1
|
Borlongan MC, Saha D, Wang H. Tumor Microenvironment: A Niche for Cancer Stem Cell Immunotherapy. Stem Cell Rev Rep 2024; 20:3-24. [PMID: 37861969 DOI: 10.1007/s12015-023-10639-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/02/2023] [Indexed: 10/21/2023]
Abstract
Tumorigenic Cancer Stem Cells (CSCs), often called tumor-initiating cells (TICs), represent a unique subset of cells within the tumor milieu. They stand apart from the bulk of tumor cells due to their exceptional self-renewal, metastatic, and differentiation capabilities. Despite significant progress in classifying CSCs, these cells remain notably resilient to conventional radiotherapy and chemotherapy, contributing to cancer recurrence. In this review, our objective is to explore novel avenues of research that delve into the distinctive characteristics of CSCs within their surrounding tumor microenvironment (TME). We will start with an overview of the defining features of CSCs and then delve into their intricate interactions with cells from the lymphoid lineage, namely T cells, B cells, and natural killer (NK) cells. Furthermore, we will discuss their dynamic interplay with myeloid lineage cells, including macrophages, neutrophils, and myeloid-derived suppressor cells (MDSCs). Moreover, we will illuminate the crosstalk between CSCs and cells of mesenchymal origin, specifically fibroblasts, adipocytes, and endothelial cells. Subsequently, we will underscore the pivotal role of CSCs within the context of the tumor-associated extracellular matrix (ECM). Finally, we will highlight pre-clinical and clinical studies that target CSCs within the intricate landscape of the TME, including CAR-T therapy, oncolytic viruses, and CSC-vaccines, with the ultimate goal of uncovering novel avenues for CSC-based cancer immunotherapy.
Collapse
Affiliation(s)
- Mia C Borlongan
- College of Medicine, California Northstate University, 9700 West Taron Drive, Elk Grove, CA, 95757, USA
| | - Dipongkor Saha
- Department of Pharmaceutical and Biomedical Sciences College of Pharmacy, California Northstate University, 9700 West Taron Drive, Elk Grove, CA, 95757, USA.
| | - Hongbin Wang
- College of Medicine, California Northstate University, 9700 West Taron Drive, Elk Grove, CA, 95757, USA.
- Department of Pharmaceutical and Biomedical Sciences College of Pharmacy, California Northstate University, 9700 West Taron Drive, Elk Grove, CA, 95757, USA.
- Master Program of Pharmaceutical Sciences College of Graduate Studies, Department of Pharmaceutical and Biomedical Sciences College of Pharmacy, Department of Basic Science College of Medicine, California Northstate University, 9700 West Taron Drive, Elk Grove, CA, 95757, USA.
| |
Collapse
|
2
|
Wang Y, Schneider SW, Gorzelanny C. Crosstalk between Circulating Tumor Cells and Plasma Proteins-Impact on Coagulation and Anticoagulation. Cancers (Basel) 2023; 15:cancers15113025. [PMID: 37296987 DOI: 10.3390/cancers15113025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/24/2023] [Accepted: 05/31/2023] [Indexed: 06/12/2023] Open
Abstract
Cancer metastasis is a complex process. After their intravasation into the circulation, the cancer cells are exposed to a harsh environment of physical and biochemical hazards. Whether circulating tumor cells (CTCs) survive and escape from blood flow defines their ability to metastasize. CTCs sense their environment with surface-exposed receptors. The recognition of corresponding ligands, e.g., fibrinogen, by integrins can induce intracellular signaling processes driving CTCs' survival. Other receptors, such as tissue factor (TF), enable CTCs to induce coagulation. Cancer-associated thrombosis (CAT) is adversely connected to patients' outcome. However, cancer cells have also the ability to inhibit coagulation, e.g., through expressing thrombomodulin (TM) or heparan sulfate (HS), an activator of antithrombin (AT). To that extent, individual CTCs can interact with plasma proteins, and whether these interactions are connected to metastasis or clinical symptoms such as CAT is largely unknown. In the present review, we discuss the biological and clinical relevance of cancer-cell-expressed surface molecules and their interaction with plasma proteins. We aim to encourage future research to expand our knowledge of the CTC interactome, as this may not only yield new molecular markers improving liquid-biopsy-based diagnostics but also additional targets for better cancer therapies.
Collapse
Affiliation(s)
- Yuanyuan Wang
- Department of Dermatology and Venereology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Stefan W Schneider
- Department of Dermatology and Venereology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Christian Gorzelanny
- Department of Dermatology and Venereology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| |
Collapse
|
3
|
Regulation of Tissue Factor by CD44 Supports Coagulant Activity in Breast Tumor Cells. Cancers (Basel) 2022; 14:cancers14133288. [PMID: 35805061 PMCID: PMC9266039 DOI: 10.3390/cancers14133288] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 06/29/2022] [Accepted: 07/01/2022] [Indexed: 12/10/2022] Open
Abstract
Simple Summary Metastasis and thromboembolic complications are the main cause of cancer-associated death. An overexpression of coagulation factors, and particularly Tissue factor, by tumor cells is a key event implicated in this observed hypercoagulability. Tissue Factor is indeed a cellular initiator of the coagulation cascade which has been associated with aggressive tumor phenotypes such as those characteristic of Epithelial-Mesenchymal Transitions (EMTs) and Cancer Stem Cells (CSCs). Understanding molecular mechanisms controlling Tissue Factor overexpression in those tumor phenotypes is thus an important aspect of cancer research. We show here that CD44 (a transmembrane marker of CSC and EMT phenotypes) contributes to regulate TF expression at a transcriptional level, thereby supporting procoagulant properties in tumor cells that facilitate their metastatic spread. Abstract Previous work identified Tissue Factor (TF), a key activator of the coagulation cascade, as a gene induced in cellular contexts of Epithelial-Mesenchymal Transitions (EMTs), providing EMT+ Circulating Tumor Cells (CTCs) with coagulant properties that facilitate their metastatic seeding. Deciphering further molecular aspects of TF regulation in tumor cells, we report here that CD44 and TF coexpress in EMT contexts, and that CD44 acts as a regulator of TF expression supporting procoagulant properties and metastatic seeding. A transcriptional regulatory mechanism bridging CD44 to TF expression was further evidenced. Comparing different TF –promoter luciferase reporter constructs, we indeed found that the shortest -111 pb TF promoter fragment harboring three Specificity Protein 1 (Sp1) binding sites is still responsive to CD44 silencing. The observation that (i) mutation within Sp1 binding sites decreased the basal activity of the -111 pb TF promoter construct, (ii) CD44 silencing decreased Sp1 protein and mRNA levels and (iii) Sp1 silencing diminished TF expression further points to Sp1 as a key mediator linking CD44 to TF regulation. All together, these data thus report a transcriptional regulatory mechanism of TF expression by CD44 supporting procoagulant activity and metastatic competence of CTCs.
Collapse
|
4
|
Ma L, Wang G, Liu S, Bi F, Liu M, Wang G. Intramuscular Expression of Plasmid-Encoded FVII-Fc Immunoconjugate for Tumor Immunotherapy by Targeting Tumoral Blood Vessels and Cells. Front Oncol 2021; 11:638591. [PMID: 34109110 PMCID: PMC8181131 DOI: 10.3389/fonc.2021.638591] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 04/26/2021] [Indexed: 02/05/2023] Open
Abstract
Tissue factor (TF) has been confirmed to be specifically expressed by vascular endothelial cells (VECs) in solid tumors and certain types of malignant tumor cells. Coagulation factor VII (FVII) can specifically bind to TF with high affinity, so the FVII-TF interaction provides an ideal target for tumor therapy. Expression of proteins in skeletal muscles is a simple and economical avenue for continuous production of therapeutic molecules. However, it is difficult to treat solid tumors till now due to the limited number of therapeutic proteins produced by the intramuscular gene expression system. Herein, we strived to explore whether anti-tumor effects can be achieved via intramuscular delivery of a plasmid encoding a FVII-guided immunoconjugate (Icon) molecule by a previously established Pluronic L64/electropulse (L/E) technique. Our study exhibited several interesting outcomes. 1) The mouse light chain of FVII (mLFVII) molecule could guide red fluorescent protein (RFP) to accumulate predominantly at tumor sites in a TF-dependent manner. 2) Intramuscular expression of mLFVII-hFc (human IgG1 Fc) Icon could significantly inhibit the growth of both liver and lung cancers in nude mice, and the inhibition extent was proportional to the level of tumor-expressed TF. 3) The number of blood vessels and the amount of blood flow in tumors were significantly decreased in mLFVII-hFc Icon-treated mice. 4) This immunotherapy system did not display obvious side effects. Our study provided an efficient and economical system for tumor immunotherapy by targeting both blood vessels and tumor cells. It is also an open system for synergistic therapy by conveniently integrating other anticancer regimens.
Collapse
Affiliation(s)
- Liping Ma
- School of Bioscience and Technology, Chengdu Medical College, Chengdu, China.,National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China
| | - Guanru Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China
| | - Sijia Liu
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands
| | - Feng Bi
- Department of Abdominal Oncology, West China Hospital, Sichuan University, Chengdu, China
| | - Ming Liu
- Department of Abdominal Oncology, West China Hospital, Sichuan University, Chengdu, China
| | - Gang Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China
| |
Collapse
|
5
|
Uddin MH, Kim B, Cho U, Azmi AS, Song YS. Association of ALDH1A1-NEK-2 axis in cisplatin resistance in ovarian cancer cells. Heliyon 2020; 6:e05442. [PMID: 33241139 PMCID: PMC7672295 DOI: 10.1016/j.heliyon.2020.e05442] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 10/06/2020] [Accepted: 11/03/2020] [Indexed: 01/05/2023] Open
Abstract
Development of acquired resistance to cisplatin (CDDP) is a major obstacle in the treatment of ovarian cancer patients. According to the cancer stem cell (CSC) hypothesis, the recurrence and chemoresistance are presumed to be linked to cancer stem/progenitor cells. Here, we investigated the CSC-like phenotypes and mechanism of chemoresistance in CDDP resistant ovarian cancer cells. A well-established CDDP sensitive ovarian cancer cell line A2780 and its resistant population A2780-Cp were used. We also developed a supra resistant population (SKOV3-Cp) from a naturally CDDP resistant cell line SKOV3. Both resistant/supra resistant cell lines showed significantly higher self-renewal capability than their parental counterparts. They also showed significant resistance to apoptosis and sub-G1 arrest by CDDP treatment. Stem cell marker ALDH1 positivity rates were higher both in A2780-Cp and SKOV3-Cp cell lines than in their counterparts, quantified by Aldefluor assay kit. Hoechst 33342 dye effluxing side populations were increased up to about five folds in A2780-Cp cells and two folds in SKOV3-Cp cells compared to A2780 and SKOV3 cells, respectively. Among major stemness related genes (POU5F1/OCT4, SOX2, NANOG, NES, BMI1, KLF4 and ALDH1A1), ALDH1A1 and KLF4 were significantly overexpressed in both resistant/supra resistant cells. Silencing ALDH1A1 in A2780 and A2780-Cp cells using siRNA greatly reduced the stem cell population and sensitized cells to CDDP. Moreover, silencing of ALDH1A1 reduced the transcript and protein level of its downstream target NEK-2. We also observed the downregulation of ABC transporters (ABCB1/MDR1, ABCG2 and ABCC1/MRP1) either by ALDH1A1 or NEK-2 silencing and upreguation of ABCB1/MDR1 due to the overexpression of NEK-2. Taken together, the present study suggests that stemness gene ALDH1A1 can be involved in CDDP resistance through the upregulation of NEK-2 in ovarian cancer.
Collapse
Affiliation(s)
- Md Hafiz Uddin
- Gynecological Oncology Laboratory, Cancer Research Institute, Seoul National University College of Medicine, Seoul 03080, Republic of Korea.,Department of Oncology, Karmanos Cancer Institute, Wayen State University, Detroit, Michigan 48201, USA
| | - Boyun Kim
- Gynecological Oncology Laboratory, Cancer Research Institute, Seoul National University College of Medicine, Seoul 03080, Republic of Korea.,WCU Biomodulation, Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Republic of Korea
| | - Untack Cho
- Gynecological Oncology Laboratory, Cancer Research Institute, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Asfar S Azmi
- Department of Oncology, Karmanos Cancer Institute, Wayen State University, Detroit, Michigan 48201, USA
| | - Yong Sang Song
- Gynecological Oncology Laboratory, Cancer Research Institute, Seoul National University College of Medicine, Seoul 03080, Republic of Korea.,WCU Biomodulation, Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Republic of Korea.,Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea.,Interdisciplinary Program in Cancer Biology, Seoul National University, Seoul, 03080, Republic of Korea
| |
Collapse
|
6
|
Gomez S, Tsung A, Hu Z. Current Targets and Bioconjugation Strategies in Photodynamic Diagnosis and Therapy of Cancer. Molecules 2020; 25:E4964. [PMID: 33121022 PMCID: PMC7662882 DOI: 10.3390/molecules25214964] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/18/2020] [Accepted: 10/25/2020] [Indexed: 02/07/2023] Open
Abstract
Photodynamic diagnosis (PDD) and therapy (PDT) are emerging, non/minimally invasive techniques for cancer diagnosis and treatment. Both techniques require a photosensitizer and light to visualize or destroy cancer cells. However, a limitation of conventional, non-targeted PDT is poor selectivity, causing side effects. The bioconjugation of a photosensitizer to a tumor-targeting molecule, such as an antibody or a ligand peptide, is a way to improve selectivity. The bioconjugation strategy can generate a tumor-targeting photosensitizer conjugate specific for cancer cells, or ideally, for multiple tumor compartments to improve selectivity and efficacy, such as cancer stem cells and tumor neovasculature within the tumor microenvironment. If successful, such targeted photosensitizer conjugates can also be used for specific visualization and detection of cancer cells and/or tumor angiogenesis (an early event in tumorigenesis) with the hope of an early diagnosis of cancer. The purpose of this review is to summarize some current promising target molecules, e.g., tissue factor (also known as CD142), and the currently used bioconjugation strategies in PDT and PDD, with a focus on newly developed protein photosensitizers. These are genetically engineered photosensitizers, with the possibility of generating a fusion protein photosensitizer by recombinant DNA technology for both PDT and PDD without the need of chemical conjugation. We believe that providing an overview of promising targets and bioconjugation strategies will aid in driving research in this field forward towards more effective, less toxic, and non- or minimally invasive treatment and diagnosis options for cancer patients.
Collapse
Affiliation(s)
- Salvador Gomez
- The James-Comprehensive Cancer Center, Division of Surgical Oncology Department of Surgery, College of Medicine, The Ohio State University, 460 W 12th Ave, Columbus, OH 43210, USA; (S.G.); (A.T.)
- College of Medicine, The Ohio State University, 370 W 9th Ave, Columbus, OH 43210, USA
| | - Allan Tsung
- The James-Comprehensive Cancer Center, Division of Surgical Oncology Department of Surgery, College of Medicine, The Ohio State University, 460 W 12th Ave, Columbus, OH 43210, USA; (S.G.); (A.T.)
| | - Zhiwei Hu
- The James-Comprehensive Cancer Center, Division of Surgical Oncology Department of Surgery, College of Medicine, The Ohio State University, 460 W 12th Ave, Columbus, OH 43210, USA; (S.G.); (A.T.)
| |
Collapse
|
7
|
Unruh D, Horbinski C. Beyond thrombosis: the impact of tissue factor signaling in cancer. J Hematol Oncol 2020; 13:93. [PMID: 32665005 PMCID: PMC7362520 DOI: 10.1186/s13045-020-00932-z] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 07/02/2020] [Indexed: 12/15/2022] Open
Abstract
Tissue factor (TF) is the primary initiator of the coagulation cascade, though its effects extend well beyond hemostasis. When TF binds to Factor VII, the resulting TF:FVIIa complex can proteolytically cleave transmembrane G protein-coupled protease-activated receptors (PARs). In addition to activating PARs, TF:FVIIa complex can also activate receptor tyrosine kinases (RTKs) and integrins. These signaling pathways are utilized by tumors to increase cell proliferation, angiogenesis, metastasis, and cancer stem-like cell maintenance. Herein, we review in detail the regulation of TF expression, mechanisms of TF signaling, their pathological consequences, and how it is being targeted in experimental cancer therapeutics.
Collapse
Affiliation(s)
- Dusten Unruh
- Department of Neurological Surgery, Northwestern University, 303 East Superior St, Chicago, IL, 60611, USA.
| | - Craig Horbinski
- Department of Neurological Surgery, Northwestern University, 303 East Superior St, Chicago, IL, 60611, USA.,Department of Pathology, Northwestern University, Chicago, IL, 60611, USA
| |
Collapse
|
8
|
Xu Y, Bankhead A, Tian X, Tang J, Ljungman M, Neamati N. Deletion of Glutathione S-Transferase Omega 1 Activates Type I Interferon Genes and Downregulates Tissue Factor. Cancer Res 2020; 80:3692-3705. [PMID: 32571799 DOI: 10.1158/0008-5472.can-20-0530] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 04/16/2020] [Accepted: 06/17/2020] [Indexed: 12/18/2022]
Abstract
GST omega 1 (GSTO1) is an atypical GST isoform that is overexpressed in several cancers and has been implicated in drug resistance. Currently, no small-molecule drug targeting GSTO1 is under clinical development. Here we have validated GSTO1 as an impactful target in oncology. Transcriptional profiling coupled with proteomics uncovered novel pharmacodynamic markers and cellular pathways regulated by GSTO1. CRISPR/Cas9 GSTO1 knockout (KO) cell lines failed to form tumors or displayed growth delay in vivo; they also formed smaller 3D spheroids in vitro. Multiomics analysis in GSTO1 KO cells found a strong positive correlation with cell adhesion molecules and IFN response pathways and a strong negative correlation with Myc transcriptional signature. In addition, several clinically used drugs showed significant synthetic lethality with loss or inhibition of GSTO1. Transcription and protein expression of tissue factor (gene name, F3) were downregulated in response to GSTO1 KO. F3 is associated with poor patient survival and promotion of tumor progression in multiple cancers and is a known risk factor for metastasis. Transcription of F3 was regulated by IL1β, whose secretion decreased upon inhibition of GSTO1, suggesting that IL1β links GSTO1 expression and F3 transcription. In summary, our results implicate GSTO1 as a potential therapeutic target in cancer and offer new mechanistic insights into its significant role in cancer progression. SIGNIFICANCE: These findings validate GSTO1 as a therapeutic target in cancer and implicate GSTO1 in the modulation of tumor growth, immune responses, and expression of F3.
Collapse
Affiliation(s)
- Yibin Xu
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, Michigan.,Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan
| | - Armand Bankhead
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan.,Department of Biostatistics and Department of Computational Medicine and Bioinformatics, Ann Arbor, Michigan
| | - Xiaoli Tian
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, Michigan.,Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan
| | - Jianming Tang
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, Michigan.,Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan
| | - Mats Ljungman
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan.,Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan.,Department of Environmental Health Sciences, University of Michigan, Ann Arbor, Michigan
| | - Nouri Neamati
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, Michigan. .,Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
9
|
Genna A, Vanwynsberghe AM, Villard AV, Pottier C, Ancel J, Polette M, Gilles C. EMT-Associated Heterogeneity in Circulating Tumor Cells: Sticky Friends on the Road to Metastasis. Cancers (Basel) 2020; 12:E1632. [PMID: 32575608 PMCID: PMC7352430 DOI: 10.3390/cancers12061632] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/11/2020] [Accepted: 06/17/2020] [Indexed: 02/06/2023] Open
Abstract
Epithelial-mesenchymal transitions (EMTs) generate hybrid phenotypes with an enhanced ability to adapt to diverse microenvironments encountered during the metastatic spread. Accordingly, EMTs play a crucial role in the biology of circulating tumor cells (CTCs) and contribute to their heterogeneity. Here, we review major EMT-driven properties that may help hybrid Epithelial/Mesenchymal CTCs to survive in the bloodstream and accomplish early phases of metastatic colonization. We then discuss how interrogating EMT in CTCs as a companion biomarker could help refine cancer patient management, further supporting the relevance of CTCs in personalized medicine.
Collapse
Affiliation(s)
- Anthony Genna
- GIGA-Cancer, Laboratory of Tumor and Development Biology, CHU Sart-Tilman, University of Liège, Pathology Tower, 4000 Liège, Belgium; (A.G.); (A.M.V.); (A.V.V.); (C.P.)
| | - Aline M. Vanwynsberghe
- GIGA-Cancer, Laboratory of Tumor and Development Biology, CHU Sart-Tilman, University of Liège, Pathology Tower, 4000 Liège, Belgium; (A.G.); (A.M.V.); (A.V.V.); (C.P.)
| | - Amélie V. Villard
- GIGA-Cancer, Laboratory of Tumor and Development Biology, CHU Sart-Tilman, University of Liège, Pathology Tower, 4000 Liège, Belgium; (A.G.); (A.M.V.); (A.V.V.); (C.P.)
| | - Charles Pottier
- GIGA-Cancer, Laboratory of Tumor and Development Biology, CHU Sart-Tilman, University of Liège, Pathology Tower, 4000 Liège, Belgium; (A.G.); (A.M.V.); (A.V.V.); (C.P.)
- Department of Medical Oncology, University Hospital of Liège, 4000 Liège, Belgium
| | - Julien Ancel
- CHU (Centre Hopitalier Universitaire) de Reims, Hôpital Maison Blanche, Service de Pneumologie, 51092 Reims, France;
- INSERM, UMR (Unité Mixte de Recherche)-S1250, SFR CAP-SANTE, Université de Reims Champagne-Ardenne, 51097 Reims, France;
| | - Myriam Polette
- INSERM, UMR (Unité Mixte de Recherche)-S1250, SFR CAP-SANTE, Université de Reims Champagne-Ardenne, 51097 Reims, France;
- CHU de Reims, Hôpital Maison Blanche, Laboratoire de Pathologie, 51092 Reims, France
| | - Christine Gilles
- GIGA-Cancer, Laboratory of Tumor and Development Biology, CHU Sart-Tilman, University of Liège, Pathology Tower, 4000 Liège, Belgium; (A.G.); (A.M.V.); (A.V.V.); (C.P.)
| |
Collapse
|
10
|
Vimentin prevents a miR-dependent negative regulation of tissue factor mRNA during epithelial-mesenchymal transitions and facilitates early metastasis. Oncogene 2020; 39:3680-3692. [PMID: 32152404 PMCID: PMC7190572 DOI: 10.1038/s41388-020-1244-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 02/18/2020] [Accepted: 02/21/2020] [Indexed: 01/31/2023]
Abstract
Epithelial-mesenchymal transitions (EMTs) are high-profile in the field of circulating tumor cells (CTCs). EMT-shifted CTCs are considered to encompass pre-metastatic subpopulations though underlying molecular mechanisms remain elusive. Our previous work identified tissue factor (TF) as an EMT-induced gene providing tumor cells with coagulant properties and supporting metastatic colonization by CTCs. We here report that vimentin, the type III intermediate filament considered a canonical EMT marker, contributes to TF regulation and positively supports coagulant properties and early metastasis. Different evidence further pointed to a new post-transcriptional regulatory mechanism of TF mRNA by vimentin: (1) vimentin silencing accelerated TF mRNA decay after actinomycin D treatment, reflecting TF mRNA stabilization, (2) RNA immunoprecipitation revealed enriched levels of TF mRNA in vimentin immunoprecipitate, (3) TF 3'-UTR-luciferase reporter vector assays implicated the 3'-UTR of TF mRNA in vimentin-dependent TF regulation, and (4) using different TF 3'UTR-luciferase reporter vectors mutated for potential miR binding sites and specific Target Site Blockers identified a key miR binding site in vimentin-dependent TF mRNA regulation. All together, these data support a novel mechanism by which vimentin interferes with a miR-dependent negative regulation of TF mRNA, thereby promoting coagulant activity and early metastasis of vimentin-expressing CTCs.
Collapse
|
11
|
Hu Z. Tissue factor as a new target for CAR-NK cell immunotherapy of triple-negative breast cancer. Sci Rep 2020; 10:2815. [PMID: 32071339 PMCID: PMC7028910 DOI: 10.1038/s41598-020-59736-3] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 02/03/2020] [Indexed: 02/06/2023] Open
Abstract
Triple-negative breast cancer (TNBC), representing ~15% of globally diagnosed breast cancer, is typically an incurable malignancy due to the lack of targetable surface targets for development of effective therapy. To address the unmet need for TNBC treatment, we recently determined that tissue factor (TF) is a useful surface target in 50–85% of patients with TNBC and developed a second-generation TF-targeting antibody-like immunoconjugate (called L-ICON) for preclinical treatment of TNBC. Using the chimeric antigen receptor (CAR) approach, here we develop and test TF-targeting CAR-engineered natural killer (TF-CAR-NK) cells that co-express CD16, the Fc receptor (FcγIII) to mediate antibody-dependent cellular toxicity (ADCC), for a preclinical assessment of immunotherapy of TNBC using TF-CAR-NK cell as single agent therapy and in combination with L-ICON. Our preclinical results demonstrate that TF-CAR-NK cells alone could kill TNBC cells and its efficacy was enhanced with L-ICON ADCC in vitro. Moreover, TF-CAR-NK cells were effective in vivo for the treatment of TNBC in cell line- and patient’s tumor-derived xenograft mouse models. Thus, this study established the proof of concept of targeting TF as a new target in CAR-NK immunotherapy for effective treatment of TNBC and may warrant further preclinical study and potentially future investigation in TNBC patients.
Collapse
Affiliation(s)
- Zhiwei Hu
- Department of Surgery, Division of Surgical Oncology, The Ohio State University Wexner Medical Center and The OSU James Comprehensive Cancer Center, Columbus, OH, 43210, USA.
| |
Collapse
|
12
|
Jewett A, Kos J, Kaur K, Safaei T, Sutanto C, Chen W, Wong P, Namagerdi AK, Fang C, Fong Y, Ko MW. Natural Killer Cells: Diverse Functions in Tumor Immunity and Defects in Pre-neoplastic and Neoplastic Stages of Tumorigenesis. MOLECULAR THERAPY-ONCOLYTICS 2019; 16:41-52. [PMID: 31930165 PMCID: PMC6951836 DOI: 10.1016/j.omto.2019.11.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Natural killer (NK) cells are the key immune effectors with the ability to mediate selection and differentiation of a number of different cancer stem cells/undifferentiated tumors via lysis, and secreted or membrane-bound interferon (IFN)-γ and tumor necrosis factor (TNF)-α, respectively, leading to curtailment of tumor growth and metastasis. In this review, we present an overview of our recent findings on the biology and significance of NK cells in selection and differentiation of stem-like tumors using in vitro and in vivo studies conducted in humanized-BLT mice and in cancer patients. In addition, we present current advances in NK cell expansion and therapeutic delivery, and discuss the utility of allogeneic supercharged NK cells in the treatment of cancer patients. Moreover, we discuss the potential loss of NK cell numbers and function at the neoplastic and pre-neoplastic stages of tumorigenesis in induction and progression of pancreatic cancer. Therefore, because of their indispensable role in targeting cancer stem-like/undifferentiated tumors, NK cells should be placed high in the armamentarium of tumor immunotherapy. A combination of allogeneic supercharged NK cells with other immunotherapeutic strategies such as oncolytic viruses, antibody-dependent cellular cytotoxicity (ADCC)-inducing antibodies, checkpoint inhibitors, chimeric antigen receptor (CAR) T cells, CAR NK cells, and chemotherapeutic and radiotherapeutic strategies can be used for the ultimate goal of tumor eradication.
Collapse
Affiliation(s)
- Anahid Jewett
- Division of Oral Biology and Medicine, The Jane and Jerry Weintraub Center for Reconstructive Biotechnology, UCLA, Los Angeles, CA, USA
- The Jonsson Comprehensive Cancer Center, UCLA School of Dentistry and Medicine, Los Angeles, CA, USA
- Corresponding author: Anahid Jewett, The Jonsson Comprehensive Cancer Center, UCLA School of Dentistry and Medicine, 10833 Le Conte Avenue, Los Angeles, CA 90095, USA.
| | - Janko Kos
- Department of Biotechnology, Jožef Stefan Institute, Ljubljana, Slovenia
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Kawaljit Kaur
- Division of Oral Biology and Medicine, The Jane and Jerry Weintraub Center for Reconstructive Biotechnology, UCLA, Los Angeles, CA, USA
| | - Tahmineh Safaei
- Division of Oral Biology and Medicine, The Jane and Jerry Weintraub Center for Reconstructive Biotechnology, UCLA, Los Angeles, CA, USA
| | - Christine Sutanto
- Division of Oral Biology and Medicine, The Jane and Jerry Weintraub Center for Reconstructive Biotechnology, UCLA, Los Angeles, CA, USA
| | - Wuyang Chen
- Division of Oral Biology and Medicine, The Jane and Jerry Weintraub Center for Reconstructive Biotechnology, UCLA, Los Angeles, CA, USA
| | - Paul Wong
- Division of Oral Biology and Medicine, The Jane and Jerry Weintraub Center for Reconstructive Biotechnology, UCLA, Los Angeles, CA, USA
| | - Artin Keshishian Namagerdi
- Division of Oral Biology and Medicine, The Jane and Jerry Weintraub Center for Reconstructive Biotechnology, UCLA, Los Angeles, CA, USA
| | - Changge Fang
- APD-PAPD Center for NK Cell Therapy, Beijing, China
| | - Yuman Fong
- Department of Surgery, City of Hope National Medical Center, Duarte, CA, USA
- Center for Gene Therapy, Duarte, CA, USA
- Department of Hematology and Hematopoietic Cell Transplantation, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, USA
| | - Meng-Wei Ko
- Division of Oral Biology and Medicine, The Jane and Jerry Weintraub Center for Reconstructive Biotechnology, UCLA, Los Angeles, CA, USA
| |
Collapse
|
13
|
Fernandes SRG, Fernandes R, Sarmento B, Pereira PMR, Tomé JPC. Photoimmunoconjugates: novel synthetic strategies to target and treat cancer by photodynamic therapy. Org Biomol Chem 2019; 17:2579-2593. [PMID: 30648722 DOI: 10.1039/c8ob02902d] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Photodynamic therapy (PDT) combines a photosensitizer (PS) with the physical energy of non-ionizing light to trigger cell death pathways. PDT has potential as a therapeutic modality to be used in alternative or in combination with other conventional cancer treatment protocols (e.g. surgery, chemotherapy and radiotherapy). Still, due to the lack of specificity of the current PSs to target the tumor cells, several studies have exploited their conjugation with targeting moieties. PSs conjugated with antibodies (Abs) or their fragments, able to bind antigens overexpressed in the tumors, have demonstrated potential in PDT of tumors. This review provides an overview of the most recent advances on photoimmunoconjugates (PICs) for cancer PDT, which involve the first and second-generation PSs conjugated to Abs. This is an update of our previous review "Antibodies armed with photosensitizers: from chemical synthesis to photobiological applications", published in 2015 in Org. Biomol. Chem.
Collapse
Affiliation(s)
- Sara R G Fernandes
- CQE, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
| | | | | | | | | |
Collapse
|
14
|
Jewett A, Kos J, Fong Y, Ko MW, Safaei T, Perišić Nanut M, Kaur K. NK cells shape pancreatic and oral tumor microenvironments; role in inhibition of tumor growth and metastasis. Semin Cancer Biol 2018; 53:178-188. [PMID: 30081230 DOI: 10.1016/j.semcancer.2018.08.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 07/31/2018] [Accepted: 08/02/2018] [Indexed: 02/06/2023]
Abstract
We have recently shown that natural killer (NK) cells select and differentiate cancer stem cells (CSCs)/undifferentiated tumors via secreted and membrane bound IFN-gamma (IFN-γ) and TNF-alpha (TNF-α), preventing tumor growth and inducing remodeling of the tumor microenvironment. Since many conventional therapeutic strategies, including chemotherapy and radiotherapy remain fairly unsuccessful in treating CSCs/poorly differentiated tumors, there has been an increasing interest in NK cell-targeted immunotherapy for the treatment of aggressive tumors. In our recent studies, we used humanized-BLT (hu-BLT) mouse model with transplanted human bone marrow, liver and thymus to demonstrate the efficacy of adoptive transfer of ex vivo expanded, super-charged NK cells in selection and differentiation of stem-like tumors within the context of a fully reconstituted human immune system. Furthermore, we have demonstrated that CSCs differentiated with split-anergized NK cells prior to implantation in hu-BLT mice were not able to grow or metastasize. However, when NK cell-mediated tumor differentiation was blocked by the addition of antibodies to IFN-γ and TNF-α, tumors grew and metastasized. In this review, we present current advances in NK cell expansion and therapeutic delivery, and discuss the utility of allogeneic super-charged NK cells in treatment of cancer patients. In addition, NK suppression occurs not only at the stage of overt cancer, but also at the pre-neoplastic stage. Therefore, due to the indispensable role of NK cells in targeting CSCs/undifferentiated tumors and their role in differentiation of the tumors, NK cells should be placed high in the armamentarium of tumor immunotherapy.
Collapse
Affiliation(s)
- Anahid Jewett
- Division of Oral Biology and Medicine, The Jane and Jerry Weintraub Center for Reconstructive Biotechnology, UCLA School of Dentistry, Los Angeles, CA, USA; The Jonsson Comprehensive Cancer Center, UCLA School of Dentistry and Medicine, Los Angeles, CA, USA.
| | - Janko Kos
- Department of Biotechnology, Jožef Stefan Institute, Ljubljana, Slovenia; Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Yuman Fong
- Department of Surgery, City of Hope National Medical Center, Duarte, CA, USA; Center of Gene Therapy, Department of Hematology and Hematopoietic Cell Transplantation, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, USA
| | - Meng-Wei Ko
- Division of Oral Biology and Medicine, The Jane and Jerry Weintraub Center for Reconstructive Biotechnology, UCLA School of Dentistry, Los Angeles, CA, USA
| | - Tahmineh Safaei
- Division of Oral Biology and Medicine, The Jane and Jerry Weintraub Center for Reconstructive Biotechnology, UCLA School of Dentistry, Los Angeles, CA, USA
| | | | - Kawaljit Kaur
- Division of Oral Biology and Medicine, The Jane and Jerry Weintraub Center for Reconstructive Biotechnology, UCLA School of Dentistry, Los Angeles, CA, USA
| |
Collapse
|
15
|
Ni YL, Hsieh CH, Wang JP, Fang K. Teroxirone motivates apoptotic death in tumorspheres of human lung cancer cells. Chem Biol Interact 2018; 291:137-143. [DOI: 10.1016/j.cbi.2018.06.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 06/07/2018] [Accepted: 06/12/2018] [Indexed: 10/28/2022]
|
16
|
Hu Z, Shen R, Campbell A, McMichael E, Yu L, Ramaswamy B, London CA, Xu T, Carson WE. Targeting Tissue Factor for Immunotherapy of Triple-Negative Breast Cancer Using a Second-Generation ICON. Cancer Immunol Res 2018; 6:671-684. [PMID: 29622581 PMCID: PMC5984705 DOI: 10.1158/2326-6066.cir-17-0343] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 01/17/2018] [Accepted: 03/27/2018] [Indexed: 11/16/2022]
Abstract
Triple-negative breast cancer (TNBC) is a leading cause of breast cancer death and is often associated with BRCA1 and BRCA2 mutation. Due to the lack of validated target molecules, no targeted therapy for TNBC is approved. Tissue factor (TF) is a common yet specific surface target receptor for cancer cells, tumor vascular endothelial cells, and cancer stem cells in several types of solid cancers, including breast cancer. Here, we report evidence supporting the idea that TF is a surface target in TNBC. We used in vitro cancer lines and in vivo tumor xenografts in mice, all with BRCA1 or BRCA2 mutations, derived from patients' tumors. We showed that TF is overexpressed on TNBC cells and tumor neovasculature in 50% to 85% of TNBC patients (n = 161) and in TNBC cell line-derived xenografts (CDX) and patient-derived xenografts (PDX) from mice, but was not detected in adjacent normal breast tissue. We then describe the development of a second-generation TF-targeting immunoconjugate (called L-ICON1, for lighter or light chain ICON) with improved efficacy and safety profiles compared with the original ICON. We showed that L-ICON1 kills TNBC cells in vitro via antibody-dependent cell-mediated cytotoxicity and can be used to treat human and murine TNBC CDX as well as PDX in vivo in orthotopic mouse models. Thus, TF could be a useful target for the development of immunotherapeutics for TNBC patients, with or without BRCA1 and BRCA2 mutations. Cancer Immunol Res; 6(6); 671-84. ©2018 AACR.
Collapse
Affiliation(s)
- Zhiwei Hu
- Department of Surgery Division of Surgical Oncology, The Ohio State University Wexner Medical Center and The OSU James Comprehensive Cancer Center, Columbus, Ohio.
| | - Rulong Shen
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Amanda Campbell
- Biomedical Sciences Graduate Program, The Ohio State University, Columbus, Ohio
| | - Elizabeth McMichael
- Biomedical Sciences Graduate Program, The Ohio State University, Columbus, Ohio
| | - Lianbo Yu
- Center for Biostatistics, The Ohio State University, Columbus, Ohio
| | - Bhuvaneswari Ramaswamy
- Department of Medical Oncology, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Cheryl A London
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio
| | - Tian Xu
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut
| | - William E Carson
- Department of Surgery Division of Surgical Oncology, The Ohio State University Wexner Medical Center and The OSU James Comprehensive Cancer Center, Columbus, Ohio
| |
Collapse
|
17
|
Kaur K, Nanut MP, Ko MW, Safaie T, Kos J, Jewett A. Natural killer cells target and differentiate cancer stem-like cells/undifferentiated tumors: strategies to optimize their growth and expansion for effective cancer immunotherapy. Curr Opin Immunol 2018; 51:170-180. [PMID: 29653339 DOI: 10.1016/j.coi.2018.03.022] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 03/06/2018] [Accepted: 03/22/2018] [Indexed: 01/27/2023]
Abstract
Natural killer (NK) cells are known to select and differentiate cancer stem-like cells/undifferentiated tumors via lysis, and secreted/membrane bound IFN-γ and TNF-α respectively, resulting in the control of tumor growth. Several in vivo mouse models including humanized-BLT mice have been used to study the biology and significance of NK cells in selection/differentiation of stem-like tumors within the context of a reconstituted human immune system. In addition, we discuss the evidence and significance of NK cell loss at the pre-neoplastic stage. Therefore, because of their indispensable role in targeting CSCs/undifferentiated tumors, NK-cells should be placed high in the armamentarium of tumor therapy.
Collapse
Affiliation(s)
- Kawaljit Kaur
- Division of Oral Biology and Oral Medicine, The Jane and Jerry Weintraub Center for Reconstructive Biotechnology, UCLA, Los Angeles, CA, USA
| | | | - Meng-Wei Ko
- Division of Oral Biology and Oral Medicine, The Jane and Jerry Weintraub Center for Reconstructive Biotechnology, UCLA, Los Angeles, CA, USA
| | - Tahmineh Safaie
- Division of Oral Biology and Oral Medicine, The Jane and Jerry Weintraub Center for Reconstructive Biotechnology, UCLA, Los Angeles, CA, USA
| | - Janko Kos
- Department of Biotechnology, Jozef Stefan Institute, Ljubljana, Slovenia; Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Anahid Jewett
- Division of Oral Biology and Oral Medicine, The Jane and Jerry Weintraub Center for Reconstructive Biotechnology, UCLA, Los Angeles, CA, USA; The Jonsson Comprehensive Cancer Center, UCLA School of Dentistry and Medicine, Los Angeles, CA, USA.
| |
Collapse
|
18
|
Hu Z. Therapeutic Antibody-Like Immunoconjugates against Tissue Factor with the Potential to Treat Angiogenesis-Dependent as Well as Macrophage-Associated Human Diseases. Antibodies (Basel) 2018; 7:8. [PMID: 31105982 PMCID: PMC6519474 DOI: 10.3390/antib7010008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 01/18/2018] [Indexed: 12/17/2022] Open
Abstract
Accumulating evidence suggests that tissue factor (TF) is selectively expressed in pathological angiogenesis-dependent as well as macrophage-associated human diseases. Pathological angiogenesis, the formation of neovasculature, is involved in many clinically significant human diseases, notably cancer, age-related macular degeneration (AMD), endometriosis and rheumatoid arthritis (RA). Macrophage is involved in the progression of a variety of human diseases, such as atherosclerosis and viral infections (human immunodeficiency virus, HIV and Ebola). It is well documented that TF is selectively expressed on angiogenic vascular endothelial cells (VECs) in these pathological angiogenesis-dependent human diseases and on disease-associated macrophages. Under physiology condition, TF is not expressed by quiescent VECs and monocytes but is solely restricted on some cells (such as pericytes) that are located outside of blood circulation and the inner layer of blood vessel walls. Here, we summarize TF expression on angiogenic VECs, macrophages and other diseased cell types in these human diseases. In cancer, for example, the cancer cells also overexpress TF in solid cancers and leukemia. Moreover, our group recently reported that TF is also expressed by cancer-initiating stem cells (CSCs) and can serve as a novel oncotarget for eradication of CSCs without drug resistance. Furthermore, we review and discuss two generations of TF-targeting therapeutic antibody-like immunoconjugates (ICON and L-ICON1) and antibody-drug conjugates that are currently being tested in preclinical and clinical studies for the treatment of some of these human diseases. If efficacy and safety are proven in current and future clinical trials, TF-targeting immunoconjugates may provide novel therapeutic approaches with potential to broadly impact the treatment regimen of these significant angiogenesis-dependent, as well as macrophage-associated, human diseases.
Collapse
Affiliation(s)
- Zhiwei Hu
- Department of Surgery Division of Surgical Oncology, The James Comprehensive Cancer Center, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| |
Collapse
|
19
|
Yang L, Lin Z, Wang Y, Gao S, Li Q, Li C, Xu W, Chen J, Liu T, Song Z, Liu G. MiR-5100 increases the cisplatin resistance of the lung cancer stem cells by inhibiting the Rab6. Mol Carcinog 2017; 57:419-428. [PMID: 29144562 DOI: 10.1002/mc.22765] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 10/19/2017] [Accepted: 11/14/2017] [Indexed: 12/16/2022]
Affiliation(s)
- Lawei Yang
- Clinical Research Center; Guangdong Medical University; Zhanjiang 524001 China
| | - Ziying Lin
- Clinical Research Center; Guangdong Medical University; Zhanjiang 524001 China
| | - Yahong Wang
- Clinical Research Center; Guangdong Medical University; Zhanjiang 524001 China
| | - Shenglan Gao
- Clinical Research Center; Guangdong Medical University; Zhanjiang 524001 China
| | - Qinglan Li
- Department of Respiratory Medicine; Affiliated Hospital of Guangdong Medical University; Zhanjiang 524001 China
| | - Chunyan Li
- Clinical Research Center; Guangdong Medical University; Zhanjiang 524001 China
| | - Wenya Xu
- Clinical Research Center; Guangdong Medical University; Zhanjiang 524001 China
| | - Jie Chen
- Department of Cardiothoracic Surgery; Affiliated Hospital of Guangdong Medical University; Zhanjiang 524001 China
| | - Tie Liu
- The First Affiliated Hospital; Medical School of Xi'an Jiaotong University; Xi'an Shanxi 710061 China
| | - Zeqing Song
- Department of Respiratory Medicine; Affiliated Hospital of Guangdong Medical University; Zhanjiang 524001 China
| | - Gang Liu
- Clinical Research Center; Guangdong Medical University; Zhanjiang 524001 China
| |
Collapse
|
20
|
Hu Z. The future of immune checkpoint blockade immunotherapy: towards personalized therapy or towards combination therapy. J Thorac Dis 2017; 9:4226-4229. [PMID: 29268478 DOI: 10.21037/jtd.2017.10.31] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Zhiwei Hu
- Department of Surgery Division of Surgical Oncology, The Ohio State University College of Medicine, James Comprehensive Cancer Center, Columbus, OH, USA
| |
Collapse
|
21
|
Ni YL, Hsieh CH, Kim SH, Wang JP, Su CL, Yao CF, Fang K. A potent indolylquinoline alleviates growth of human lung cancer cell tumorspheres. Apoptosis 2017; 22:1235-1245. [PMID: 28741092 DOI: 10.1007/s10495-017-1401-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
To fight cancer at its roots by targeting cancer stem cells is a promising approach for therapy. Previously, an indolylquinoline derivative, 3-((7-ethyl-1H-indol-3-yl)-methyl)-2-methylquinoline (EMMQ), was reported effectively inhibiting the growth of lung cancer cells through impairment of cellular mitochondria functions. To address more on drug efficiency, the study further exploited if EMMQ can impede the propagation of tumorspheres stemmed from non-small cell lung cancer cells. EMMQ inhibited proliferation of spheroids in culture. In animal models, administration of the drug attenuated the spheroid tumorigenicity. The activated apoptosis alleviated growth of xenograft tumors in immune-deficient mice as established by the enriched tumorspheres. More evidence suggested that the reduced stemness of the spheroid tumors is attributed to apoptotic death. The findings supported that EMMQ is an eligible approach to eradicate the minor but tumorigenic lung cancer tumorspheres.
Collapse
Affiliation(s)
- Yu-Ling Ni
- Department of Life Science, National Taiwan Normal University, 88 Ting-Chow Rd, Sec 4, Taipei, 116, Taiwan, Republic of China
| | - Chang-Hung Hsieh
- Department of Life Science, National Taiwan Normal University, 88 Ting-Chow Rd, Sec 4, Taipei, 116, Taiwan, Republic of China
| | - Seung-Hun Kim
- Department of Life Science, National Taiwan Normal University, 88 Ting-Chow Rd, Sec 4, Taipei, 116, Taiwan, Republic of China
| | - Jing-Ping Wang
- Department of Life Science, National Taiwan Normal University, 88 Ting-Chow Rd, Sec 4, Taipei, 116, Taiwan, Republic of China
| | - Chun-Li Su
- Department of Human Development and Family Studies, National Taiwan Normal University, Taipei, Taiwan, Republic of China
| | - Ching-Fa Yao
- Department of Chemistry, National Taiwan Normal University, Taipei, Taiwan, Republic of China
| | - Kang Fang
- Department of Life Science, National Taiwan Normal University, 88 Ting-Chow Rd, Sec 4, Taipei, 116, Taiwan, Republic of China.
| |
Collapse
|