital, CHU Bordeaux, F-33000 Bordeaux, France
| | - Christine Varon
- BRIC (BoRdeaux Institute of onCology), UMR1312, INSERM, University of Bordeaux, F-33000 Bordeaux, France; (L.S.); (P.D.); (C.G.)
- Correspondence:
| |
Collapse
|
15
|
Ooki A, Yamaguchi K. The dawn of precision medicine in diffuse-type gastric cancer. Ther Adv Med Oncol 2022; 14:17588359221083049. [PMID: 35281349 PMCID: PMC8908406 DOI: 10.1177/17588359221083049] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 01/31/2022] [Indexed: 12/24/2022] Open
Abstract
Gastric cancer (GC) is one of the most common malignancies worldwide. The histology- and morphology-based Lauren classification of GC has been widely used for over 50 years in clinical practice. The Lauren classification divides GC into intestinal and diffuse types, which have distinct etiology, molecular profiles, and clinicopathological features. Diffuse-type GC (DGC) accounts for approximately 30% of GCs. Tumor cells lack adhesion and infiltrate the stroma as single cells or small subgroups, leading to easy dissemination in the abdominal cavity. Clinically, DGC has aggressive traits with a high risk of recurrence and metastasis, which results in unfavorable prognosis. Although systemic chemotherapy is the main therapeutic approach for recurrent or metastatic GC patients, clinical benefits are limited for patients with DGC. Therefore, it is urgent to develop effective therapeutic strategies for DGC patients. Considerable research studies have characterized the molecular and genomic landscape of DGC, of which tight junction protein claudin-18 isoform 2 (CLDN18.2) and fibroblast growing factors receptor-2 isoform IIIb (FGFR2-IIIb) are the most attractive targets because of their close association with DGC. Recently, the impressive results of two phase II FAST and FIGHT trials demonstrate proof-of-concept, suggesting that anti-CLDN18.2 antibody (zolbetuximab) and FGFR2-IIIb antibody (bemarituzumab) are promising approaches for patients with CLDN18.2-positive and FGFR2-IIIb-positive GC, respectively. In this review, we summarize the clinicopathological features and molecular profiles of DGC and highlight a potential therapeutic target based on the findings of pivotal clinical trials.
Collapse
Affiliation(s)
- Akira Ooki
- Department of Gastroenterological Chemotherapy, Cancer Institute Hospital of Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo 135-8550, Japan
| | - Kensei Yamaguchi
- Department of Gastroenterological Chemotherapy, Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo, Japan
| |
Collapse
|
16
|
Qiu T, Zhang D, Xu J, Li X, Wang D, Zhao F, Qian Y, Xu J, Xu T, Zhang H, Chen X. Yes-associated protein gene overexpression regulated by β-catenin promotes gastric cancer cell tumorigenesi. Technol Health Care 2022; 30:425-440. [PMID: 35124617 PMCID: PMC9028613 DOI: 10.3233/thc-thc228039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND: Yes-associated protein (YAP) has been reported to act as a candidate human oncogene and played a critical role in the development of multiple cancer types. OBJECTIVE: We aimed to investigate the expression, function, and underlying mechanisms of YAP in gastric cancer (GC). METHODS: Expression levels of YAP in gastric tissues were tested. CCK8 assay, clonogenic assay, apoptosis assay, transwell assay, cell scratch assay and animal study were conducted to explore the function of YAP. Chromatin immunoprecipitation (ChIP) assay and luciferase reporter assay were performed to explore the underlying mechanism. Survival analysis was carried out to reveal the relationship between YAP and clinical outcome. RESULTS: YAP was upregulated in gastric cancer tissues and correlates with poor prognosis. YAP could promote GC cells proliferation, metastatic capacity, inhibit GC cells apoptosis in vitro and in vivo. Bothβ-catenin and YAP were mainly localized withi the tumor cell nuclei. β-catenincould upregulate YAP expression by binding to the promotor region of YAP. Patients with both YAP and β-catenin negetive expression had a better prognosis than others. CONCLUSIONS: YAP overexpression is driven by aberrant Wnt β-catenin signalingand then contributed to the GC tumorigenesis and progression. Thus, YAP might be a potential target for GC treatment.
Collapse
Affiliation(s)
- Tianzhu Qiu
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Diancai Zhang
- Department of General Surgery, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jing Xu
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiao Li
- Department of Pathology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Deqiang Wang
- Department of Medical Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Fengjiao Zhao
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yingying Qian
- Department of Respiratory, Nanjing First Hospital, Nanjing Medical University Nanjing, Jiangsu, China
| | - Jin Xu
- Department of Maternal, Child and Adolescent Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Tongpeng Xu
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hao Zhang
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiaofeng Chen
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Oncology, PuKou Branch Hospital of Jiangsu Province Hospital (NanJing PuKou Central Hospital), Nanjing, Jiangsu, China
| |
Collapse
|
17
|
Soltani R, Amini M, Mazaheri Moghaddam M, Jebelli A, Ahmadiyan S, Bidar N, Baradaran B, MotieGhader H, Asadi M, Mokhtarzadeh A. LncRNA DLGAP1-AS2 overexpression associates with gastric tumorigenesis: a promising diagnostic and therapeutic target. Mol Biol Rep 2022; 49:6817-6826. [PMID: 34981339 DOI: 10.1007/s11033-021-07038-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 11/29/2021] [Indexed: 01/10/2023]
Abstract
BACKGROUND Aberrant expression of long noncoding RNAs (lncRNAs) is associated with the progression of human cancers, including gastric cancer (GC). The function of lncRNA DLGAP1-AS2, as a promising oncogene, has been identified in several human cancers. Therefore, this study was aimed to explore the association of DLGAP1-AS2 with gastric tumorigenesis, as well. METHODS AND RESULTS The expression level of DLGAP1-AS2 was initially pre-evaluated in GC datasets from Gene Expression Omnibus (GEO). Moreover, qRT-PCR experiment was performed on 25 GC and 25 adjacent normal tissue samples. The Cancer Genome Atlas (TCGA) data were also analyzed for further validation. Consistent with data obtained from GEO datasets, qRT-PCR results revealed that DLGAP1-AS2 was significantly (p < 0.0032) upregulated in GC specimens compared to normal samples, which was additionally confirmed using TCGA analysis (p < 0.0001). DLGAP1-AS2 expression level was also correlated with age (p = 0.0008), lymphatic and vascular invasion (p = 0.0415) in internal samples as well as poor survival of GC patients (p = 0.00074) in GEO datasets. Also, Gene Ontology analysis illustrated that DLGAP1-AS2 may be involved in the cellular process, including hippo signaling, regulated by YAP1, as its valid downstream target, in GC samples. Moreover, ROC curve analysis showed the high accuracy of the DLGAP1-AS2 expression pattern as a diagnostic biomarker for GC. CONCLUSION Our findings indicated that DLGAP1-AS2 might display oncogenic properties through gastric tumorigenesis and could be suggested as a therapeutic, diagnostic, and prognostic target.
Collapse
Affiliation(s)
- Rogayeh Soltani
- Department of Biology, Higher Education Institute of Rab-Rashid, Tabriz, Iran
| | - Mohammad Amini
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Asiyeh Jebelli
- Department of Biology, Higher Education Institute of Rab-Rashid, Tabriz, Iran
| | - Sahar Ahmadiyan
- Department of Biology, Higher Education Institute of Rab-Rashid, Tabriz, Iran
| | - Negar Bidar
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Habib MotieGhader
- Department of Bioinformatics, Biotechnology Research Center, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Milad Asadi
- Department of Basic Oncology, Health Institute of Ege University, Izmir, Turkey
| | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
18
|
Ooki A, Yamaguchi K. The beginning of the era of precision medicine for gastric cancer with fibroblast growth factor receptor 2 aberration. Gastric Cancer 2021; 24:1169-1183. [PMID: 34398359 DOI: 10.1007/s10120-021-01235-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 08/11/2021] [Indexed: 02/07/2023]
Abstract
Despite recent advances in the systemic treatment of metastatic gastric cancer (GC), prognostic outcomes remain poor. Considerable research effort has been invested in characterizing the genomic landscape of GC and identifying potential therapeutic targets. FGFR2 is one of the most attractive targets because aberrations in this gene are frequently associated with GC, particularly the diffuse type in Lauren's classification, which confers an unfavorable prognosis. Based on the preclinical data, the FGFR2 signaling pathway plays a key role in the development and progression of GC, and several FGFR inhibitors have been clinically assessed. However, the lack of robust treatment efficacy has hampered precision medicine for patients with FGFR2-aberrant GC. Recently, the clinical benefits of the FGFR2-IIIb-selective monoclonal antibody bemarituzumab for FGFR2b-positive GC patients were shown in a randomized phase II FIGHT trial of bemarituzumab combined with the first-line chemotherapy. This trial demonstrates proof of concept, suggesting that FGFR2 is a relevant therapeutic target for patients with FGFR2b-positive GC and that bemarituzumab brings new hope for diffuse-type GC patients. In this review, we summarize the oncogenic roles of FGFR2 signaling and highlight the most recent advances in FGFR inhibitors based on the findings of pivotal clinical trials for patients with FGFR2-aberrant GC. Thus, the era of precision medicine for patients with FGFR2-aberrant GC will be opened.
Collapse
Affiliation(s)
- Akira Ooki
- Department of Gastroenterological Chemotherapy, Cancer Institute Hospital of Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo, 135-8550, Japan.
| | - Kensei Yamaguchi
- Department of Gastroenterological Chemotherapy, Cancer Institute Hospital of Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo, 135-8550, Japan
| |
Collapse
|
19
|
Long-Term Hypoxia Maintains a State of Dedifferentiation and Enhanced Stemness in Fetal Cardiovascular Progenitor Cells. Int J Mol Sci 2021; 22:ijms22179382. [PMID: 34502291 PMCID: PMC8431563 DOI: 10.3390/ijms22179382] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/20/2021] [Accepted: 08/25/2021] [Indexed: 12/03/2022] Open
Abstract
Early-stage mammalian embryos survive within a low oxygen tension environment and develop into fully functional, healthy organisms despite this hypoxic stress. This suggests that hypoxia plays a regulative role in fetal development that influences cell mobilization, differentiation, proliferation, and survival. The long-term hypoxic environment is sustained throughout gestation. Elucidation of the mechanisms by which cardiovascular stem cells survive and thrive under hypoxic conditions would benefit cell-based therapies where stem cell survival is limited in the hypoxic environment of the infarcted heart. The current study addressed the impact of long-term hypoxia on fetal Islet-1+ cardiovascular progenitor cell clones, which were isolated from sheep housed at high altitude. The cells were then cultured in vitro in 1% oxygen and compared with control Islet-1+ cardiovascular progenitor cells maintained at 21% oxygen. RT-PCR, western blotting, flow cytometry, and migration assays evaluated adaptation to long term hypoxia in terms of survival, proliferation, and signaling. Non-canonical Wnt, Notch, AKT, HIF-2α and Yap1 transcripts were induced by hypoxia. The hypoxic niche environment regulates these signaling pathways to sustain the dedifferentiation and survival of fetal cardiovascular progenitor cells.
Collapse
|
20
|
Hum M, Tan HJ, Yang Y, Srivastava S, Teh M, Lim YP. WBP2 promotes gastric cancer cell migration via novel targeting of LATS2 kinase in the Hippo tumor suppressor pathway. FASEB J 2021; 35:e21290. [PMID: 33475198 DOI: 10.1096/fj.202000393r] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 11/04/2020] [Accepted: 12/03/2020] [Indexed: 01/07/2023]
Abstract
Dysregulation of signaling pathways is responsible for many human diseases. The lack of understanding of the molecular etiology of gastric cancer (GC) poses a substantial challenge to the development of effective cancer therapy. To better understand the molecular mechanisms underlying the pathogenesis of GC, which will facilitate the identification and development of effective therapeutic approaches to improve patient outcomes, mass spectrometry-based phosphoproteomics analysis was performed to map the global molecular changes in GC. A total of 530 proteins with altered phosphorylation levels were detected across a panel of 15 normal and GC cell lines. WW domain-binding protein 2 (WBP2) was validated to be upregulated in a subset of GC cell lines. WBP2 is overexpressed in 61% cases of GC compared to non-cancer tissues and high WBP2 expression correlates with poor clinical outcomes. WBP2 was found to be required for GC cell migration but is dispensable for cell growth and proliferation. WBP2 knockdown increased p-LATS2 with a concomitant increase in p-YAP, resulting in the cytoplasmic retention of YAP and ultimately the inhibition of YAP/TEAD activity and downregulation of TEAD target genes--CTGF and CYR61. Importantly, the loss of LATS2 reversed the activation of Hippo pathway caused by WBP2 knockdown, indicating that WBP2 acts through LATS2 to exert its function on the Hippo pathway. Moreover, WBP2 interacted with LATS2 to inhibit its phosphorylation and activity. In conclusion, our study established a pivotal role for WBP2 in the promotion of GC cell migration via a novel mechanism that inactivates the Hippo pathway transducer LATS2.
Collapse
Affiliation(s)
- Melissa Hum
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Hock Jin Tan
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Yixuan Yang
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Supriya Srivastava
- Department of Medicine, Yong Loo Lin School of Medicine, National University Health System, Singapore, Singapore
| | - Ming Teh
- Department of Pathology, National University Health System, Singapore, Singapore
| | - Yoon Pin Lim
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,National University Cancer Institute, Singapore, Singapore.,NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore, Singapore
| |
Collapse
|
21
|
Wang G, Sun D, Li W, Xin Y. CircRNA_100290 promotes GC cell proliferation and invasion via the miR-29b-3p/ITGA11 axis and is regulated by EIF4A3. Cancer Cell Int 2021; 21:324. [PMID: 34182990 PMCID: PMC8240270 DOI: 10.1186/s12935-021-01964-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 05/04/2021] [Indexed: 12/29/2022] Open
Abstract
Background Circular RNAs (circRNAs) have been reported to be important regulators of the development and progression of various carcinomas. However, the role of circRNA_100290 in gastric cancer (GC) is still unclear. This study aimed to investigate the role of circRNA_100290 in GC invasion and metastasis and the possible underlying mechanism. Methods The expression of circRNA_100290 in GC cells and tissues was examined using quantitative real-time polymerase chain reaction (qRT-PCR). The role of circRNA_100290 in cell proliferation, migration, and invasion was evaluated in the AGS and HGC-27 cell lines in vitro. Bioinformatics tools, dual-luciferase reporter assays, Western blot assays and qRT-PCR were used to explore the pathways downstream of circRNA_100290. The mechanism underlying the regulation of circRNA_100290 expression was explored using RNA immunoprecipitation, qRT-PCR, and Western blot assays. Results The expression of circRNA_100290 was significantly upregulated in GC cells and 102 GC tissues, and high circRNA_100290 expression in GC was closely related to Borrmann’s type, lymph node metastasis and tumour-node-metastasis stage. In vitro, knockdown of circRNA_100290 in AGS and HGC-27 cells significantly inhibited cell proliferation, migration, and invasion. Mechanistically, a dual-luciferase reporter assay confirmed the direct interaction between circRNA_100290 and miR-29b-3p, which targets ITGA11, an oncogene that is closely related to epithelial–mesenchymal transition (EMT). In addition, EIF4A3, an RNA-binding protein (RBP), could inhibit the formation of circRNA_100290 by binding to the flanking sites of circRNA_100290. Low EIF4A3 expression in GC was related to a poor prognosis. Conclusions Elevated circRNA_100290 expression in GC promotes cell proliferation, invasion and EMT via the miR-29b-3p/ITGA11 axis and might be regulated by EIF4A3. CircRNA_100290 might be a promising biomarker and target for GC therapy. Graphical abstract ![]()
Collapse
Affiliation(s)
- Gang Wang
- Laboratory of Gastrointestinal Onco-Pathology, Cancer Institute, The First Affiliated Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, Liaoning Province, China.,Department of Oncology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Lung Cancer Institute, 16766 Jingshi Road, Lixia District, Jinan, Shandong Province, China
| | - Dan Sun
- Laboratory of Gastrointestinal Onco-Pathology, Cancer Institute, The First Affiliated Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, Liaoning Province, China
| | - Wenhui Li
- Laboratory of Gastrointestinal Onco-Pathology, Cancer Institute, The First Affiliated Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, Liaoning Province, China
| | - Yan Xin
- Laboratory of Gastrointestinal Onco-Pathology, Cancer Institute, The First Affiliated Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, Liaoning Province, China.
| |
Collapse
|
22
|
He Y, Yu X, Tang Y, Guo Y, Yuan J, Bai J, Yao T, Wu X. MicroRNA‑199a‑3p inhibits ovarian cancer cell viability by targeting the oncogene YAP1. Mol Med Rep 2021; 23:237. [PMID: 33537822 PMCID: PMC7893722 DOI: 10.3892/mmr.2021.11876] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 10/20/2020] [Indexed: 12/21/2022] Open
Abstract
MicroRNA-199a-3p (miR-199a-3p) is aberrantly expressed in various types of cancer where it exhibits a tumor suppressive role. However, the biological role of miR-199a-3p in ovarian cancer (OC) remains unclear. The present study aimed to investigate whether miR-199a-3p was a tumor suppressor in OC and to identify the possible mechanisms. It was found that miR-199a-3p expression was significantly downregulated in the tumor tissues and blood samples of patients with OC, as well as in three OC cell lines. In addition, its low expression was closely associated with International Federation of Gynecology and Obstetrics disease stage, histological grade and lymph node metastasis. It was demonstrated that overexpression of miR-199a-3p inhibited the viability and promoted apoptosis of OV90 and SKOV-3 cells. In addition, Yes-associated protein 1 (YAP1), a well-known oncogene, was identified as a direct target of miR-199a-3p in OC cells. Additionally, it was observed that YAP1 was significantly increased and inversely correlated with miR-199a-3p expression in OC tissues. Notably, YAP1 overexpression abrogated the tumor suppressive effects of miR-199a-3p in vitro. Collectively, the present results indicated that miR-199a-3p suppressed viability in OC cells, at least partly via inhibiting the YAP1 oncogene, suggesting that miR-199a-3p may act as a biomarker and therapeutic target for patients with OC.
Collapse
Affiliation(s)
- Yanfang He
- Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300000, P.R. China
| | - Xiangyang Yu
- Department of Obstetrics and Gynecology, Affiliated Hospital of North China University of Science and Technology, Tangshan, Hebei 063000, P.R. China
| | - Yajuan Tang
- Department of Obstetrics and Gynecology, Affiliated Hospital of North China University of Science and Technology, Tangshan, Hebei 063000, P.R. China
| | - Yanjuan Guo
- Department of Obstetrics and Gynecology, Affiliated Hospital of North China University of Science and Technology, Tangshan, Hebei 063000, P.R. China
| | - Jinling Yuan
- Department of Obstetrics and Gynecology, Affiliated Hospital of North China University of Science and Technology, Tangshan, Hebei 063000, P.R. China
| | - Jinghe Bai
- Department of Obstetrics and Gynecology, Affiliated Hospital of North China University of Science and Technology, Tangshan, Hebei 063000, P.R. China
| | - Tao Yao
- Department of Obstetrics and Gynecology, Affiliated Hospital of North China University of Science and Technology, Tangshan, Hebei 063000, P.R. China
| | - Xiongzhi Wu
- Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300000, P.R. China
| |
Collapse
|
23
|
Borse V, Barton M, Arndt H, Kaur T, Warchol ME. Dynamic patterns of YAP1 expression and cellular localization in the developing and injured utricle. Sci Rep 2021; 11:2140. [PMID: 33495483 PMCID: PMC7835353 DOI: 10.1038/s41598-020-77775-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 11/12/2020] [Indexed: 12/25/2022] Open
Abstract
The Hippo signaling pathway is a key regulator of tissue development and regeneration. Activation of the Hippo pathway leads to nuclear translocation of the YAP1 transcriptional coactivator, resulting in changes in gene expression and cell cycle entry. Recent studies have demonstrated the nuclear translocation of YAP1 during the development of the sensory organs of the inner ear, but the possible role of YAP1 in sensory regeneration of the inner ear is unclear. The present study characterized the cellular localization of YAP1 in the utricles of mice and chicks, both under normal conditions and after HC injury. During neonatal development, YAP1 expression was observed in the cytoplasm of supporting cells, and was transiently expressed in the cytoplasm of some differentiating hair cells. We also observed temporary nuclear translocation of YAP1 in supporting cells of the mouse utricle after short periods in organotypic culture. However, little or no nuclear translocation of YAP1 was observed in the utricles of neonatal or mature mice after ototoxic injury. In contrast, substantial YAP1 nuclear translocation was observed in the chicken utricle after streptomycin treatment in vitro and in vivo. Together, these data suggest that differences in YAP1 signaling may partially account for the differing regenerative abilities of the avian vs. mammalian inner ear.
Collapse
Affiliation(s)
- Vikrant Borse
- Department of Otolaryngology, School of Medicine, Washington University in Saint Louis, 660 South Euclid Ave, Box 8115, St Louis, MO, 63110, USA.
| | - Matthew Barton
- Department of Otolaryngology, School of Medicine, Washington University in Saint Louis, 660 South Euclid Ave, Box 8115, St Louis, MO, 63110, USA
| | - Harry Arndt
- Department of Otolaryngology, School of Medicine, Washington University in Saint Louis, 660 South Euclid Ave, Box 8115, St Louis, MO, 63110, USA
| | - Tejbeer Kaur
- Department of Biomedical Sciences, Creighton University School of Medicine, Nebraska, USA
| | - Mark E Warchol
- Department of Otolaryngology, School of Medicine, Washington University in Saint Louis, 660 South Euclid Ave, Box 8115, St Louis, MO, 63110, USA.
| |
Collapse
|
24
|
RP11-323N12.5 promotes the malignancy and immunosuppression of human gastric cancer by increasing YAP1 transcription. Gastric Cancer 2021; 24:85-102. [PMID: 32623586 DOI: 10.1007/s10120-020-01099-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 06/12/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND YAP1 is a core protein of the Hippo signaling pathway and is associated with malignancy and immunosuppression. In the present study, we discovered a novel lncRNA, RP11-323N12.5, with tumor promotion and immunosuppression activities through enhancing transcription of YAP1. METHODS RP11-323N12.5 was identified using GEPIA. Its expression levels and their relationship with clinical features were investigated using clinical samples. The regulation of YAP1 transcription by RP11-323N12.5 was investigated in both GC and T cells, the tumor and immunosuppression promotion roles of RP11-323N12.5 were explored in vitro and in vivo. RESULTS RP11-323N12.5 was the most up-regulated lncRNA in human GC, based on data from the TCGA database. Its transcription was significantly positively correlated with YAP1 transcription, YAP1 downstream gene expression which contribute to tumor growth and immunosuppression. RP11-323N12.5 promoted YAP1 transcription by binding to c-MYC in the YAP1 promoter region. Meanwhile, transcription of RP11-323N12.5 was also regulated by YAP1/TAZ/TEADs activation in GC cells. RP11-323N12.5 had tumor- and immnosuppression-promoting effects by enhancing YAP1 downstream genes in GC cells. Excessive RP11-323N12.5 was also observed in tumor-infiltrating leukocytes (TILs), which may be exosome-derived and also be related to enhanced Treg differentiation as a result YAP1 up-regulation. Moreover, RP11-323N12.5 promoted tumor growth and immunosuppression via YAP1 up-regulation in vivo. CONCLUSIONS RP11-323N12.5 was the most up-regulated lncRNA in human GC and it promoted YAP1 transcription by binding to c-MYC within the YAP1 promoter in both GC and T cells. RP11-323N12.5 is an ideal therapeutic target in human GC due to its tumor-promoting and immunosuppression characteristics.
Collapse
|
25
|
Han T, Cheng Z, Xu M, Wang X, Wu J, Fang X. Yes-Associated Protein Contributes to Cell Proliferation and Migration of Gastric Cancer via Activation of Gli1. Onco Targets Ther 2020; 13:10867-10876. [PMID: 33149604 PMCID: PMC7603417 DOI: 10.2147/ott.s266449] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 09/04/2020] [Indexed: 12/21/2022] Open
Abstract
Objective In the present study, we aimed to explore the potential oncogenic property and the internal mechanism of yes-associated protein (YAP) in gastric cancer (GC). Materials and Methods YAP protein levels were evaluated in human GC tissues and paired normal tissues using immunohistochemistry (IHC). The role of YAP in regulating GC cell proliferation and migration was verified by genetic manipulation in vitro. Western blot analysis was used to determine the molecular signaling to explain the mechanism of the observed YAP effects in GC. Results Nuclear YAP protein expression was upregulated in GC tissues, and high nuclear YAP level was significantly correlated with lymph node metastasis (LNM) and tumor node metastasis (TNM) stage in patients suffered from GC. YAP knockdown inhibited GC cell proliferation, migration and epithelial-mesenchymal transition (EMT) progress in vitro, whereas YAP elevation did the opposite. YAP regulated glioma-associated oncogene-1 (Gli1) expression independent of smoothened homolog (SMO). YAP modulated protein kinase B (AKT)/mechanistic target of rapamycin (mTOR) signaling pathway in GC cells. Conclusion YAP enhanced GC cell proliferation and migration potentially via its regulation of Gli1 expression through the non-classical Hedgehog pathway, indicating suppression of YAP/Gli1 signaling axis may highlight a new entry point for combination therapy of GC.
Collapse
Affiliation(s)
- Ting Han
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Wannan Medical College, Wuhu 241000, People's Republic of China
| | - Zhengwu Cheng
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Wannan Medical College, Wuhu 241000, People's Republic of China
| | - Menglin Xu
- Department of Oncology, The First Affiliated Hospital of Wannan Medical College, Wuhu 241000, People's Republic of China
| | - Xiaoming Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wannan Medical College, Wuhu 241000, People's Republic of China
| | - Jian Wu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Wannan Medical College, Wuhu 241000, People's Republic of China
| | - Xiaosan Fang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wannan Medical College, Wuhu 241000, People's Republic of China
| |
Collapse
|
26
|
Guo L, Zheng J, Luo J, Zhang Z, Shao G. Targeting Yes1 Associated Transcriptional Regulator Inhibits Hepatocellular Carcinoma Progression and Improves Sensitivity to Sorafenib: An in vitro and in vivo Study. Onco Targets Ther 2020; 13:11071-11087. [PMID: 33149619 PMCID: PMC7605682 DOI: 10.2147/ott.s249412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 09/15/2020] [Indexed: 11/23/2022] Open
Abstract
Purpose The aim of this study was to investigate the role of Yes1 associated transcriptional regulator (YAP1) in the pathology of hepatocellular carcinoma (HCC) and its potential as a therapeutic target. Methods YAP1 expression in HCC and adjacent tissues was determined via immunohistochemistry; in HCC and human normal liver cell lines, expression was examined via Western blotting. The effects of YAP1 knockdown and overexpression were detected following transfection of HCC cells with siRNA-YAP1 recombinants or pcDNA3.1-YAP1 plasmids. A tumor xenograft model was constructed by implanting YAP1-knockdown lentivirus-infected Hep-3B cells into nude mice, and the animals were treated with sorafenib. Results In patients with HCC, YAP1 was upregulated in tumor tissue compared with adjacent tissue, and its high expression in the tumor was associated with increased Edmonson grade. In vitro, YAP1 expression was increased in Hep-3B, SK-HEP-1 and Huh7 cells, while it was similar in SMMC-7721 cells and LO2 cells. Meanwhile, YAP1 increased cell proliferation and invasion, promoted the progression of epithelial-mesenchymal transition, and inhibited cell apoptosis in HCC cells; furthermore, YAP1 knockdown combined with the administration of sorafenib decreased cell viability and increased cell apoptosis compared with YAP1 knockdown or treatment with sorafenib alone. In vivo, YAP1 knockdown inhibited tumor growth and metastasis, whereas it promoted apoptosis; meanwhile, YAP1 knockdown synergized with sorafenib to suppress tumor progression in HCC mice. Conclusion YAP1 is upregulated in both HCC tumor tissues and cell lines. Moreover, it promotes cell proliferation and invasion and promoted the progression of epithelial-mesenchymal transition in vitro. Furthermore, targeting YAP1 inhibits HCC progression and improves sensitivity to sorafenib in vitro and in vivo.
Collapse
Affiliation(s)
- Liwen Guo
- 1Department of Interventional Radiology, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, People's Republic of China
| | - Jiaping Zheng
- 1Department of Interventional Radiology, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, People's Republic of China
| | - Jun Luo
- 1Department of Interventional Radiology, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, People's Republic of China
| | - Zhewei Zhang
- 1Department of Interventional Radiology, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, People's Republic of China
| | - Guoliang Shao
- 1Department of Interventional Radiology, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, People's Republic of China
| |
Collapse
|
27
|
Xian XS, Wang YT, Jiang XM. Propofol Inhibits Proliferation and Invasion of Stomach Cancer Cells by Regulating miR-205/YAP1 Axis. Cancer Manag Res 2020; 12:10771-10779. [PMID: 33149682 PMCID: PMC7605617 DOI: 10.2147/cmar.s270344] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 09/04/2020] [Indexed: 12/18/2022] Open
Abstract
Background Propofol is a common clinical intravenous anesthetic. In the last few years, studies have revealed that propofol not only has good anesthetic effect but also has certain anticancer effect. However, its role in stomach cancer (SC) and related mechanisms are still under investigation. Objective This study was designed to determine the effect of propofol on SC and its related mechanisms. Methods Purchased SC cells were treated with propofol at different concentrations (5, 10, and 20 μg/mL), miR-205 overexpression, and YAP1 inhibition. Then, the Cell Counting Kit-8 (CCK8), Transwell, and flow cytometry were carried out to determine the biological behavior changes of treated cells and the expression of miR-205 and YAP1 after treatment. Results Propofol (10 μg/mL and 20 μg/mL) inhibited the growth of SC cells and promoted their apoptosis, and overexpressing miR-205 or inhibiting YAP1 can exert the same effects. In addition, propofol (10μg/mL and 20μg/mL) up-regulated miR-205 in SC cells. The dual-luciferase reporter assay revealed that YAP1 could be targeted and regulated by miR-205, and the rescue assay revealed that inhibiting miR-205 or overexpressing YAP1 could weaken the effect of propofol on the biological behaviors of SC cells. Conclusion Propofol can strongly suppress the proliferation and invasion of SC cells and induce their apoptosis via the miR-205/YAP1 axis.
Collapse
Affiliation(s)
- Xiang-Shu Xian
- Department of Gastroenterology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Qingdao 264000, People's Republic of China
| | - Yu-Tie Wang
- Department of Rheumatology and Immunology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Qingdao 264000, People's Republic of China
| | - Xiao-Meng Jiang
- Department of Digestive, Sir Run Run Hospital, Nanjing Medical University, Nanjing, Jiangsu, 211166, People's Republic of China
| |
Collapse
|
28
|
Nunes M, Henriques Abreu M, Bartosch C, Ricardo S. Recycling the Purpose of Old Drugs to Treat Ovarian Cancer. Int J Mol Sci 2020; 21:ijms21207768. [PMID: 33092251 PMCID: PMC7656306 DOI: 10.3390/ijms21207768] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/13/2020] [Accepted: 10/17/2020] [Indexed: 02/07/2023] Open
Abstract
The main challenge in ovarian cancer treatment is the management of recurrences. Facing this scenario, therapy selection is based on multiple factors to define the best treatment sequence. Target therapies, such as bevacizumab and polymerase (PARP) inhibitors, improved patient survival. However, despite their achievements, ovarian cancer survival remains poor; these therapeutic options are highly costly and can be associated with potential side effects. Recently, it has been shown that the combination of repurposed, conventional, chemotherapeutic drugs could be an alternative, presenting good patient outcomes with few side effects and low costs for healthcare institutions. The main aim of this review is to strengthen the importance of repurposed drugs as therapeutic alternatives, and to propose an in vitro model to assess the therapeutic value. Herein, we compiled the current knowledge on the most promising non-oncological drugs for ovarian cancer treatment, focusing on statins, metformin, bisphosphonates, ivermectin, itraconazole, and ritonavir. We discuss the primary drug use, anticancer mechanisms, and applicability in ovarian cancer. Finally, we propose the use of these therapies to perform drug efficacy tests in ovarian cancer ex vivo cultures. This personalized testing approach could be crucial to validate the existing evidences supporting the use of repurposed drugs for ovarian cancer treatment.
Collapse
Affiliation(s)
- Mariana Nunes
- Differentiation and Cancer Group, Institute for Research and Innovation in Health (i3S) of the University of Porto/Institute of Molecular Pathology and Immunology of the University of Porto (Ipatimup), 4200-135 Porto, Portugal;
- Porto Comprehensive Cancer Center (PCCC), 4200-162 Porto, Portugal; (M.H.A.); (C.B.)
| | - Miguel Henriques Abreu
- Porto Comprehensive Cancer Center (PCCC), 4200-162 Porto, Portugal; (M.H.A.); (C.B.)
- Department of Medical Oncology, Portuguese Oncology Institute of Porto (IPOP), 4200-162 Porto, Portugal
| | - Carla Bartosch
- Porto Comprehensive Cancer Center (PCCC), 4200-162 Porto, Portugal; (M.H.A.); (C.B.)
- Department of Pathology, Portuguese Oncology Institute of Porto (IPOP), 4200-162 Porto, Portugal
- Cancer Biology & Epigenetics Group, Research Center—Portuguese Oncology Institute of Porto (CI-IPOP), 4200-162 Porto, Portugal
| | - Sara Ricardo
- Differentiation and Cancer Group, Institute for Research and Innovation in Health (i3S) of the University of Porto/Institute of Molecular Pathology and Immunology of the University of Porto (Ipatimup), 4200-135 Porto, Portugal;
- Porto Comprehensive Cancer Center (PCCC), 4200-162 Porto, Portugal; (M.H.A.); (C.B.)
- Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
- Department of Sciences, University Institute of Health Sciences (IUCS), CESPU, CRL, 4585-116 Gandra, Portugal
- Correspondence: ; Tel.: +351-225-570-700
| |
Collapse
|
29
|
FGF18-FGFR2 signaling triggers the activation of c-Jun-YAP1 axis to promote carcinogenesis in a subgroup of gastric cancer patients and indicates translational potential. Oncogene 2020; 39:6647-6663. [PMID: 32934314 PMCID: PMC7581496 DOI: 10.1038/s41388-020-01458-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 08/16/2020] [Accepted: 09/04/2020] [Indexed: 12/24/2022]
Abstract
Fibroblast growth factor receptor type 2 (FGFR2) has emerged as a key oncogenic factor that regulates gastric cancer (GC) progression, but the underlying mechanism of FGF–FGFR2 signaling pathway remains largely unknown. To identify the potential molecular mechanisms of the oncogenic FGFR2 in gastric carcinogenesis and convey a novel therapeutic strategy, we profiled the FGFR alterations and analyzed their clinical associations in TCGA and Hong Kong GC cohorts. We found that FGFR2 overexpression in GC cell lines and primary tumors predicted poor survival and was associated with advanced stages of GC. Functionally, growth abilities and cell cycle progression of GC were inhibited by inactivation of ERK–MAPK signal transduction after FGFR2 knockdown, while apoptosis was promoted. Meanwhile, the first-line anti-cancer drug sensitivity was enhanced. RNA-seq analysis further revealed that YAP1 signaling serves as a significant downstream modulator and mediates the oncogenic signaling of FGFR2. When stimulating FGFR2 by rhFGF18, we observed intensified F-actin, nuclear accumulation of YAP1, and overexpression of YAP1 targets, but these effects were attenuated by either FGFR2 depletion or AZD4547 administration. Additionally, the FGF18–FGFR2 signaling upregulated YAP1 expression through activating c-Jun, an effector of MAPK signaling. In our cohort, 28.94% of GC cases were characterized as FGFR2, c-Jun, and YAP1 co-positive and demonstrated worse clinical outcomes. Remarkably, we also found that co-targeting FGFR2 and YAP1 by AZD4547 and Verteporfin synergistically enhanced the antitumor effects in vitro and in vivo. In conclusion, we have identified the oncogenic FGF–FGFR2 regulates YAP1 signaling in GC. The findings also highlight the translational potential of FGFR2–c-Jun–YAP1 axis, which may serve as a prognostic biomarker and therapeutic target for GC.
Collapse
|
30
|
Li Y, Sun R, Zhang Y, Yuan Y, Miao Y. A methylation-based mRNA signature predicts survival in patients with gastric cancer. Cancer Cell Int 2020; 20:284. [PMID: 32647495 PMCID: PMC7336496 DOI: 10.1186/s12935-020-01374-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 06/22/2020] [Indexed: 11/22/2022] Open
Abstract
Background Evidence suggests that altered DNA methylation plays a causative role in the occurrence, progression and prognosis of gastric cancer (GC). Thus, methylated-differentially expressed genes (MDEGs) could potentially serve as biomarkers and therapeutic targets in GC. Methods Four genomics profiling datasets were used to identify MDEGs. Gene Ontology enrichment and Kyoto Encyclopaedia of Genes and Genomes pathway enrichment analysis were used to explore the biological roles of MDEGs in GC. Univariate Cox and LASSO analysis were used to identify survival-related MDEGs and to construct a MDEGs-based signature. The prognostic performance was evaluated in two independent cohorts. Results We identified a total of 255 MDEGs, including 192 hypermethylation-low expression and 63 Hypomethylation-high expression genes. The univariate Cox regression analysis showed that 83 MDEGs were associated with overall survival. Further we constructed an eight-MDEGs signature that was independent predictive of prognosis in the training cohort. By applying the eight-MDEGs signature, patients in the training cohort could be categorized into high-risk or low-risk subgroup with significantly different overall survival (HR = 2.62, 95% CI 1.71–4.02, P < 0.0001). The prognostic value of the eight-MDEGs signature was confirmed in another independent GEO cohort (HR = 1.35, 95% CI 1.03–1.78, P = 0.0302) and TCGA-GC cohort (HR = 1.85, 95% CI 1.16–2.94, P = 0.0084). Multivariate cox regression analysis proved the eight-MDEGs signature was an independent prognostic factor for GC. Conclusion We have thus established an innovative eight-MDEGs signature that is predictive of overall survival and could be a potentially useful guide for personalized treatment of GC patients.
Collapse
Affiliation(s)
- Yang Li
- Department of Central Laboratory, Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical University, Xuzhou, 221009 China
| | - Rongrong Sun
- Department of Medical Oncology, Xuzhou Central Hospital, Clinical School of Xuzhou Medical University, Xuzhou, 221009 China
| | - Youwei Zhang
- Department of Medical Oncology, Xuzhou Central Hospital, Clinical School of Xuzhou Medical University, Xuzhou, 221009 China
| | - Yuan Yuan
- Department of Medical Oncology, Xuzhou Central Hospital, Clinical School of Xuzhou Medical University, Xuzhou, 221009 China
| | - Yufeng Miao
- Department of Medical Oncology, The First Peoples' Hospital of Wenling City, Wenling, 317500 China
| |
Collapse
|
31
|
Sun D, Wang G, Xiao C, Xin Y. Hsa_circ_001988 attenuates GC progression in vitro and in vivo via sponging miR-197-3p. J Cell Physiol 2020; 236:612-624. [PMID: 32592202 DOI: 10.1002/jcp.29888] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 05/11/2020] [Accepted: 06/03/2020] [Indexed: 12/15/2022]
Abstract
Hsa_circ_001988 has been identified as a tumor suppressor gene in several carcinomas. However, its expression pattern and role in gastric cancer (GC) have still remained elusive. This study aimed to explore the functions of hsa_circ_001988 in GC. Quantitative reverse transcription polymerase chain reaction assay was performed to assess the expressions of hsa_circ_001988, miR-197-3p, FBXW7, CCDC6, and U2AF65 in GC tissues. The correlation analysis was undertaken to find out the relationship between hsa_circ_001988 expression and clinicopathological factors. A series of cellular experiments were carried out to describe the effects of hsa_circ_001988 on GC in vivo and in vitro. Besides, RNA immunoprecipitation (RIP) assay was performed to verify the relationship among EIF4A3, U2AF65, and hsa_circ_001988. We first found that the expression of hsa_circ_001988 was decreased in 341 GC patients that was related to World Health Organization histological types, Lauren types, and tumor invasion depth (p < .05). Silencing of hsa_circ_001988 facilitated proliferation, colony formation, migration, and invasion of GC cells, while overexpression of hsa_circ_001988 reversed the effect on GC progression in vitro. Additionally, the results of subcutaneous xenotransplanted tumor model demonstrated that overexpressing hsa_circ_001988 significantly suppressed the subcutaneous tumor growth in vivo. Mechanistically, hsa_circ_001988 attenuated the miR-197-3p expression possibly due to its molecular sponge effect, and then, positively promoted FBXW7 expression. Afterwards, FBXW7 regulated the expressions of yes-associated protein 1, cyclinD1, CCDC6, and EMT-related proteins. Notably, RIP assay showed the enrichment relationship among EIF4A3, U2AF65, and hsa_circ_001988. Additionally, EIF4A3 or U2AF65 promoted cyclization of hsa_circ_001988 in GC. Hsa_circ_001988 inhibits the proliferation and metastasis of GC via modulating EIF4A3/U2AF65-mediated hsa_circ_001988/miR-197-3p/FBXW7 axis.
Collapse
Affiliation(s)
- Dan Sun
- Laboratory of Gastrointestinal Onco-Pathology, Cancer Institute and General Surgery Institute, The First Affiliated Hospital of China Medical University, Heping, Shenyang, Liaoning, China
| | - Gang Wang
- Laboratory of Gastrointestinal Onco-Pathology, Cancer Institute and General Surgery Institute, The First Affiliated Hospital of China Medical University, Heping, Shenyang, Liaoning, China
| | - Chang Xiao
- Laboratory of Gastrointestinal Onco-Pathology, Cancer Institute and General Surgery Institute, The First Affiliated Hospital of China Medical University, Heping, Shenyang, Liaoning, China
| | - Yan Xin
- Laboratory of Gastrointestinal Onco-Pathology, Cancer Institute and General Surgery Institute, The First Affiliated Hospital of China Medical University, Heping, Shenyang, Liaoning, China
| |
Collapse
|
32
|
Chaleshi V, Irani S, Alebouyeh M, Mirfakhraie R, Aghdaei HA. Association of lncRNA-p53 regulatory network (lincRNA-p21, lincRNA-ROR and MALAT1) and p53 with the clinicopathological features of colorectal primary lesions and tumors. Oncol Lett 2020; 19:3937-3949. [PMID: 32391102 PMCID: PMC7204634 DOI: 10.3892/ol.2020.11518] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 10/10/2019] [Indexed: 01/20/2023] Open
Abstract
Colorectal cancer (CRC) is a common intestinal cancer with a high mortality rate. Early detection of this type of cancer is fundamental to the prevention of the disease, which results in improved survival rates. In the human colon tissue, transition from normal epithelium to adenoma is considered to be caused by unknown molecular incidents occurring over 5-10 years. The detection of CRC has proved problematic when in the early stages of disease. In addition, identifying suitable biomarkers for the detection of CRC progress in patients remains one of the most significant challenges. Long non-coding RNAs have been demonstrated to contribute to the promotion of CRC. The aim of the present study was to investigate the clinical and biological significance of long intergenic non-coding (linc)RNA-p21, lincRNA-regulator of reprogramming (ROR) and metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) in the colon tumor and polyp tissue, and the association that these have with the expression of p53 at the mRNA level. Neoplastic and paired adjacent normal tissue samples were obtained from 72 patients (46 polyps and 26 tumors). Reverse transcription-quantitative PCR was performed to determine the relative fold changes in the expression of lincRNA-p21, lincRNA-RoR, MALAT1 and p53 in the samples. A significant association was observed between the levels of MALAT1 and p53 in neoplasm tissues (R=0.073; P<0.05). The relative expression of the MALAT1 gene revealed a statistically significant difference between the different polyp types and number of polyps (P=0.0028 and 0.022, respectively). Adjuvant therapy in patients with tumors revealed an association between the levels of lincRNA-ROR and lincRNA-p21 expression (P=0.015 and 0.038, respectively). MALAT1 may be selected as an early detection biomarker for CRC. Furthermore, lincRNA-ROR and lincRNA-p21 may serve as prognostic and therapeutic biomarkers in patients with CRC.
Collapse
Affiliation(s)
- Vahid Chaleshi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran 1477893855, Iran
| | - Shiva Irani
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran 1477893855, Iran
| | - Masoud Alebouyeh
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran 1985717413, Iran
| | - Reza Mirfakhraie
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran 1985717443, Iran
| | - Hamid Asadzadeh Aghdaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran 1985717413, Iran
| |
Collapse
|
33
|
Sun D, Wang Y, Wang H, Xin Y. The novel long non-coding RNA LATS2-AS1-001 inhibits gastric cancer progression by regulating the LATS2/YAP1 signaling pathway via binding to EZH2. Cancer Cell Int 2020; 20:204. [PMID: 32514249 PMCID: PMC7260745 DOI: 10.1186/s12935-020-01285-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 05/22/2020] [Indexed: 12/18/2022] Open
Abstract
Background To explore the expression pattern and role of the novel long non-coding RNA LATS2 antisense transcript 1 (LATS2-AS1-001) in gastric cancer (GC). Methods qRT-PCR was applied to evaluate LATS2-AS1-001 expression and correlation with LATS2 in GC. In vitro experiments were performed to investigate the role of LATS2-AS1-001 in GC cells. RNA immunoprecipitation (RIP) was performed to assess the interaction between EZH2 and LATS2-AS1-001. LATS2/YAP1 signaling pathway proteins were detected by immunoblot. Oncomine and KMPLOT data analysis was conducted to assess the prognostic value of YAP1 in GC. Results Decreased expression levels of LATS2-AS1-001 and LATS2 were confirmed in 357 GC tissues compared with the normal mucosa. A strong positive correlation between LATS2-AS1-001 and LATS mRNA expression was found in Pearson Correlation analysis (r = 0.719, P < 0.001). Furthermore, ROC curve analysis revealed areas under the curves for LATS2-AS1-001 and LATS2 of 0.7274 and 0.6865, respectively (P < 0.001), which indicated that LATS2-AS1-001 and LATS could be used as diagnostic indicators in GC. Moreover, ectopic expression of LATS2-AS1-001 decreased cell viability, induced G0/G1 phase arrest, and inhibited cell migration and invasion in GC cells. Mechanistically, overexpressing LATS2-AS1-001 upregulated LATS2 and induced YAP1 phosphorylation via binding to EZH2. Oncomine and KMPLOT database analysis demonstrated YAP1 was highly expressed in human GC samples, and high YAP1 expression predicted poor patient prognosis in GC. Conclusion This study revealed that lncRNA LATS2-AS1-001 might serve as a potential diagnostic index in GC and act as a suppressor of GC progression.
Collapse
Affiliation(s)
- Dan Sun
- Laboratory of Gastrointestinal Onco-Pathology, Cancer Institute & General Surgery Institute, The First Affiliated Hospital of China Medical University, No. 155 Nanjing North Street, Heping District, Shenyang, 110001 China
| | - Ying Wang
- Laboratory of Gastrointestinal Onco-Pathology, Cancer Institute & General Surgery Institute, The First Affiliated Hospital of China Medical University, No. 155 Nanjing North Street, Heping District, Shenyang, 110001 China.,Department of Oncology, Hanzhong Central Hospital, Hanzhong, 723000 China
| | - Huan Wang
- Laboratory of Gastrointestinal Onco-Pathology, Cancer Institute & General Surgery Institute, The First Affiliated Hospital of China Medical University, No. 155 Nanjing North Street, Heping District, Shenyang, 110001 China
| | - Yan Xin
- Laboratory of Gastrointestinal Onco-Pathology, Cancer Institute & General Surgery Institute, The First Affiliated Hospital of China Medical University, No. 155 Nanjing North Street, Heping District, Shenyang, 110001 China
| |
Collapse
|
34
|
Magnelli L, Schiavone N, Staderini F, Biagioni A, Papucci L. MAP Kinases Pathways in Gastric Cancer. Int J Mol Sci 2020; 21:ijms21082893. [PMID: 32326163 PMCID: PMC7215608 DOI: 10.3390/ijms21082893] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/05/2020] [Accepted: 04/17/2020] [Indexed: 12/24/2022] Open
Abstract
Gastric cancer (GC) is turning out today to be one of the most important welfare issues for both Asian and European countries. Indeed, while the vast majority of the disease burden is located in China and in Pacific and East Asia, GC in European countries still account for about 100,000 deaths per year. With this review article, we aim to focus the attention on one of the most complex cellular pathways involved in GC proliferation, invasion, migration, and metastasis: the MAP kinases. Such large kinases family is to date constantly studied, since their discovery more than 30 years ago, due to the important role that it plays in the regulation of physiological and pathological processes. Interactions with other cellular proteins as well as miRNAs and lncRNAs may modulate their expression influencing the cellular biological features. Here, we summarize the most important and recent studies involving MAPK in GC. At the same time, we need to underly that, differently from cancers arising from other tissues, where MAPK pathways seems to be a gold target for anticancer therapies, GC seems to be unique in any aspect. Our aim is to review the current knowledge in MAPK pathways alterations leading to GC, including H. pylori MAPK-triggering to derail from gastric normal epithelium to GC and to encourage researches involved in MAPK signal transduction, that seems to definitely sustain GC development.
Collapse
Affiliation(s)
- Lucia Magnelli
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale G.B. Morgagni 50, 50134 Firenze, Italy; (N.S.); (A.B.); (L.P.)
- Correspondence: ; Tel.: +39-055-2751397
| | - Nicola Schiavone
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale G.B. Morgagni 50, 50134 Firenze, Italy; (N.S.); (A.B.); (L.P.)
| | - Fabio Staderini
- Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, 50134 Firenze, Italy;
| | - Alessio Biagioni
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale G.B. Morgagni 50, 50134 Firenze, Italy; (N.S.); (A.B.); (L.P.)
| | - Laura Papucci
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale G.B. Morgagni 50, 50134 Firenze, Italy; (N.S.); (A.B.); (L.P.)
| |
Collapse
|
35
|
MicroRNA 345 (miR345) regulates KISS1-E-cadherin functional interaction in breast cancer brain metastases. Cancer Lett 2020; 481:24-31. [PMID: 32246957 DOI: 10.1016/j.canlet.2020.03.025] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 03/25/2020] [Accepted: 03/26/2020] [Indexed: 12/12/2022]
Abstract
Brain metastases manifest the advanced stage of breast cancer disease with poor prognosis for patient survival. Recent reports demonstrate that some therapeutic agents can activate the expression of several breast cancer-associated genes, whose products are involved in the onset and development of brain metastases. In this study, we discovered a functional link between KISS1 and E-cadherin that could be observed in both primary brain metastatic lesions and paired cell lines, such as parental CN34TGL and MDA-MB-231 and their respective brain metastatic subclones CN34Brm2Ctgl and MDA-MB-231Br. Remarkably, expression of KISS1 and E-cadherin genes consistently showed an inverse correlation in all of the above cell/tissue types. While E-cadherin expression was strongly upregulated in metastatic clones isolated from blood and brain, the levels of this protein in parental MDA-MB-231 cell line was low. Furthermore, E-cadherin upregulation can be artificially induced in MDA-MB-231Br and CN34Brm2Ctgl cell populations by knocking down KISS1 expression directly or through overexpressing the miR345 mimic. In the aggregate, our data suggest that the tumor microenvironment, which controls breast cancer spreading via miR345-regulated KISS1 expression, might modulate metastatic spreading by a mechanism(s) involving upregulation of E-cadherin production.
Collapse
|
36
|
Armando RG, Gómez DLM, Gomez DE. New drugs are not enough‑drug repositioning in oncology: An update. Int J Oncol 2020; 56:651-684. [PMID: 32124955 PMCID: PMC7010222 DOI: 10.3892/ijo.2020.4966] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 12/16/2019] [Indexed: 11/24/2022] Open
Abstract
Drug repositioning refers to the concept of discovering novel clinical benefits of drugs that are already known for use treating other diseases. The advantages of this are that several important drug characteristics are already established (including efficacy, pharmacokinetics, pharmacodynamics and toxicity), making the process of research for a putative drug quicker and less costly. Drug repositioning in oncology has received extensive focus. The present review summarizes the most prominent examples of drug repositioning for the treatment of cancer, taking into consideration their primary use, proposed anticancer mechanisms and current development status.
Collapse
Affiliation(s)
- Romina Gabriela Armando
- Laboratory of Molecular Oncology, Science and Technology Department, National University of Quilmes, Bernal B1876, Argentina
| | - Diego Luis Mengual Gómez
- Laboratory of Molecular Oncology, Science and Technology Department, National University of Quilmes, Bernal B1876, Argentina
| | - Daniel Eduardo Gomez
- Laboratory of Molecular Oncology, Science and Technology Department, National University of Quilmes, Bernal B1876, Argentina
| |
Collapse
|
37
|
Srinivasan A, Liu M, Parham D, Li M, Wang X, Lu X, Li S, Zhang L, Yu Z. Infantile Epithelioid Sarcoma with Genomic Segmental Amplification of BIRC3/YAP1 as Double Minutes Plus Trisomy 2: A Case Report. Fetal Pediatr Pathol 2020; 39:51-61. [PMID: 31215292 DOI: 10.1080/15513815.2019.1627629] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Introduction: Epithelioid sarcoma is a malignant mesenchymal tumor exhibiting epithelioid cytomorphology and epithelial phenotype. Its histogenesis is unknown, but its tumorigenesis may relate to inactivation of hSNF5/SMARCB1/INI1 tumor suppressor gene. This tumor typically affects young adults and older children, but it is uncommon in infants. Case Report: We describe a unique neoplasm in a 15-month-old infant presenting with a heel mass. The tumor was remarkable for retention of SMARCB1/INI1 expression. Conventional cytogenetic analysis revealed trisomy 2 and double minutes, and SNP array analysis confirmed the trisomy 2 and identified segmental amplification of chromosome 11 containing YAP1 and BIRC3; FISH testing proved that the double minutes consisted of BIRC3 and YAP1, potent oncogenes related to tumorigenesis of several types of tumors but not described in epithelioid sarcoma. Conclusion: Our findings expand the spectrum of cytogenetic alterations in this neoplasm, help in better understanding its tumorigenesis, and suggest potential therapeutic targets.
Collapse
Affiliation(s)
- Anand Srinivasan
- Jimmy Everest Section of Pediatric Hematology/Oncology, Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OKC, USA
| | - Meng Liu
- Genetic Section of Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OKC, USA.,Department of Hematology, China Medical University First Hospital, Shenyang, China
| | - David Parham
- Pathology and Lab Medicine, Children's Hospital of Los Angeles, Los Angeles, CA, USA
| | - Ming Li
- Genetic Section of Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OKC, USA
| | - Xianfu Wang
- Genetic Section of Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OKC, USA
| | - Xianglan Lu
- Genetic Section of Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OKC, USA
| | - Shibo Li
- Genetic Section of Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OKC, USA
| | - Lijun Zhang
- Department of Hematology, China Medical University First Hospital, Shenyang, China
| | - Zhongxin Yu
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OKC, USA
| |
Collapse
|
38
|
ERK1 indicates good prognosis and inhibits breast cancer progression by suppressing YAP1 signaling. Aging (Albany NY) 2019; 11:12295-12314. [PMID: 31848326 PMCID: PMC6949071 DOI: 10.18632/aging.102572] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Accepted: 11/25/2019] [Indexed: 12/31/2022]
Abstract
The mitogen-activated protein kinase/extracellular signal-regulated (MAPK/ERK) pathway is a well-characterized signaling pathway during the development of various cancer types. ERK1 and ERK2, the two kinase effectors of MAPK cascade, exhibit high similarity. However, it is still unknown whether these two kinases are functionally different or in contrast functionally redundant during the development of breast cancer. We found that ERK1 expression levels were significantly lower in basal breast cancer compared with luminal breast cancer and normal breast tissues. RNA sequencing data suggested that ERK1 was associated with Hippo signaling pathway and cell proliferation in breast cancer cells. The gene set enrichment analysis (GSEA) further showed enrichment for YAP1 signaling pathway in breast cancer cell lines and tumors with low expression of ERK1. Silencing of ERK1 elevated YAP1 expression and TEAD activity in breast cancer cells. Additionally, ERK1 inhibited breast cancer cell proliferation via regulation of YAP1. The Kaplan-Meier analysis of data in patients with breast cancer suggested that, higher expression of ERK1 was associated with better prognosis, whereas, higher expression of ERK2 predicted poorer prognosis. These findings unveiled the role of ERK1 on regulation of YAP1 signaling pathway, indicating ERK1 as a negative regulator of breast cancer progression.
Collapse
|
39
|
Liu H, Liu N, Zhao Y, Zhu X, Wang C, Liu Q, Gao C, Zhao X, Li J. Oncogenic USP22 supports gastric cancer growth and metastasis by activating c-Myc/NAMPT/SIRT1-dependent FOXO1 and YAP signaling. Aging (Albany NY) 2019; 11:9643-9660. [PMID: 31689236 PMCID: PMC6874452 DOI: 10.18632/aging.102410] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 10/26/2019] [Indexed: 12/28/2022]
Abstract
In this study, we investigated the role of ubiquitin-specific protease 22 (USP22) in the growth and progression of gastric cancer (GC). USP22 mRNA and protein levels were significantly higher in GC tissue samples and GC cell lines than in adjacent noncancerous tissue samples and a normal gastric mucosal epithelial cell line (GES1), respectively. USP22 knockdown significantly decreased in vitro survival, proliferation, migration, and invasiveness of GC cells compared with the controls. Western blot analysis of control and USP22-silenced GC cells showed that USP22 modulates the c-Myc/NAMPT/SIRT1-dependent FOXO1 and YAP signaling pathways. Subcutanenous injection of USP22-silenced GC cells into SCID mice generated significantly smaller xenograft tumors than did control cells. Moreover, USP22-silenced GC cells showed less lung metastasis than the controls following tail vein injection in SCID mice. In addition, high USP22 expression correlated positively with tumor size, advanced stage and metastasis, and correlated negatively with tumor differentiation and prognosis in GC patients. These results show that USP22 regulates growth and progression of GC via the c-Myc/NAMPT/SIRT1-dependent FOXO1 and YAP signaling pathways.
Collapse
Affiliation(s)
- Hongxia Liu
- Jujube Scientific Research and Applied Center, Life Science College, Luoyang Normal University, Luoyang, Henan 471934, China
| | - Ningning Liu
- Centre of Inflammation and Cancer Research, 150th Central Hospital of PLA, Luoyang, Henan 471031, China
| | - Yali Zhao
- Centre of Inflammation and Cancer Research, 150th Central Hospital of PLA, Luoyang, Henan 471031, China
| | - Xiaoshan Zhu
- Centre of Inflammation and Cancer Research, 150th Central Hospital of PLA, Luoyang, Henan 471031, China
| | - Changsong Wang
- Department of Pathology, 150th Central Hospital of PLA, Luoyang, Henan 471031, China
| | - Qinqin Liu
- Centre of Inflammation and Cancer Research, 150th Central Hospital of PLA, Luoyang, Henan 471031, China
| | - Chunfang Gao
- Centre of Inflammation and Cancer Research, 150th Central Hospital of PLA, Luoyang, Henan 471031, China
| | - Xusheng Zhao
- Jujube Scientific Research and Applied Center, Life Science College, Luoyang Normal University, Luoyang, Henan 471934, China
| | - Juntang Li
- Centre of Inflammation and Cancer Research, 150th Central Hospital of PLA, Luoyang, Henan 471031, China.,Department of Pathology, 150th Central Hospital of PLA, Luoyang, Henan 471031, China.,State Key Laboratory of Cancer Biology, Department of Immunology, Fourth Military Medical University, Xi'an, Shaanxi 710032, China.,State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| |
Collapse
|
40
|
Wu Y, Hou Y, Xu P, Deng Y, Liu K, Wang M, Tian T, Dai C, Li N, Hao Q, Song D, Zhou LH, Dai Z. The prognostic value of YAP1 on clinical outcomes in human cancers. Aging (Albany NY) 2019; 11:8681-8700. [PMID: 31613226 PMCID: PMC6814621 DOI: 10.18632/aging.102358] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 10/05/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND As an important downstream factor in the Hippo pathway, yes-associated protein 1(YAP1) has been detected to be elevated in various cancers and demonstrated to play a role in tumor development. Therefore, we evaluated by a meta-analysis the prognostic value of YAP1 in cancer patients. RESULTS Sixty-eight studies with 8631 patients were identified. The results indicated that YAP1 overexpression predicted unfavorable patient prognosis in studies with overall survival (OS) (HR=1.76, 95%CI: 1.50-2.06, p<0.001) and disease-free survival (DFS) (HR=1.39, 95%CI: 1.22-1.59, p<0.001), as well as in studies with recurrence-free survival (RFS) (HR=2.38, 95%CI: 1.73-3.27, p<0.001), and disease-specific survival (DSS) (HR=2.04, 95%CI: 1.55-2.70, p<0.001). Meanwhile, YAP1 overexpression was also observed to be significantly associated with worse OS in GEPIA (HR=1.2, p<0.001). CONCLUSIONS Overexpression of YAP1 showed great association with poorer prognosis in patients with various cancers, particularly liver cancer. Therefore, YAP1 might be an important prognostic marker and a novel target of cancer therapy. METHODS We searched for potential publications in several online databases and retrieved relevant data. Overall and subgroup analyses were performed. Begg's and Egger's tests were used to assess publication bias. Online dataset GEPIA was used to generate the survival curves and verify the prognostic role of YAP1 in patients with tumors.
Collapse
Affiliation(s)
- Ying Wu
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Department of Oncology, The 2nd Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Yanshen Hou
- Department of Anesthesiology, The 3rd Affiliated Teaching Hospital of Xinjiang Medical University (Affiliated Tumor Hospital), Urumqi, Xinjiang, China
| | - Peng Xu
- Department of Oncology, The 2nd Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Yujiao Deng
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Department of Oncology, The 2nd Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Kang Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Meng Wang
- Department of Oncology, The 2nd Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Tian Tian
- Department of Oncology, The 2nd Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Cong Dai
- Department of Oncology, The 2nd Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Na Li
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Department of Oncology, The 2nd Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Qian Hao
- Department of Oncology, The 2nd Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Dingli Song
- Department of Oncology, The 2nd Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Ling hui Zhou
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Department of Oncology, The 2nd Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Zhijun Dai
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Department of Oncology, The 2nd Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| |
Collapse
|
41
|
Pajtler KW, Wei Y, Okonechnikov K, Silva PBG, Vouri M, Zhang L, Brabetz S, Sieber L, Gulley M, Mauermann M, Wedig T, Mack N, Imamura Kawasawa Y, Sharma T, Zuckermann M, Andreiuolo F, Holland E, Maass K, Körkel-Qu H, Liu HK, Sahm F, Capper D, Bunt J, Richards LJ, Jones DTW, Korshunov A, Chavez L, Lichter P, Hoshino M, Pfister SM, Kool M, Li W, Kawauchi D. YAP1 subgroup supratentorial ependymoma requires TEAD and nuclear factor I-mediated transcriptional programmes for tumorigenesis. Nat Commun 2019; 10:3914. [PMID: 31477715 PMCID: PMC6718408 DOI: 10.1038/s41467-019-11884-5] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 08/07/2019] [Indexed: 01/22/2023] Open
Abstract
YAP1 fusion-positive supratentorial ependymomas predominantly occur in infants, but the molecular mechanisms of oncogenesis are unknown. Here we show YAP1-MAMLD1 fusions are sufficient to drive malignant transformation in mice, and the resulting tumors share histo-molecular characteristics of human ependymomas. Nuclear localization of YAP1-MAMLD1 protein is mediated by MAMLD1 and independent of YAP1-Ser127 phosphorylation. Chromatin immunoprecipitation-sequencing analyses of human YAP1-MAMLD1-positive ependymoma reveal enrichment of NFI and TEAD transcription factor binding site motifs in YAP1-bound regulatory elements, suggesting a role for these transcription factors in YAP1-MAMLD1-driven tumorigenesis. Mutation of the TEAD binding site in the YAP1 fusion or repression of NFI targets prevents tumor induction in mice. Together, these results demonstrate that the YAP1-MAMLD1 fusion functions as an oncogenic driver of ependymoma through recruitment of TEADs and NFIs, indicating a rationale for preclinical studies to block the interaction between YAP1 fusions and NFI and TEAD transcription factors. The molecular mechanisms driving proliferation in the pediatric brain cancer epdendymoma are poorly understood. Here the authors show that a YAP1- MAMLD1 fusion drives tumor formation in mice and show that the fusion protein can collaborate with the TEAD and NFI transcription factors.
Collapse
Affiliation(s)
- Kristian W Pajtler
- Hopp-Children's Cancer Center Heidelberg (KiTZ), 69120, Heidelberg, Germany.,Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany.,Department of Pediatric Hematology and Oncology, Heidelberg University Hospital, 69120, Heidelberg, Germany
| | - Yiju Wei
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, Penn State Health Hershey Medical Center, Penn State College of Medicine, Hershey, PA, 17033, USA
| | - Konstantin Okonechnikov
- Hopp-Children's Cancer Center Heidelberg (KiTZ), 69120, Heidelberg, Germany.,Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Patricia B G Silva
- Hopp-Children's Cancer Center Heidelberg (KiTZ), 69120, Heidelberg, Germany.,Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Mikaella Vouri
- Hopp-Children's Cancer Center Heidelberg (KiTZ), 69120, Heidelberg, Germany.,Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Lei Zhang
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, Penn State Health Hershey Medical Center, Penn State College of Medicine, Hershey, PA, 17033, USA
| | - Sebastian Brabetz
- Hopp-Children's Cancer Center Heidelberg (KiTZ), 69120, Heidelberg, Germany.,Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Laura Sieber
- Hopp-Children's Cancer Center Heidelberg (KiTZ), 69120, Heidelberg, Germany.,Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Melissa Gulley
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, Penn State Health Hershey Medical Center, Penn State College of Medicine, Hershey, PA, 17033, USA
| | - Monika Mauermann
- Hopp-Children's Cancer Center Heidelberg (KiTZ), 69120, Heidelberg, Germany.,Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Tatjana Wedig
- Hopp-Children's Cancer Center Heidelberg (KiTZ), 69120, Heidelberg, Germany.,Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Norman Mack
- Hopp-Children's Cancer Center Heidelberg (KiTZ), 69120, Heidelberg, Germany.,Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Yuka Imamura Kawasawa
- Department of Biochemistry and Molecular Biology, Penn State Health Hershey Medical Center, Penn State College of Medicine, Hershey, PA, 17033, USA.,Department of Pharmacology, Penn State Health Hershey Medical Center, Penn State College of Medicine, Hershey, PA, 17033, USA
| | - Tanvi Sharma
- Hopp-Children's Cancer Center Heidelberg (KiTZ), 69120, Heidelberg, Germany.,Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Marc Zuckermann
- Hopp-Children's Cancer Center Heidelberg (KiTZ), 69120, Heidelberg, Germany.,Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Felipe Andreiuolo
- Department of Neuropathology, Ste. Anne Hospital, 75014, Paris, France
| | - Eric Holland
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
| | - Kendra Maass
- Hopp-Children's Cancer Center Heidelberg (KiTZ), 69120, Heidelberg, Germany.,Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Huiqin Körkel-Qu
- Division of Molecular Neurogenetics, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Hai-Kun Liu
- Division of Molecular Neurogenetics, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Felix Sahm
- Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany.,Department of Neuropathology, Heidelberg University Hospital, 69120, Heidelberg, Germany
| | - David Capper
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Neuropathology, Partner Site Berlin, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jens Bunt
- Queensland Brain Institute, The University of Queensland, Brisbane, 4072, Australia
| | - Linda J Richards
- Queensland Brain Institute, The University of Queensland, Brisbane, 4072, Australia
| | - David T W Jones
- Hopp-Children's Cancer Center Heidelberg (KiTZ), 69120, Heidelberg, Germany.,Pediatric Glioma Research Group, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Andrey Korshunov
- Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany.,Department of Neuropathology, Heidelberg University Hospital, 69120, Heidelberg, Germany
| | - Lukas Chavez
- Hopp-Children's Cancer Center Heidelberg (KiTZ), 69120, Heidelberg, Germany.,Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Peter Lichter
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Mikio Hoshino
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, NCNP, Tokyo, Japan
| | - Stefan M Pfister
- Hopp-Children's Cancer Center Heidelberg (KiTZ), 69120, Heidelberg, Germany.,Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany.,Department of Pediatric Hematology and Oncology, Heidelberg University Hospital, 69120, Heidelberg, Germany
| | - Marcel Kool
- Hopp-Children's Cancer Center Heidelberg (KiTZ), 69120, Heidelberg, Germany.,Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Wei Li
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, Penn State Health Hershey Medical Center, Penn State College of Medicine, Hershey, PA, 17033, USA. .,Department of Biochemistry and Molecular Biology, Penn State Health Hershey Medical Center, Penn State College of Medicine, Hershey, PA, 17033, USA.
| | - Daisuke Kawauchi
- Hopp-Children's Cancer Center Heidelberg (KiTZ), 69120, Heidelberg, Germany. .,Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany.
| |
Collapse
|
42
|
Wu Y, Shen L, Liang X, Li S, Ma L, Zheng L, Li T, Yu H, Chan H, Chen C, Yu J, Jia J. Helicobacter pylori-induced YAP1 nuclear translocation promotes gastric carcinogenesis by enhancing IL-1β expression. Cancer Med 2019; 8:3965-3980. [PMID: 31145543 PMCID: PMC6639191 DOI: 10.1002/cam4.2318] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 05/10/2019] [Accepted: 05/15/2019] [Indexed: 12/18/2022] Open
Abstract
Gastric cancer (GC) is one of the most common and malignant pathologies, and a significant portion of GC incidences develops from Helicobacter pylori (Hp)-induced chronic gastritis. Although the exact mechanisms of GC are complex and poorly understood, gastric carcinogenesis is a good model to investigate how inflammation and infection collaboratively promote tumorigenesis. Yes-associated protein 1 (YAP1) is the key effector of the Hippo pathway, which is silenced in most human cancers. Herein, we verified the tumor-promoting effect of YAP1 in vitro, in vivo, and in human specimens. We revealed that YAP1 displays nuclear translocation and works with TEAD to activate transcription of the crucial inflammatory cytokine IL-1β in gastric cells infected with Hp. As IL-1ß accounts for inflammation-associated tumorigenesis, this process can lead to gastric carcinogenesis. Thus, in addition to activating proliferation genes, YAP1 also plays a major role in inflammation amplification by activating inflammatory cytokine genes. Excitingly, our research demonstrates that transfection of mutant plasmid YAP-5SA/S94A or addition of the drug verteporfin, both of which are thought to disrupt the YAP1-TEAD interaction, can arrest the carcinogenesis process. These findings can provide new approaches to GC treatment.
Collapse
Affiliation(s)
- Yujiao Wu
- Department of Microbiology/Key Laboratory for Experimental Teratology of Chinese Ministry of Education, School of MedicineShandong UniversityJinanP. R. China
| | - Li Shen
- Department of Microbiology/Key Laboratory for Experimental Teratology of Chinese Ministry of Education, School of MedicineShandong UniversityJinanP. R. China
| | - Xiuming Liang
- Department of Microbiology/Key Laboratory for Experimental Teratology of Chinese Ministry of Education, School of MedicineShandong UniversityJinanP. R. China
| | - Shuyan Li
- Department of Microbiology/Key Laboratory for Experimental Teratology of Chinese Ministry of Education, School of MedicineShandong UniversityJinanP. R. China
| | - Lin Ma
- Department of Microbiology/Key Laboratory for Experimental Teratology of Chinese Ministry of Education, School of MedicineShandong UniversityJinanP. R. China
| | - Lixin Zheng
- Department of Microbiology/Key Laboratory for Experimental Teratology of Chinese Ministry of Education, School of MedicineShandong UniversityJinanP. R. China
| | - Tongyu Li
- Department of Microbiology/Key Laboratory for Experimental Teratology of Chinese Ministry of Education, School of MedicineShandong UniversityJinanP. R. China
| | - Han Yu
- Department of Microbiology/Key Laboratory for Experimental Teratology of Chinese Ministry of Education, School of MedicineShandong UniversityJinanP. R. China
| | - Hillary Chan
- The Faculty of MedicineThe University of TorontoTorontoCanada
| | - Chunyan Chen
- Department of HematologyQilu Hospital, Shandong UniversityJinanShandongP. R. China
| | - Jingya Yu
- Department of Microbiology/Key Laboratory for Experimental Teratology of Chinese Ministry of Education, School of MedicineShandong UniversityJinanP. R. China
| | - Jihui Jia
- Department of Microbiology/Key Laboratory for Experimental Teratology of Chinese Ministry of Education, School of MedicineShandong UniversityJinanP. R. China
| |
Collapse
|
43
|
Camberos V, Baio J, Bailey L, Hasaniya N, Lopez LV, Kearns-Jonker M. Effects of Spaceflight and Simulated Microgravity on YAP1 Expression in Cardiovascular Progenitors: Implications for Cell-Based Repair. Int J Mol Sci 2019; 20:E2742. [PMID: 31167392 PMCID: PMC6600678 DOI: 10.3390/ijms20112742] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 05/29/2019] [Accepted: 06/01/2019] [Indexed: 01/06/2023] Open
Abstract
Spaceflight alters many processes of the human body including cardiac function and cardiac progenitor cell behavior. The mechanism behind these changes remains largely unknown; however, simulated microgravity devices are making it easier for researchers to study the effects of microgravity. To study the changes that take place in cardiac progenitor cells in microgravity environments, adult cardiac progenitor cells were cultured aboard the International Space Station (ISS) as well as on a clinostat and examined for changes in Hippo signaling, a pathway known to regulate cardiac development. Cells cultured under microgravity conditions, spaceflight-induced or simulated, displayed upregulation of downstream genes involved in the Hippo pathway such as YAP1 and SOD2. YAP1 is known to play a role in cardiac regeneration which led us to investigate YAP1 expression in a sheep model of cardiovascular repair. Additionally, to mimic the effects of microgravity, drug treatment was used to induce Hippo related genes as well as a regulator of the Hippo pathway, miRNA-302a. These studies provide insight into the changes that occur in space and how the effects of these changes relate to cardiac regeneration studies.
Collapse
Affiliation(s)
- Victor Camberos
- Department of Pathology and Human Anatomy, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA.
| | - Jonathan Baio
- Department of Pathology and Human Anatomy, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA.
| | - Leonard Bailey
- Department of Cardiovascular and Thoracic Surgery, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA.
| | - Nahidh Hasaniya
- Department of Cardiovascular and Thoracic Surgery, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA.
| | - Larry V Lopez
- Department of Pathology and Human Anatomy, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA.
| | - Mary Kearns-Jonker
- Department of Pathology and Human Anatomy, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA.
| |
Collapse
|
44
|
Zhou H, Li G, Huang S, Feng Y, Zhou A. SOX9 promotes epithelial-mesenchymal transition via the Hippo-YAP signaling pathway in gastric carcinoma cells. Oncol Lett 2019; 18:599-608. [PMID: 31289532 PMCID: PMC6546990 DOI: 10.3892/ol.2019.10387] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 04/12/2019] [Indexed: 12/14/2022] Open
Abstract
SRY-box 9 (SOX9) is overexpressed in a number of human tumors, including gastric cancer (GC). However, the function of SOX9 in the development of GC remains unknown. In the present study, SOX9 activated the Hippo-yes-associated protein (YAP) signaling pathway to enhance the epithelial-mesenchymal transition in GC cell lines. The results suggested that SOX9 knockdown inhibited invasion, proliferation and migration of GC cells. Furthermore, SOX9 silencing upregulated the expression of E-cadherin, an epithelial marker, and downregulated the expression of mesenchymal markers, including snail family transcriptional repressor 1, vimentin and N-cadherin. SOX9 overexpression increased the expression of the aforementioned markers. SOX9 significantly affected YAP phosphorylation and total YAP protein levels, suggesting that SOX9 is involved in the Hippo-YAP signaling pathway. The current study revealed that SOX9 may be involved in the pathogenesis of GC, and further elucidation of the pathways involved may support the development of novel therapeutic options for the treatment of GC.
Collapse
Affiliation(s)
- Hailang Zhou
- Department of Gastroenterology, Medical Center for Digestive Diseases, People's Hospital of Lianshui, Huaian, Jiangsu 223400, P.R. China
| | - Guiqin Li
- Department of Gastroenterology, Medical Center for Digestive Diseases, People's Hospital of Lianshui, Huaian, Jiangsu 223400, P.R. China
| | - Shu Huang
- Department of Gastroenterology, Medical Center for Digestive Diseases, People's Hospital of Lianshui, Huaian, Jiangsu 223400, P.R. China
| | - Yadong Feng
- Department of Gastroenterology, Medical Center for Digestive Diseases, Zhongda Hospital, Medical School of Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Aijun Zhou
- Department of Gastroenterology, Medical Center for Digestive Diseases, People's Hospital of Lianshui, Huaian, Jiangsu 223400, P.R. China
| |
Collapse
|
45
|
Zhu L, Ma G, Liu J, Deng Y, Wu Q, Chen W, Zhou Q. Prognostic significance of nuclear Yes-associated protein 1 in patients with nonsmall cell lung cancer: A systematic review and meta-analysis. Medicine (Baltimore) 2019; 98:e15069. [PMID: 31008931 PMCID: PMC6494286 DOI: 10.1097/md.0000000000015069] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Nuclear Yes-associated protein 1 (YAP1) has often been regarded as an adverse prognostic indicator in various tumors. Recent studies have associated YAP1 with unfavorable prognosis in nonsmall cell lung cancer (NSCLC). However, due to small sample sizes, the prognostic value of nuclear YAP1 in NSCLC patients is not well understood. In the present study, we evaluated the prognostic role of nuclear YAP1 in NSCLC patients via a systematic review and meta-analysis. METHODS We searched the PubMed, EMBASE, Cochrane, Web of Science, China National Knowledge Infrastructure (CNKI), and Wanfang Databases for papers investigating the prognostic significance of nuclear YAP1 expression in NSCLC patients. Hazard ratios (HRs) and the corresponding 95% confidence intervals (CIs) were calculated with reference to overall survival (OS) and progression-free survival (PFS) of NSCLC patients to provide synthesized estimates of the effects of nuclear YAP1 expression. RESULTS Among 414 cases, higher nuclear YAP1 expression presented as a predictive factor of poorer OS (HR = 1.52; 95% CI: 1.11-2.08; P = .01; I = 0.0%) and decreased PFS (HR = 2.11; 95% CI: 1.52-2.93; P < .001; I = 44.2%) in NSCLC patients. Subgroup analysis revealed shortened OS (HR = 1.63; 95% CI: 1.14-2.34; P = .007; I = 0.0%) and worse PFS (HR = 2.25; 95% CI: 1.53-3.30; P < .001; I = 0.0%) in patients from Asia with higher nuclear YAP1 expression. Prognosis was also worse in patients with III-IV stage cancer (PFSHR = 2.09; 95% CI: 1.45-3.01; P < .001; I = 58.1%) and in patients treated with epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) (OS HR = 1.59; 95% CI: 1.00-2.51; P = .048; I = 15.5%, and PFS HR = 2.35, 95% CI: 1.62-3.42; P < .001; I = 0.0%). CONCLUSION High expression of nuclear YAP1 was associated with shorter survival outcome in patients with NSCLC.
Collapse
|
46
|
Sun Z, Ou C, Liu J, Chen C, Zhou Q, Yang S, Li G, Wang G, Song J, Li Z, Zhang Z, Yuan W, Li X. YAP1-induced MALAT1 promotes epithelial-mesenchymal transition and angiogenesis by sponging miR-126-5p in colorectal cancer. Oncogene 2019; 38:2627-2644. [PMID: 30531836 PMCID: PMC6484768 DOI: 10.1038/s41388-018-0628-y] [Citation(s) in RCA: 184] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 10/10/2018] [Accepted: 10/20/2018] [Indexed: 12/21/2022]
Abstract
Yes-associated protein 1 (YAP1) exerts significant effects in various malignancies. However, the oncogenic role of YAP1 remains controversial, and the mechanism by which YAP1 regulates non-coding RNAs is still largely unknown. The present study aimed to assess the effect of YAP1 on the malignant behaviors of colorectal carcinoma (CRC) and explore the underlying regulatory mechanism of the YAP1-MALAT1-miR-126-5p axis. YAP1 was highly expressed in CRC tissues as assessed by GSE20916 and its expression was negatively correlated with overall survival in 83 CRC cases. Meanwhile, YAP1 promoted proliferation, invasion, and migration in colon cancer cells, in vitro and in vivo. MALAT1 was obviously expressed, with differential expression of 11 lncRNAs in HCT116 cells after transfection with siYAP1 or si-Ctl. Based on bioinformatics prediction, immunoprecipitation (IP), and chromatin immunoprecipitation (ChIP), the interaction of YAP1 with TCF4/β-catenin was regulated by MALAT1. Bioinformatics prediction, dual luciferase assay, RNA-IP, and RNA pull-down assay demonstrated that YAP1-induced MALAT1 promoted the expression of metastasis-associated molecules such as VEGFA, SLUG, and TWIST, by sponging miR-126-5p in CRC. These findings indicated that the YAP1-MALAT1-miR-126-5p axis could control angiogenesis and epithelial-mesenchymal transition in CRC, providing potential biomarkers and therapeutic targets for CRC.
Collapse
Affiliation(s)
- Zhenqiang Sun
- Department of Anorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China.
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, 410078, China.
| | - Chunlin Ou
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, 410078, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| | - Jinbo Liu
- Department of Anorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Chen Chen
- Department of Anorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Quanbo Zhou
- Department of Anorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Shuaixi Yang
- Department of Anorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Guiyuan Li
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, 410078, China
| | - Guixian Wang
- Department of Anorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Junmin Song
- Department of Anorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Zhen Li
- Department of Anorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Zhiyong Zhang
- Department of Anorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Weitang Yuan
- Department of Anorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China.
| | - Xiayu Li
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China.
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China.
| |
Collapse
|
47
|
Mechanotransduction and Cytoskeleton Remodeling Shaping YAP1 in Gastric Tumorigenesis. Int J Mol Sci 2019; 20:ijms20071576. [PMID: 30934860 PMCID: PMC6480114 DOI: 10.3390/ijms20071576] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 03/14/2019] [Accepted: 03/26/2019] [Indexed: 02/07/2023] Open
Abstract
The essential role of Hippo signaling pathway in cancer development has been elucidated by recent studies. In the gastrointestinal tissues, deregulation of the Hippo pathway is one of the most important driving events for tumorigenesis. It is widely known that Yes-associated protein 1 (YAP1) and WW domain that contain transcription regulator 1 (TAZ), two transcriptional co-activators with a PDZ-binding motif, function as critical effectors negatively regulated by the Hippo pathway. Previous studies indicate the involvement of YAP1/TAZ in mechanotransduction by crosstalking with the extracellular matrix (ECM) and the F-actin cytoskeleton associated signaling network. In gastric cancer (GC), YAP1/TAZ functions as an oncogene and transcriptionally promotes tumor formation by cooperating with TEAD transcription factors. Apart from the classic role of Hippo-YAP1 cascade, in this review, we summarize the current investigations to highlight the prominent role of YAP1/TAZ as a mechanical sensor and responder under mechanical stress and address its potential prognostic and therapeutic value in GC.
Collapse
|
48
|
Du F, Yu C, Li R, Ding D, He L, Wen G. Expression of miR-141 and YAP1 in gastric carcinoma and modulation of cancer cell proliferation and apoptosis. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2019; 12:559-567. [PMID: 31933860 PMCID: PMC6945079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 12/07/2018] [Indexed: 06/10/2023]
Abstract
Yes-associated protein 1 (YAP1) plays important roles in facilitating cell proliferation and decreasing apoptosis and is related to gastric cancer. Abnormal down-regulation of miR-141 is associated with gastric cancer pathogenesis, suggesting a potentially tumor suppressor role. Bioinformatics analysis found complementary binding sites between miR-141 and YP1. This study investigated the role of miR-141 in mediating YAP1 expression and biological behavior of gastric cancer cells. Gastric cancer tissues were collected using normal mucosal tissues as the control. qRT-PCR compared expression of miR-141 and YAP1 mRNA, and western blot quantified YAP1 protein expression. Spearman approach analyzed the correlation between miR-141 and YAP1 mRNA in cancer tissues. Dual luciferase reporter gene assay confirmed the targeted regulation between miR-141 and YAP1. Using GES-1 cell as the control, miR-141 and YAP1 expression were measured in gastric cancer cell lines SGC7901 and MGC03. Those cells were transfected with miR-141 mimic in the presence or absence of miR-YAP1 mimic followed by flow cytometry for apoptosis and EdU staining for proliferation. Cancer tissues had decreased miR-141 and higher YAP1 expression, which was associated with TNM stage. YAP1 mRNA and miR-141 were positively correlated (r=-0.623, P<0.001). Dual luciferase assay demonstrated targeted regulation between miR-141 and YAP1. Comparing to GES-1 cells, SGC7901 and MGC803 cells had decreased miR-141 and increased YAP1 expression. Transfection of miR-141 mimic inhibited YAP1 expression or cell proliferation and facilitated apoptosis. However, overexpression of YAP1 decreased the effect of miR-141 mimic on cell proliferation and apoptosis. miR-141 down-regulation and YAP1 up-regulation are correlated with gastric cancer pathogenesis. miR-141 targets and inhibits YAP1 expression, to suppress gastric cancer cell proliferation and induce apoptosis.
Collapse
Affiliation(s)
- Fangchao Du
- Department of Gastrointestinal Surgery, The Third Affiliated Hospital of Anhui Medical University Hefei 230061, Anhui, China
| | - Chao Yu
- Department of Gastrointestinal Surgery, The Third Affiliated Hospital of Anhui Medical University Hefei 230061, Anhui, China
| | - Rui Li
- Department of Gastrointestinal Surgery, The Third Affiliated Hospital of Anhui Medical University Hefei 230061, Anhui, China
| | - Ding Ding
- Department of Gastrointestinal Surgery, The Third Affiliated Hospital of Anhui Medical University Hefei 230061, Anhui, China
| | - Lei He
- Department of Gastrointestinal Surgery, The Third Affiliated Hospital of Anhui Medical University Hefei 230061, Anhui, China
| | - Gang Wen
- Department of Gastrointestinal Surgery, The Third Affiliated Hospital of Anhui Medical University Hefei 230061, Anhui, China
| |
Collapse
|
49
|
Zhang Q, Lou L, Cai X, Hao Z, Nie S, Liu Y, Su L, Wu W, Shen H, Li Y. Clinical significance of AJUBA, YAP1, and MMP14 expression in esophageal squamous cell carcinoma. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2018; 11:6018-6024. [PMID: 31949690 PMCID: PMC6963081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 10/25/2018] [Indexed: 06/10/2023]
Abstract
Esophageal squamous cell carcinoma (ESCC) is generally known to be a highly fatal cancer, and thus novel molecular targets are needed to improve its diagnosis and treatment. AJUBA has been shown to regulate cell cycle, adhesion, proliferation, apoptosis, and migration in many malignant tumors. However, the clinical significance of AJUBA in ESCC tumor metastasis remains unclear. In this study, we explored the role of AJUBA, Yes-associated protein 1 (YAP1), and matrix metalloproteinase 14 (MMP14) in the clinical presentation and survival of ESCC. Immunohistochemical staining showed higher expression of these proteins in cancer tissues than in paired adjacent tissues, and this upregulation was differently related to lymph node metastasis and TNM stage. AJUBA expression was positively correlated with that of YAP1. High expression of MMP14 was associated with reduced survival. In general, our findings reveal that AJUBA, YAP1, and MMP14 might function as oncoproteins and contribute to novel targeted therapy in ESCC.
Collapse
Affiliation(s)
- Qing Zhang
- Department of Pathology, The Second Hospital of Hebei Medical UniversityShijiazhuang, PR China
| | - Lei Lou
- Department of Pathology, The Second Hospital of Hebei Medical UniversityShijiazhuang, PR China
| | - Xiaoli Cai
- Department of Pathology, The Second Hospital of Hebei Medical UniversityShijiazhuang, PR China
| | - Zengfang Hao
- Department of Pathology, The Second Hospital of Hebei Medical UniversityShijiazhuang, PR China
| | - Saisai Nie
- Department of Pathology, The Second Hospital of Hebei Medical UniversityShijiazhuang, PR China
| | - Ying Liu
- Department of Pathology, The Second Hospital of Hebei Medical UniversityShijiazhuang, PR China
| | - Lingrui Su
- Department of Pathology, The Second Hospital of Hebei Medical UniversityShijiazhuang, PR China
| | - Wenxin Wu
- Department of Pathology, The Second Hospital of Hebei Medical UniversityShijiazhuang, PR China
| | - Haitao Shen
- Laboratory of Pathology, Hebei Medical UniversityShijiazhuang, PR China
| | - Yuehong Li
- Department of Pathology, The Second Hospital of Hebei Medical UniversityShijiazhuang, PR China
| |
Collapse
|
50
|
Cao Y, Luo Y, Zou J, Ouyang J, Cai Z, Zeng X, Ling H, Zeng T. Autophagy and its role in gastric cancer. Clin Chim Acta 2018; 489:10-20. [PMID: 30472237 DOI: 10.1016/j.cca.2018.11.028] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 11/17/2018] [Accepted: 11/20/2018] [Indexed: 02/08/2023]
Abstract
Autophagy, which is tightly regulated by a series of autophagy-related genes (ATGs), is a vital intracellular homeostatic process through which defective proteins and organelles are degraded and recycled under starvation, hypoxia or other specific cellular stress conditions. For both normal cells and tumour cells, autophagy not only sustains cell survival but can also promote cell death. Autophagy-related signalling pathways include mTOR-dependent pathways, such as the AMPK/mTOR and PI3K/Akt/mTOR pathways, and non-mTOR dependent pathways, such as the P53 pathway. Additionally, autophagy plays a dual role in gastric carcinoma (GC), including a tumour-suppressor role and a tumour-promoter role. Long-term Helicobacter pylori infection can impair autophagy, which may eventually promote tumourigenesis of the gastric mucosa. Moreover, Beclin1, LC3 and P62/SQSTM1 are regarded as autophagy-related markers with GC prognostic value. Autophagy inhibitors and autophagy inducers show promise for GC treatment. This review describes research progress regarding autophagy and its significant role in gastric cancer.
Collapse
Affiliation(s)
- Yijing Cao
- Key Laboratory of Tumor Cellular & Molecular Pathology (University of South China), College of Hunan Province, Cancer Research Institute, University of South China, Hengyang, Hunan 421001, PR China; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study [Hunan Provincial Education Department document (Approval number: 2014-405)], Hengyang, Hunan 421001, PR China
| | - Yichen Luo
- Key Laboratory of Tumor Cellular & Molecular Pathology (University of South China), College of Hunan Province, Cancer Research Institute, University of South China, Hengyang, Hunan 421001, PR China; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study [Hunan Provincial Education Department document (Approval number: 2014-405)], Hengyang, Hunan 421001, PR China
| | - Juan Zou
- Key Laboratory of Tumor Cellular & Molecular Pathology (University of South China), College of Hunan Province, Cancer Research Institute, University of South China, Hengyang, Hunan 421001, PR China; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study [Hunan Provincial Education Department document (Approval number: 2014-405)], Hengyang, Hunan 421001, PR China
| | - Jun Ouyang
- Department of Gastrointestinal Surgery, the First Affiliated Hospital of University of South China, Hengyang, Hunan 421001, PR China
| | - Zhihong Cai
- Key Laboratory of Tumor Cellular & Molecular Pathology (University of South China), College of Hunan Province, Cancer Research Institute, University of South China, Hengyang, Hunan 421001, PR China; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study [Hunan Provincial Education Department document (Approval number: 2014-405)], Hengyang, Hunan 421001, PR China
| | - Xi Zeng
- Key Laboratory of Tumor Cellular & Molecular Pathology (University of South China), College of Hunan Province, Cancer Research Institute, University of South China, Hengyang, Hunan 421001, PR China; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study [Hunan Provincial Education Department document (Approval number: 2014-405)], Hengyang, Hunan 421001, PR China
| | - Hui Ling
- Key Laboratory of Tumor Cellular & Molecular Pathology (University of South China), College of Hunan Province, Cancer Research Institute, University of South China, Hengyang, Hunan 421001, PR China; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study [Hunan Provincial Education Department document (Approval number: 2014-405)], Hengyang, Hunan 421001, PR China.
| | - Tiebing Zeng
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study [Hunan Provincial Education Department document (Approval number: 2014-405)], Hengyang, Hunan 421001, PR China; Institute of Pathogenic Biology, Key Laboratory of Special Pathogen Prevention and Control of Hunan Province, University of South China, Hengyang, Hunan 421001, PR China.
| |
Collapse
|