1
|
Safaei M, Khalighi F, Behabadi FA, Abpeikar Z, Goodarzi A, Kouhpayeh SA, Najafipour S, Ramezani V. Liposomal nanocarriers containing siRNA as small molecule-based drugs to overcome cancer drug resistance. Nanomedicine (Lond) 2023; 18:1745-1768. [PMID: 37965906 DOI: 10.2217/nnm-2023-0176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023] Open
Abstract
This review discusses the application of nanoliposomes containing siRNA/drug to overcome multidrug resistance for all types of cancer treatments. As drug resistance-associated factors are overexpressed in many cancer cell types, pumping chemotherapy drugs out of the cytoplasm leads to an inadequate therapeutic response. The siRNA/drug-loaded nanoliposomes are a promising approach to treating multidrug-resistant cancer, as they can effectively transmit a small-molecule drug into the target cytoplasm, ensuring that the drug binds efficiently. Moreover, nanoliposome-based therapeutics with advances in nanotechnology can effectively deliver siRNA to cancer cells. Overall, nanoliposomes have the potential to effectively deliver siRNA and small-molecule drugs in a targeted manner and are thus a promising tool for the treatment of cancer and other diseases.
Collapse
Affiliation(s)
- Mohsen Safaei
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fasa, 7461686688, Iran
| | - Fatemeh Khalighi
- Department of Pharmaceutics, School of Pharmacy, Shahid Sadoughi University of Medical Sciences, Yazd, 9417694780, Iran
| | - Fatemeh Akhavan Behabadi
- Department of Pharmaceutics, School of Pharmacy, Shahid Sadoughi University of Medical Sciences, Yazd, 9417694780, Iran
| | - Zahra Abpeikar
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fasa, 7461686688, Iran
| | - Arash Goodarzi
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fasa, 7461686688, Iran
| | - Seyed Amin Kouhpayeh
- Department of Pharmacology, School of Medicine, Fasa University of Medical Sciences, Fasa, 7461686688, Iran
| | - Sohrab Najafipour
- Department of Microbiology, Faculty of Medicine, Fasa University of Medical Sciences, Fasa, 7461686688, Iran
| | - Vahid Ramezani
- Department of Pharmaceutics, School of Pharmacy, Shahid Sadoughi University of Medical Sciences, Yazd, 9417694780, Iran
- Pharmaceutical Sciences Research Center, School of Pharmacy, Shahid Sadoughi University of Medical Sciences, Yazd, 9417694780, Iran
| |
Collapse
|
2
|
Abosalha AK, Boyajian J, Ahmad W, Islam P, Ghebretatios M, Schaly S, Thareja R, Arora K, Prakash S. Clinical pharmacology of siRNA therapeutics: current status and future prospects. Expert Rev Clin Pharmacol 2022; 15:1327-1341. [PMID: 36251525 DOI: 10.1080/17512433.2022.2136166] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Small interfering RNA (siRNA) has emerged as a powerful tool for post-transcriptional downregulation of multiple genes for various therapies. Naked siRNA molecules are surrounded by several barriers that tackle their optimum delivery to target tissues such as limited cellular uptake, short circulation time, degradation by endonucleases, glomerular filtration, and capturing by the reticuloendothelial system (RES). AREAS COVERED This review provides insights into studies that investigate various siRNA-based therapies, focusing on the mechanism, delivery strategies, bioavailability, pharmacokinetic, and pharmacodynamics of naked and modified siRNA molecules. The clinical pharmacology of currently approved siRNA products is also discussed. EXPERT OPINION Few siRNA-based products have been approved recently by the Food and Drug Administration (FDA) and other regulatory agencies after approximately twenty years following its discovery due to the associated limitations. The absorption, distribution, metabolism, and excretion of siRNA therapeutics are highly restricted by several obstacles, resulting in rapid clearance of siRNA-based therapeutic products from systemic circulation before reaching the cytosol of targeted cells. The siRNA therapeutics however are very promising in many diseases, including gene therapy and SARS-COV-2 viral infection. The design of suitable delivery vehicles and developing strategies toward better pharmacokinetic parameters may solve the challenges of siRNA therapies.
Collapse
Affiliation(s)
- Ahmed Khaled Abosalha
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine, McGill University, Montreal, Quebec, H3A 2B4, Canada.,Pharmaceutical Technology Department, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Jacqueline Boyajian
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine, McGill University, Montreal, Quebec, H3A 2B4, Canada
| | - Waqar Ahmad
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine, McGill University, Montreal, Quebec, H3A 2B4, Canada
| | - Paromita Islam
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine, McGill University, Montreal, Quebec, H3A 2B4, Canada
| | - Merry Ghebretatios
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine, McGill University, Montreal, Quebec, H3A 2B4, Canada
| | - Sabrina Schaly
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine, McGill University, Montreal, Quebec, H3A 2B4, Canada
| | - Rahul Thareja
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine, McGill University, Montreal, Quebec, H3A 2B4, Canada
| | - Karan Arora
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine, McGill University, Montreal, Quebec, H3A 2B4, Canada
| | - Satya Prakash
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine, McGill University, Montreal, Quebec, H3A 2B4, Canada
| |
Collapse
|
3
|
Khan A, Aljarbou AN, Khan S, Khan MA. Her-2 directed systemic delivery of fatty acid synthase (FASN) siRNA with novel liposomal carrier systems in the breast cancer mouse model. J Drug Target 2022; 30:634-645. [PMID: 35112640 DOI: 10.1080/1061186x.2022.2038613] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Despite the current advancements in the gene silencing therapy in vitro, the systemic delivery of siRNA still remains a challenging task for its transition into clinics. We have previously developed the Her2-targeted fatty acid synthase (FASN) siRNA-encapsulating immunoliposomes (ILs) with a great stability in the presence of serum. We report here the therapeutic potential of the lipid-based novel formulations in the breast cancer mouse model. The growth inhibitory and gene silencing effects of various formulations were determined by measuring the size of the tumor, cell proliferation, apoptotic index and immunoassays against Her2-over expressed tumor xenografts in nude mice. The pegylated DSPC/Chol and DOPE/CHEMS immunoliposomes containing FASN-siRNA significantly decreased the tumor growth relative to non-targeted liposomes. They induced the 1.5-fold increase in cellular apoptosis and several fold decrease in proliferation as compared to non-targeted liposomal formulations of FASN-siRNA. Moreover, FASN-siRNA-ILs produced several fold increase in the ratios of p53/p21 and Bax/Bcl-2. The gene silencing effects of targeted FASN-liposomes were found significantly superior, resulting in 30%-40% downregulation in FASN as compared to non-targeted similar formulations. Both types of FASN immunoliposomes provided a highly efficient approach for targeted delivery in Her-2-expressed breast cancer and thus offered a promising anticancer strategy in the clinical therapy.
Collapse
Affiliation(s)
- Arif Khan
- Department of Basic Health Sciences, College of Applied Medical Sciences, Buraydah, Qassim University, Saudi Arabia
| | - Ahmed N Aljarbou
- Department of Pharmaceutics, College of Pharmacy, Buraydah, Qassim University, Saudi Arabia
| | - Shamshir Khan
- Dentistry and Pharmacy College, Buraydah Private Colleges, Al-Qassim, Buraydah, Saudi Arabia
| | - Masood A Khan
- Department of Basic Health Sciences, College of Applied Medical Sciences, Buraydah, Qassim University, Saudi Arabia
| |
Collapse
|
4
|
Scavo MP, Cutrignelli A, Depalo N, Fanizza E, Laquintana V, Gasparini G, Giannelli G, Denora N. Effectiveness of a Controlled 5-FU Delivery Based on FZD10 Antibody-Conjugated Liposomes in Colorectal Cancer In vitro Models. Pharmaceutics 2020; 12:E650. [PMID: 32664186 PMCID: PMC7408534 DOI: 10.3390/pharmaceutics12070650] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/05/2020] [Accepted: 07/06/2020] [Indexed: 12/17/2022] Open
Abstract
The use of controlled delivery therapy in colorectal cancer (CRC) reduces toxicity and side effects. Recently, we have suggested that the Frizzled 10 (FZD10) protein, a cell surface receptor belonging to the FZD protein family that is overexpressed in CRC cells, is a novel candidate for targeting and treatment of CRC. Here, the anticancer effect of novel immuno-liposomes loaded with 5-Fluorouracil (5-FU), decorated with an antibody against FZD10 (anti-FZD10/5-FU/LPs), was evaluated in vitro on two different CRC cell lines, namely metastatic CoLo-205 and nonmetastatic CaCo-2 cells, that were found to overexpress FZD10. The anti-FZD10/5-FU/LPs obtained were extensively characterized and their preclinical therapeutic efficacy was evaluated with the MTS cell proliferation assay based on reduction of tetrazolium compound, scratch test, Field Emission Scanning Electron Microscopes (FE-SEM) investigation and immunofluorescence analysis. The results highlighted that the cytotoxic activity of 5-FU was enhanced when encapsulated in the anti-FZD10 /5-FU/LPs at the lowest tested concentrations, as compared to the free 5-FU counterparts. The immuno-liposomes proposed herein possess a great potential for selective treatment of CRC because, in future clinical applications, they can be encapsulated in gastro-resistant capsules or suppositories for oral or rectal delivery, thereby successfully reaching the intestinal tract in a minimally invasive manner.
Collapse
Affiliation(s)
- Maria Principia Scavo
- Personalized Medicine Laboratory, National Institute of Gastroenterology “S. deBellis”, Via Turi 26 Castellana Grotte, 70125 Bari, Italy
| | - Annalisa Cutrignelli
- Department of Pharmacy-Drug Science, University of Bari, Via E. Orabona 4, 70125 Bari, Italy; (A.C.); (V.L.); (N.D.)
| | - Nicoletta Depalo
- Institute for Chemical and Physical Processes (IPCF)-CNR SS Bari, Via Orabona 4, 70125 Bari, Italy; (N.D.); (E.F.)
| | - Elisabetta Fanizza
- Institute for Chemical and Physical Processes (IPCF)-CNR SS Bari, Via Orabona 4, 70125 Bari, Italy; (N.D.); (E.F.)
- Department of Chemistry, University of Bari, Via E. Orabona 4, 70125 Bari, Italy
| | - Valentino Laquintana
- Department of Pharmacy-Drug Science, University of Bari, Via E. Orabona 4, 70125 Bari, Italy; (A.C.); (V.L.); (N.D.)
| | | | - Gianluigi Giannelli
- Scientific Direction, National Institute of Gastroenterology “de Bellis”, Via Turi 26 Castellana Grotte, 70125 Bari, Italy;
| | - Nunzio Denora
- Department of Pharmacy-Drug Science, University of Bari, Via E. Orabona 4, 70125 Bari, Italy; (A.C.); (V.L.); (N.D.)
- Institute for Chemical and Physical Processes (IPCF)-CNR SS Bari, Via Orabona 4, 70125 Bari, Italy; (N.D.); (E.F.)
| |
Collapse
|
5
|
Bi J, Huang Y, Liu Y. Effect of NOP2 knockdown on colon cancer cell proliferation, migration, and invasion. Transl Cancer Res 2019; 8:2274-2283. [PMID: 35116980 PMCID: PMC8799236 DOI: 10.21037/tcr.2019.09.46] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 09/18/2019] [Indexed: 12/23/2022]
Abstract
Background Proliferation-associated nucleolar protein p120 (NOP2) has been proven to be a promising tumor cell maker, but it has not been specifically studied in colon cancer. This study aims to investigate the role and action mechanism of NOP2 in colon cancer. Methods Fluorescence quantitative PCR and western blot assays were used to evaluate the expression of NOP2. NOP2 siRNA was transfected into HCT116, LOVO, and CCK-8 cells, and transwell assays were performed to evaluate the cell proliferation, migration, and invasion. Transcriptome sequencing of both the NOP2 knockdown and negative control (NC) groups was performed. Results NOP2 expression is significantly upregulated in colon cancer tissues and cells compared with that in the healthy controls. The proliferation, migration, and invasion of the colon cancer cells were significantly suppressed in the NOP2 knockdown group compared with those in the NC group (P<0.05). Transcriptome sequencing showed that ASMTL and C6orf52 were significantly downregulated, while MUC19, TXK, APOBEC2, and RBM44 were upregulated in both of the two NOP2 silenced colon cancer cells relative to those in the control. Gene Ontology (GO) analysis showed that NOP2 knockdown mainly induced differential expression of the genes involved in positive regulation of T cell-mediated cytotoxicity and thiamine metabolism. Kyoto Encyclopedia of Genes and Genomes analysis showed that the gene pathways most significantly affected by NOP2 knockdown were Cytokine-cytokine receptor interaction, Type I diabetes mellitus, Taste transduction, and Systemic lupus erythematosus. Conclusions NOP2 promotes proliferation, migration, and invasion of colon cancer cells, and the underlying mechanisms may be related to TXK tyrosine kinase.
Collapse
Affiliation(s)
- Jinling Bi
- Department of Oncology, the Second Affiliated Hospital of Soochow University, Suzhou 215004, China.,Department of Oncology, the Second People's Hospital of Hefei, Hefei 230011, China
| | - Yong Huang
- Department of Oncology, the Second People's Hospital of Hefei, Hefei 230011, China
| | - Yulong Liu
- Department of Oncology, the Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| |
Collapse
|
6
|
Zheng Z, Ji H, Zong W, Ran Q, Wang X, Yang X, Zhao Z, Yang C, Xiao Y. Construction and characterization of immunoliposomes targeting fibroblast growth factor receptor 3. AMB Express 2019; 9:150. [PMID: 31535232 PMCID: PMC6751232 DOI: 10.1186/s13568-019-0875-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 09/09/2019] [Indexed: 01/12/2023] Open
Abstract
Fibroblast growth factor receptor 3 (FGFR3) plays an important regulatory role in tumor cell proliferation and drug resistance. FGFR3 is often constitutively active in many tumors. To deliver drugs into tumor cells by targeting FGFR3 will be a promising and potential strategy for cancer therapy. In this study, a novel fusion protein, ScFv-Cys containing a single chain variable fragment (ScFv) and an additional C-terminal cysteine residue, was generated at a rate of 10 mg/L of bacterial culture and purified at 95% by Ni-NTA chromatography. Subsequently, the recombinant ScFv-Cys was coupled with malPEG2000-DSPE and incorporated into liposomes to generate the immunoliposomes. The results indicated that immunoliposomes can specifically deliver the fluorescent molecules, Dio into bladder cancer cells highly expressing FGFR3. In conclusion, we successfully generated FGFR3-specific immunoliposomes, and proved its targeting effect and delivering ability.
Collapse
|
7
|
Hong Y, Rao Y. Current status of nanoscale drug delivery systems for colorectal cancer liver metastasis. Biomed Pharmacother 2019; 114:108764. [DOI: 10.1016/j.biopha.2019.108764] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 02/25/2019] [Accepted: 03/06/2019] [Indexed: 12/24/2022] Open
|
8
|
Majumder P. Integrin-Mediated Delivery of Drugs and Nucleic Acids for Anti-Angiogenic Cancer Therapy: Current Landscape and Remaining Challenges. Bioengineering (Basel) 2018; 5:bioengineering5040076. [PMID: 30241287 PMCID: PMC6315429 DOI: 10.3390/bioengineering5040076] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 09/12/2018] [Accepted: 09/16/2018] [Indexed: 01/19/2023] Open
Abstract
Angiogenesis, sprouting of new blood vessels from pre-existing vasculatures, plays a critical role in regulating tumor growth. Binding interactions between integrin, a heterodimeric transmembrane glycoprotein receptor, and its extracellular matrix (ECM) protein ligands govern the angiogenic potential of tumor endothelial cells. Integrin receptors are attractive targets in cancer therapy due to their overexpression on tumor endothelial cells, but not on quiescent blood vessels. These receptors are finding increasing applications in anti-angiogenic therapy via targeted delivery of chemotherapeutic drugs and nucleic acids to tumor vasculatures. The current article attempts to provide a retrospective account of the past developments, highlight important contemporary contributions and unresolved set-backs of this emerging field.
Collapse
Affiliation(s)
- Poulami Majumder
- Division of Lipid Science and Technology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad 500007, India.
- Chemical Biology Laboratory, National Cancer Institute, 376 Boyles St, Frederick, MD 21702, USA.
| |
Collapse
|
9
|
Affiliation(s)
- Victoria A. Meliopoulos
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
- * E-mail:
| | - Stacey Schultz-Cherry
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| |
Collapse
|
10
|
Tam C, Wong JH, Cheung RCF, Zuo T, Ng TB. Therapeutic potentials of short interfering RNAs. Appl Microbiol Biotechnol 2017; 101:7091-7111. [PMID: 28791440 DOI: 10.1007/s00253-017-8433-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 07/19/2017] [Indexed: 01/10/2023]
Abstract
Short interfering RNA (siRNA) is one of the members of the family of RNA interference (RNAi). Coupled with the RNA-induced silencing complex (RISC), siRNA is able to trigger the cleavage of target RNAs which serve as a defensive system against pathogens. Meanwhile, siRNA in gene silencing opens a new avenue for the treatment of various diseases. SiRNA can effectively inhibit viral infection and replication and suppress tumorigenesis and various inflammation-associated diseases and cardiovascular diseases by inactivation of viral genes and downregulation of oncogene expression. Recently, endogenous siRNAs (endo-siRNAs) were discovered in the reproductive cells of animals which may be associated with regulation of cell division. Structural modification of siRNA enhances the delivery, specificity and efficacy and bioavailability to the target cells. There are at least five categories of siRNA delivery systems including viral vectors, lipid-based nanoparticles, peptide-based nanoparticles, polymer-based nanoparticles and inorganic small molecules like metal ions, silica and carbon. Sufficient preclinical and clinical studies supported that siRNA may be a potential medicine for targeted therapy of various diseases in the near future.
Collapse
Affiliation(s)
- Chit Tam
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Lo Kwee-Seong Integrated Biomedical Sciences Building, Area 39, Sha Tin, New Territories, Hong Kong, China.
| | - Jack Ho Wong
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Lo Kwee-Seong Integrated Biomedical Sciences Building, Area 39, Sha Tin, New Territories, Hong Kong, China
| | - Randy Chi Fai Cheung
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Lo Kwee-Seong Integrated Biomedical Sciences Building, Area 39, Sha Tin, New Territories, Hong Kong, China
| | - Tao Zuo
- Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Sha Tin, New Territories, Hong Kong, China
| | - Tzi Bun Ng
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Lo Kwee-Seong Integrated Biomedical Sciences Building, Area 39, Sha Tin, New Territories, Hong Kong, China.
| |
Collapse
|