1
|
Liu M, Yu B, Tian Y, Li F. Regulatory function and mechanism research for m6A modification WTAP via SUCLG2-AS1- miR-17-5p-JAK1 axis in AML. BMC Cancer 2024; 24:98. [PMID: 38233760 PMCID: PMC10795285 DOI: 10.1186/s12885-023-11687-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 11/28/2023] [Indexed: 01/19/2024] Open
Abstract
Acute myeloid leukemia (AML), characterized by the abnormal accumulation of immature marrow cells in the bone marrow, is a malignant tumor of the blood system. Currently, the pathogenesis of AML is not yet clear. Therefore, this study aims to explore the mechanisms underlying the development of AML. Firstly, we identified a competing endogenous RNA (ceRNA) SUCLG2-AS1-miR-17-5p-JAK1 axis through bioinformatics analysis. Overexpression of SUCLG2-AS1 inhibits proliferation, migration and invasion and promotes apoptosis of AML cells. Secondly, luciferase reporter assay and RIP assay validated that SUCLG2-AS1 functioned as ceRNA for sponging miR-17-5p, further leading to JAK1 underexpression. Additionally, the results of MeRIP-qPCR and m6A RNA methylation quantification indicted that SUCLG2-AS1(lncRNA) had higher levels of m6A RNA methylation compared with controls, and SUCLG2-AS1 is regulated by m6A modification of WTAP in AML cells. WTAP, one of the main regulatory components of m6A methyltransferase complexes, proved to be highly expressed in AML and elevated WTAP is associated with poor prognosis of AML patients. Taken together, the WTAP-SUCLG2-AS1-miR-17-5p-JAK1 axis played essential roles in the process of AML development, which provided a novel therapeutic target for AML.
Collapse
Affiliation(s)
- Miaomiao Liu
- Department of Pathogenobiology, The Key Laboratory of Zoonosis, Chinese Ministry of Education, College of Basic Medicine, Jilin University, No.126 Xinmin Street, Changchun, Jilin, 130021, P.R. China
| | - Bingxin Yu
- Department of Ultrasonography, The Third Hospital of Jilin University, Changchun, Jilin, 130033, P.R. China
| | - Yong Tian
- Department of Human Anatomy, Chinese Ministry of Education, College of Basic Medicine, Jilin University, Changchun, Jilin, 130021, P.R. China
| | - Fan Li
- Department of Pathogenobiology, The Key Laboratory of Zoonosis, Chinese Ministry of Education, College of Basic Medicine, Jilin University, No.126 Xinmin Street, Changchun, Jilin, 130021, P.R. China.
- The Key Laboratory for Bionics Engineering, Ministry of Education, Jilin University, Changchun, 130021, P.R. China.
- Engineering Research Center for Medical Biomaterials of Jilin Province, Jilin University, Changchun, 130021, P.R. China.
- Key Laboratory for Health Biomedical Materials of Jilin Province, Jilin University, Changchun, 130021, P.R. China.
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Urumqi, Xinjiang, 830017, P.R. China.
| |
Collapse
|
2
|
Bakhtiyari M, Liaghat M, Aziziyan F, Shapourian H, Yahyazadeh S, Alipour M, Shahveh S, Maleki-Sheikhabadi F, Halimi H, Forghaniesfidvajani R, Zalpoor H, Nabi-Afjadi M, Pornour M. The role of bone marrow microenvironment (BMM) cells in acute myeloid leukemia (AML) progression: immune checkpoints, metabolic checkpoints, and signaling pathways. Cell Commun Signal 2023; 21:252. [PMID: 37735675 PMCID: PMC10512514 DOI: 10.1186/s12964-023-01282-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 08/17/2023] [Indexed: 09/23/2023] Open
Abstract
Acute myeloid leukemia (AML) comprises a multifarious and heterogeneous array of illnesses characterized by the anomalous proliferation of myeloid cells in the bone marrow microenvironment (BMM). The BMM plays a pivotal role in promoting AML progression, angiogenesis, and metastasis. The immune checkpoints (ICs) and metabolic processes are the key players in this process. In this review, we delineate the metabolic and immune checkpoint characteristics of the AML BMM, with a focus on the roles of BMM cells e.g. tumor-associated macrophages, natural killer cells, dendritic cells, metabolic profiles and related signaling pathways. We also discuss the signaling pathways stimulated in AML cells by BMM factors that lead to AML progression. We then delve into the roles of immune checkpoints in AML angiogenesis, metastasis, and cell proliferation, including co-stimulatory and inhibitory ICs. Lastly, we discuss the potential therapeutic approaches and future directions for AML treatment, emphasizing the potential of targeting metabolic and immune checkpoints in AML BMM as prognostic and therapeutic targets. In conclusion, the modulation of these processes through the use of directed drugs opens up new promising avenues in combating AML. Thereby, a comprehensive elucidation of the significance of these AML BMM cells' metabolic and immune checkpoints and signaling pathways on leukemic cells can be undertaken in the future investigations. Additionally, these checkpoints and cells should be considered plausible multi-targeted therapies for AML in combination with other conventional treatments in AML. Video Abstract.
Collapse
Affiliation(s)
- Maryam Bakhtiyari
- Department of Medical Laboratory Sciences, Faculty of Allied Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
- Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran
| | - Mahsa Liaghat
- Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran
- Department of Medical Laboratory Sciences, Faculty of Medical Sciences, Kazerun Branch, Islamic Azad University, Kazerun, Iran
| | - Fatemeh Aziziyan
- Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Hooriyeh Shapourian
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sheida Yahyazadeh
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maedeh Alipour
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Shaghayegh Shahveh
- American Association of Naturopath Physician (AANP), Washington, DC, USA
| | - Fahimeh Maleki-Sheikhabadi
- Department of Hematology and Blood Banking, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hossein Halimi
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Razieh Forghaniesfidvajani
- Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran
| | - Hamidreza Zalpoor
- Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran.
- Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Mohsen Nabi-Afjadi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Majid Pornour
- Department of Biochemistry and Molecular Biology, University of Maryland, Baltimore, MD, USA.
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, Maryland, USA.
| |
Collapse
|
3
|
Kong X, Zhang X, Ding M, Feng X, Dong M, Zhang L, Fu X, Li L, Li X, Sun Z, Yan J, Wang X, Wu X, Chen Q, Zhang M, Zhu L. Decitabine combined with RDHAP regimen in relapsed/refractory diffuse large B cell lymphoma. Cancer Med 2023; 12:8134-8143. [PMID: 36695162 PMCID: PMC10134321 DOI: 10.1002/cam4.5615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 12/14/2022] [Accepted: 12/26/2022] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND There is an urgent need for effective treatment of patients with relapsed/refractory diffuse large B-cell lymphoma (R/R-DLBCL). This trial investigated the efficacy of decitabine in combination with rituximab, cisplatin, cytarabine, dexamethasone (RDHAP) in R/R-DLBCL. METHODS 56 patients were divided into two groups (decitabine-RDHAP group. n = 35; RDHAP group, n = 21). The primary endpoints were the overall response rate (ORR) and duration of remission (DOR). Secondary objectives were toxicity, progression-free survival (PFS), and overall survival (OS). RESULTS The ORR was 40% and 33% for decitabine-RDHAP and RDHAP groups, respectively, with no difference between the groups. The DOR for the decitabine-RDHAP regimen was higher than that for the RDHAP regimen (p = 0.044). After a median follow-up of 12.0 months, the median PFS and OS were 7.0 and 17.0 months for in the decitabine-RDHAP group and 5.0 and 9.0 months in the RDHAP group with no significant differences between the two groups (p = 0.47, 0.17). The incidence of adverse events was not significantly different between groups. CONCLUSION The decitabine-RDHAP regimen is effective and well tolerated, and is a promising salvage regimen for R/R-DLBCL.
Collapse
Affiliation(s)
- Xiaoshuang Kong
- Department of Oncology, Lymphoma Diagnosis and Treatment Centre of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xudong Zhang
- Department of Oncology, Lymphoma Diagnosis and Treatment Centre of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Mengjie Ding
- Department of Oncology, Lymphoma Diagnosis and Treatment Centre of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xiaoyan Feng
- Department of Oncology, Lymphoma Diagnosis and Treatment Centre of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Meng Dong
- Department of Oncology, Lymphoma Diagnosis and Treatment Centre of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Lei Zhang
- Department of Oncology, Lymphoma Diagnosis and Treatment Centre of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xiaorui Fu
- Department of Oncology, Lymphoma Diagnosis and Treatment Centre of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Ling Li
- Department of Oncology, Lymphoma Diagnosis and Treatment Centre of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xin Li
- Department of Oncology, Lymphoma Diagnosis and Treatment Centre of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Zhenchang Sun
- Department of Oncology, Lymphoma Diagnosis and Treatment Centre of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jiaqin Yan
- Department of Oncology, Lymphoma Diagnosis and Treatment Centre of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xinhua Wang
- Department of Oncology, Lymphoma Diagnosis and Treatment Centre of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xiaolong Wu
- Department of Oncology, Lymphoma Diagnosis and Treatment Centre of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Qingjiang Chen
- Department of Oncology, Lymphoma Diagnosis and Treatment Centre of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Mingzhi Zhang
- Department of Oncology, Lymphoma Diagnosis and Treatment Centre of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Linan Zhu
- Department of Oncology, Lymphoma Diagnosis and Treatment Centre of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
4
|
Chen M, Tao Y, Yue P, Guo F, Yan X. Construction and validation of a fatty acid metabolism risk signature for predicting prognosis in acute myeloid leukemia. BMC Genom Data 2022; 23:85. [PMID: 36550404 PMCID: PMC9784255 DOI: 10.1186/s12863-022-01099-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 11/18/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Fatty acid metabolism has been reported to play important roles in the development of acute myeloid leukemia (AML), but there are no prognostic signatures composed of fatty acid metabolism-related genes. As the current prognostic evaluation system has limitations due to the heterogeneity of AML patients, it is necessary to develop a new signature based on fatty acid metabolism to better guide prognosis prediction and treatment selection. METHODS We analyzed the RNA sequencing and clinical data of The Cancer Genome Atlas (TCGA) and Vizome cohorts. The analyses were performed with GraphPad 7, the R language and SPSS. RESULTS We selected nine significant genes in the fatty acid metabolism gene set through univariate Cox analysis and the log-rank test. Then, a fatty acid metabolism signature was established based on these genes. We found that the signature was as an independent unfavourable prognostic factor and increased the precision of prediction when combined with classic factors in a nomogram. Gene Ontology (GO) and gene set enrichment analysis (GSEA) showed that the risk signature was closely associated with mitochondrial metabolism and that the high-risk group had an enhanced immune response. CONCLUSION The fatty acid metabolism signature is a new independent factor for predicting the clinical outcomes of AML patients.
Collapse
Affiliation(s)
- Miao Chen
- grid.412636.40000 0004 1757 9485Department of Hematology, The First Affiliated Hospital of China Medical University, Liaoning 110001 Shenyang, China
| | - Yuan Tao
- grid.412636.40000 0004 1757 9485Department of Hematology, The First Affiliated Hospital of China Medical University, Liaoning 110001 Shenyang, China
| | - Pengjie Yue
- grid.412636.40000 0004 1757 9485Department of Hematology, The First Affiliated Hospital of China Medical University, Liaoning 110001 Shenyang, China
| | - Feng Guo
- grid.412449.e0000 0000 9678 1884Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, Liaoning 110122 China
| | - Xiaojing Yan
- grid.412636.40000 0004 1757 9485Department of Hematology, The First Affiliated Hospital of China Medical University, Liaoning 110001 Shenyang, China
| |
Collapse
|
5
|
Liu H, Chen P, Yang YL, Zhu KW, Wang T, Tang L, Liu YL, Cao S, Zhou G, Zeng H, Zhao XL, Zhang W, Chen XP. TBC1D16 predicts chemosensitivity and prognosis in adult acute myeloid leukemia (AML) patients. Eur J Pharmacol 2021; 895:173894. [PMID: 33476656 DOI: 10.1016/j.ejphar.2021.173894] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 01/11/2021] [Accepted: 01/14/2021] [Indexed: 10/22/2022]
Abstract
Acute myeloid leukemia (AML) is a hematopoietic disease with poor survival. Chemotherapy resistance is one of the determinant factors influencing AML prognosis. To identify genes possibly affecting the drug responses in AML, the Illumina Infinium MethylationEPIC (850K) was used to screen for differential DNA methylation loci between patients achieved complete remission (CR) or not (non-CR) after induction therapy in 37 AML patients. Then, 32 differentially methylated sites (DMS) were selected for replication in another 86 AML patients by next-generation sequencing. Nine sites including cg03988660, cg16804603, cg18166936, cg11308319, cg09095403, cg18493214, cg01443536, cg16030878 and cg10143426 were replicated. Analysis of the Gene Expression Omnibus (GEO) database showed that mRNA expression of TBC1D16 and HDAC4 was associated with AML prognosis. Methylation level of the cg16030878 in TBC1D16 3'-UTR correlated positively with TBC1D16 mRNA expression in samples both in the TCGA database and clinically collected in the study. Both higher cg16030878 methylation and higher TBC1D16 mRNA expression were associated with increased risk of non-CR and worse overall survival (OS) in AML patients. In AML cells, knockdown of TBC1D16 decreased cell proliferation and ERK phosphorylation levels, as well as increased sensitivity to mitoxantrone and decitabine indicated by IC50. In patients with combined use of decitabine, those patients with CR showed significantly lower TBC1D16 mRNA expression. On the contrary, knockdown of TBC1D16 resulted in decreased sensitivity to cytarabine in U937 cells. Our findings implicated that TBC1D16 is a potential predictor for chemosensitivity and prognosis in adult AML patients.
Collapse
Affiliation(s)
- Han Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, PR China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, 410078, Hunan, PR China.
| | - Peng Chen
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, PR China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, 410078, Hunan, PR China.
| | - Yong-Long Yang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, PR China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, 410078, Hunan, PR China.
| | - Ke-Wei Zhu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, PR China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, 410078, Hunan, PR China.
| | - Tao Wang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, PR China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, 410078, Hunan, PR China.
| | - Ling Tang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, PR China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, 410078, Hunan, PR China.
| | - Yan-Ling Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, PR China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, 410078, Hunan, PR China.
| | - Shan Cao
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, PR China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, 410078, Hunan, PR China.
| | - Gan Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, PR China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, 410078, Hunan, PR China.
| | - Hui Zeng
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, PR China.
| | - Xie-Lan Zhao
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, PR China.
| | - Wei Zhang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, PR China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, 410078, Hunan, PR China.
| | - Xiao-Ping Chen
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, PR China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, 410078, Hunan, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, PR China.
| |
Collapse
|
6
|
Pang FM, Yan H, Mo JL, Li D, Chen Y, Zhang L, Liu ZQ, Zhou HH, Wu J, Li X. Integrative analyses identify a DNA damage repair gene signature for prognosis prediction in lower grade gliomas. Future Oncol 2020; 16:367-382. [PMID: 32065545 DOI: 10.2217/fon-2019-0764] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Background: The DNA damage repair (DDR) pathways play important roles for regulating cancer progression and therapeutic response. IDH mutations, well-known prognosis biomarkers for glioma, lead to hypermethylation of tumor cells and affect genes' expression. Whether IDH mutations affect glioma prognosis through influencing the expression of DDR genes remains unclear. Methods: A total of 272 DDR genes were selected for differential expression and survival analysis. The identified genes were then utilized to construct the prognosis predicting model. Results: PARPBP, PLK3, POLL and WEE1 were found differential expressed between IDH mutations carriers and wild-type carriers, and were associated with survival of low grade glioma (LGG) patients. The predicting algorithm can predicts the prognosis of LGG patients. Conclusion: IDH mutations may affect LGG prognosis through regulation of DDR pathways.
Collapse
Affiliation(s)
- Feng-Mei Pang
- Chronic disease laboratory, Shenzhen Center for Chronic Disease Control & Prevention, Shenzhen, Guangdong, PR China.,Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, Hunan, PR China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, PR China
| | - Han Yan
- Department of Neurosurgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, Hunan, PR China
| | - Jun-Luan Mo
- Chronic disease laboratory, Shenzhen Center for Chronic Disease Control & Prevention, Shenzhen, Guangdong, PR China
| | - Dan Li
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, Hunan, PR China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, PR China
| | - Yi Chen
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, Hunan, PR China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, PR China
| | - Longbo Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, Hunan, PR China
| | - Zhao-Qian Liu
- Chronic disease laboratory, Shenzhen Center for Chronic Disease Control & Prevention, Shenzhen, Guangdong, PR China.,Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, Hunan, PR China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, PR China
| | - Hong-Hao Zhou
- Chronic disease laboratory, Shenzhen Center for Chronic Disease Control & Prevention, Shenzhen, Guangdong, PR China.,Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, Hunan, PR China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, PR China
| | - Jun Wu
- Department of Neurosurgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, Hunan, PR China
| | - Xi Li
- Chronic disease laboratory, Shenzhen Center for Chronic Disease Control & Prevention, Shenzhen, Guangdong, PR China.,Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, Hunan, PR China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, PR China
| |
Collapse
|
7
|
Qiu L, Zhou G, Cao S. Targeted inhibition of ULK1 enhances daunorubicin sensitivity in acute myeloid leukemia. Life Sci 2019; 243:117234. [PMID: 31887299 DOI: 10.1016/j.lfs.2019.117234] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 12/19/2019] [Accepted: 12/24/2019] [Indexed: 02/06/2023]
Abstract
PURPOSE In acute myeloid leukemia (AML), complete remission can be achieved in parts of patients using cytarabine/anthracycline combination-based chemotherapy, however, drug resistance-related recurrence is still a common cause of treatment failure, leading to high mortality among patients. In our research, we revealed the molecular mechanisms that were sufficient to improve sensitivity of AML cells to the anthracycline daunorubicin (DNR). METHODS We evaluated the effects of autophagy and apoptosis induced by DNR using two AML cell lines HL60 and U937.Western blot was preformed to analyze the apoptotic pathway protein expression and flow cytometric analysis was used to detect the level of apoptosis in AML cells. The levels of autophagy-related proteins were detected by western blotting and autophagic vesicles were observed by electron microscopy. RESULTS DNR effectively induced autophagy in two AML cell lines HL60 and U937 confirming by upregulation of LC3-II lipidation, formation of autophagosomes. Inhibition of autophagy by pharmacologic inhibitor HCQ promoted apoptosis induced by DNR, suggesting that autophagy played a vital role in pro-survival in AML. Furthermore, ULK1 inhibition by a highly selective kinase inhibitor SBI-0206965 and shRNA enhanced cytotoxicity of DNR against AML cells. Independent of mTOR -ULK1 signaling pathway, activation of autophagy of DNR was proved to be mediated by AMPK (pThr172)/ULK1 pathway. CONCLUSIONS These results revealed that pro-survival autophagy induced by ULK1 activation was one of the potential mechanisms of AML resistance to DNR. Targeting ULK1 selectively could be a promising therapeutic strategy to enhance sensitivity of DNR for AML therapy.
Collapse
Affiliation(s)
- Li Qiu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Hunan Key Laboratory of Pharmacogenetics, Changsha, Hunan 410078, China
| | - Gan Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Hunan Key Laboratory of Pharmacogenetics, Changsha, Hunan 410078, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China; National Institution of Drug Clinical Trial, Xiangya Hospital, Central South University, 110 Xiang Ya Road, Changsha, Hunan 410078, China; Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha 410078, China
| | - Shan Cao
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Hunan Key Laboratory of Pharmacogenetics, Changsha, Hunan 410078, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China; National Institution of Drug Clinical Trial, Xiangya Hospital, Central South University, 110 Xiang Ya Road, Changsha, Hunan 410078, China.
| |
Collapse
|
8
|
Xu H, Muise ES, Javaid S, Chen L, Cristescu R, Mansueto MS, Follmer N, Cho J, Kerr K, Altura R, Machacek M, Nicholson B, Addona G, Kariv I, Chen H. Identification of predictive genetic signatures of Cytarabine responsiveness using a 3D acute myeloid leukaemia model. J Cell Mol Med 2019; 23:7063-7077. [PMID: 31449347 PMCID: PMC6787505 DOI: 10.1111/jcmm.14608] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 07/25/2019] [Accepted: 07/30/2019] [Indexed: 12/31/2022] Open
Abstract
This study reports the establishment of a bone marrow mononuclear cell (BMMC) 3D culture model and the application of this model to define sensitivity and resistance biomarkers of acute myeloid leukaemia (AML) patient bone marrow samples in response to Cytarabine (Ara-C) treatment. By mimicking physiological bone marrow microenvironment, the growth conditions were optimized by using frozen BMMCs derived from healthy donors. Healthy BMMCs are capable of differentiating into major hematopoietic lineages and various types of stromal cells in this platform. Cryopreserved BMMC samples from 49 AML patients were characterized for ex vivo growth and sensitivity to Ara-C. RNA sequencing was performed for 3D and 2D cultures to determine differential gene expression patterns. Specific genetic mutations and/or gene expression signatures associated with the ability of the ex vivo expansion and response to Ara-C were elucidated by whole-exome and RNA sequencing. Data analysis identified unique gene expression signatures and novel genetic mutations associated with sensitivity to Ara-C treatment of proliferating AML specimens and can be used as predictive therapeutic biomarkers to determine the optimal treatment regimens. Furthermore, these data demonstrate the translational value of this ex vivo platform which should be widely applicable to evaluate other therapies in AML.
Collapse
Affiliation(s)
- Haiyan Xu
- Department of Pharmacology, Merck & Co., Inc., Boston, MA, USA
| | - Eric S Muise
- Department of Genetics and Pharmacogenomics, Merck & Co., Inc., Boston, MA, USA
| | - Sarah Javaid
- Department of Genetics and Pharmacogenomics, Merck & Co., Inc., Boston, MA, USA
| | - Lan Chen
- Department of Strategic Planning & Research Informatics, Merck & Co., Inc., Beijing, China
| | - Razvan Cristescu
- Department of Precision Oncology Biomarkers, Merck & Co., Inc., Boston, MA, USA
| | - My Sam Mansueto
- Department of Pharmacology, Merck & Co., Inc., Boston, MA, USA
| | - Nicole Follmer
- Department of Oncology Early Discovery, Merck & Co., Inc., Boston, MA, USA
| | - Jennifer Cho
- Department of Genetics and Pharmacogenomics, Merck & Co., Inc., Boston, MA, USA
| | - Kimberley Kerr
- Department of Genetics and Pharmacogenomics, Merck & Co., Inc., Boston, MA, USA
| | - Rachel Altura
- Department of Oncology Early Development, Merck & Co., Inc., Rahway, NJ, USA
| | - Michelle Machacek
- Department of Discovery Chemistry, Merck & Co., Inc., Boston, MA, USA
| | - Benjamin Nicholson
- Department of Oncology Early Discovery, Merck & Co., Inc., Boston, MA, USA
| | - George Addona
- Department of Pharmacology, Merck & Co., Inc., Boston, MA, USA
| | - Ilona Kariv
- Department of Pharmacology, Merck & Co., Inc., Boston, MA, USA
| | - Hongmin Chen
- Department of Pharmacology, Merck & Co., Inc., Boston, MA, USA
| |
Collapse
|
9
|
Kreitz J, Schönfeld C, Seibert M, Stolp V, Alshamleh I, Oellerich T, Steffen B, Schwalbe H, Schnütgen F, Kurrle N, Serve H. Metabolic Plasticity of Acute Myeloid Leukemia. Cells 2019; 8:E805. [PMID: 31370337 PMCID: PMC6721808 DOI: 10.3390/cells8080805] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 07/26/2019] [Accepted: 07/28/2019] [Indexed: 02/07/2023] Open
Abstract
Acute myeloid leukemia (AML) is one of the most common and life-threatening leukemias. A highly diverse and flexible metabolism contributes to the aggressiveness of the disease that is still difficult to treat. By using different sources of nutrients for energy and biomass supply, AML cells gain metabolic plasticity and rapidly outcompete normal hematopoietic cells. This review aims to decipher the diverse metabolic strategies and the underlying oncogenic and environmental changes that sustain continuous growth, mediate redox homeostasis and induce drug resistance in AML. We revisit Warburg's hypothesis and illustrate the role of glucose as a provider of cellular building blocks rather than as a supplier of the tricarboxylic acid (TCA) cycle for energy production. We discuss how the diversity of fuels for the TCA cycle, including glutamine and fatty acids, contributes to the metabolic plasticity of the disease and highlight the roles of amino acids and lipids in AML metabolism. Furthermore, we point out the potential of the different metabolic effectors to be used as novel therapeutic targets.
Collapse
Affiliation(s)
- Johanna Kreitz
- Department of Medicine 2, Hematology/Oncology, Goethe University, 60590 Frankfurt am Main, Germany
- German Cancer Consortium (DKTK) and DKFZ, 69120 Heidelberg, Germany
| | - Christine Schönfeld
- Department of Medicine 2, Hematology/Oncology, Goethe University, 60590 Frankfurt am Main, Germany
- German Cancer Consortium (DKTK) and DKFZ, 69120 Heidelberg, Germany
| | - Marcel Seibert
- Department of Medicine 2, Hematology/Oncology, Goethe University, 60590 Frankfurt am Main, Germany
- German Cancer Consortium (DKTK) and DKFZ, 69120 Heidelberg, Germany
| | - Verena Stolp
- Department of Medicine 2, Hematology/Oncology, Goethe University, 60590 Frankfurt am Main, Germany
- German Cancer Consortium (DKTK) and DKFZ, 69120 Heidelberg, Germany
| | - Islam Alshamleh
- Center for Biomolecular Magnetic Resonance, Institute of Organic Chemistry and Chemical Biology, Goethe-University, 60438 Frankfurt am Main, Germany
| | - Thomas Oellerich
- Department of Medicine 2, Hematology/Oncology, Goethe University, 60590 Frankfurt am Main, Germany
- German Cancer Consortium (DKTK) and DKFZ, 69120 Heidelberg, Germany
- Frankfurt Cancer Institute (FCI), 60590 Frankfurt am Main, Germany
| | - Björn Steffen
- Department of Medicine 2, Hematology/Oncology, Goethe University, 60590 Frankfurt am Main, Germany
- German Cancer Consortium (DKTK) and DKFZ, 69120 Heidelberg, Germany
- Frankfurt Cancer Institute (FCI), 60590 Frankfurt am Main, Germany
| | - Harald Schwalbe
- German Cancer Consortium (DKTK) and DKFZ, 69120 Heidelberg, Germany
- Center for Biomolecular Magnetic Resonance, Institute of Organic Chemistry and Chemical Biology, Goethe-University, 60438 Frankfurt am Main, Germany
| | - Frank Schnütgen
- Department of Medicine 2, Hematology/Oncology, Goethe University, 60590 Frankfurt am Main, Germany
- German Cancer Consortium (DKTK) and DKFZ, 69120 Heidelberg, Germany
- Frankfurt Cancer Institute (FCI), 60590 Frankfurt am Main, Germany
| | - Nina Kurrle
- Department of Medicine 2, Hematology/Oncology, Goethe University, 60590 Frankfurt am Main, Germany.
- German Cancer Consortium (DKTK) and DKFZ, 69120 Heidelberg, Germany.
- Frankfurt Cancer Institute (FCI), 60590 Frankfurt am Main, Germany.
| | - Hubert Serve
- Department of Medicine 2, Hematology/Oncology, Goethe University, 60590 Frankfurt am Main, Germany.
- German Cancer Consortium (DKTK) and DKFZ, 69120 Heidelberg, Germany.
- Frankfurt Cancer Institute (FCI), 60590 Frankfurt am Main, Germany.
| |
Collapse
|
10
|
Intracellular cytarabine triphosphate in circulating blasts post-treatment predicts remission status in patients with acute myeloid leukemia. Exp Hematol 2019; 74:13-18.e3. [PMID: 31054867 DOI: 10.1016/j.exphem.2019.04.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 04/10/2019] [Accepted: 04/24/2019] [Indexed: 11/21/2022]
Abstract
Cytarabine remains the backbone of therapy in acute myeloid leukemia (AML). The ability to assess intracellular cytarabine triphosphate (ara-CTP) levels in patients receiving cytarabine represents a major goal in the prediction of treatment response. This study, conducted within a clinical setting, aimed to assess ara-CTP levels in circulating peripheral blasts from non-M3 AML patients receiving cytarabine at one of three dosing levels, using a novel biosensor assay. Results from the initial 72 hours post-commencement were correlated with day 28 remission status, with feasibility parameters concurrently assessed. Intracellular ara-CTP was detectable in ex vivo blasts post-treatment for standard-dose (SD) and high-dose (HD) patients (p < 0.05), and quantification revealed a 27-fold increase in intracellular steady-state concentration between the two dosing levels. For low-dose cytarabine, high rates of patient discharge and low intracellular concentrations limited analysis; however, assessment of intracellular ara-CTP concentration was achievable in a dwindling population of blasts for SD and HD treatment cohorts, with 4 hours post-treatment commencement potentially being most predictive of clinical response (r = -0.912, p = 0.0113). Concurrent assessment of peripheral leukemia-associated immunophenotype (LAIP)-positive cells revealed a decline in burden (0-72 hours), which correlated with remission status (p < 0.05). Unexpectedly high rates of night sampling led to challenges associated with sampling rates, but did not have an impact on patient compliance. Additional training of night staff improved feasibility substantially. Multiple peripheral sampling during the initial 72 hours of treatment is feasible in newly diagnosed patients, and ara-CTP is detectable over the initial 24 hours, facilitating prediction of chemosensitivity of leukemic blasts to cytarabine.
Collapse
|
11
|
Farge T, Saland E, de Toni F, Aroua N, Hosseini M, Perry R, Bosc C, Sugita M, Stuani L, Fraisse M, Scotland S, Larrue C, Boutzen H, Féliu V, Nicolau-Travers ML, Cassant-Sourdy S, Broin N, David M, Serhan N, Sarry A, Tavitian S, Kaoma T, Vallar L, Iacovoni J, Linares LK, Montersino C, Castellano R, Griessinger E, Collette Y, Duchamp O, Barreira Y, Hirsch P, Palama T, Gales L, Delhommeau F, Garmy-Susini BH, Portais JC, Vergez F, Selak M, Danet-Desnoyers G, Carroll M, Récher C, Sarry JE. Chemotherapy-Resistant Human Acute Myeloid Leukemia Cells Are Not Enriched for Leukemic Stem Cells but Require Oxidative Metabolism. Cancer Discov 2017; 7:716-735. [PMID: 28416471 PMCID: PMC5501738 DOI: 10.1158/2159-8290.cd-16-0441] [Citation(s) in RCA: 571] [Impact Index Per Article: 71.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 06/15/2016] [Accepted: 04/12/2017] [Indexed: 12/12/2022]
Abstract
Chemotherapy-resistant human acute myeloid leukemia (AML) cells are thought to be enriched in quiescent immature leukemic stem cells (LSC). To validate this hypothesis in vivo, we developed a clinically relevant chemotherapeutic approach treating patient-derived xenografts (PDX) with cytarabine (AraC). AraC residual AML cells are enriched in neither immature, quiescent cells nor LSCs. Strikingly, AraC-resistant preexisting and persisting cells displayed high levels of reactive oxygen species, showed increased mitochondrial mass, and retained active polarized mitochondria, consistent with a high oxidative phosphorylation (OXPHOS) status. AraC residual cells exhibited increased fatty-acid oxidation, upregulated CD36 expression, and a high OXPHOS gene signature predictive for treatment response in PDX and patients with AML. High OXPHOS but not low OXPHOS human AML cell lines were chemoresistant in vivo. Targeting mitochondrial protein synthesis, electron transfer, or fatty-acid oxidation induced an energetic shift toward low OXPHOS and markedly enhanced antileukemic effects of AraC. Together, this study demonstrates that essential mitochondrial functions contribute to AraC resistance in AML and are a robust hallmark of AraC sensitivity and a promising therapeutic avenue to treat AML residual disease.Significance: AraC-resistant AML cells exhibit metabolic features and gene signatures consistent with a high OXPHOS status. In these cells, targeting mitochondrial metabolism through the CD36-FAO-OXPHOS axis induces an energetic shift toward low OXPHOS and strongly enhanced antileukemic effects of AraC, offering a promising avenue to design new therapeutic strategies and fight AraC resistance in AML. Cancer Discov; 7(7); 716-35. ©2017 AACR.See related commentary by Schimmer, p. 670This article is highlighted in the In This Issue feature, p. 653.
Collapse
Affiliation(s)
- Thomas Farge
- Inserm, Cancer Research Center of Toulouse, U1037, Toulouse, France
- Université de Toulouse, Toulouse, France
- Consortium IMODI "Innovative MODels Initiative against Cancer," France
| | - Estelle Saland
- Inserm, Cancer Research Center of Toulouse, U1037, Toulouse, France
- Université de Toulouse, Toulouse, France
- Consortium IMODI "Innovative MODels Initiative against Cancer," France
| | - Fabienne de Toni
- Inserm, Cancer Research Center of Toulouse, U1037, Toulouse, France
- Université de Toulouse, Toulouse, France
- Consortium IMODI "Innovative MODels Initiative against Cancer," France
| | - Nesrine Aroua
- Inserm, Cancer Research Center of Toulouse, U1037, Toulouse, France
- Université de Toulouse, Toulouse, France
- Consortium IMODI "Innovative MODels Initiative against Cancer," France
| | - Mohsen Hosseini
- Inserm, Cancer Research Center of Toulouse, U1037, Toulouse, France
- Université de Toulouse, Toulouse, France
| | - Robin Perry
- Division of Hematology & Oncology, Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Claudie Bosc
- Inserm, Cancer Research Center of Toulouse, U1037, Toulouse, France
- Université de Toulouse, Toulouse, France
| | - Mayumi Sugita
- Division of Hematology & Oncology, Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Lucille Stuani
- Inserm, Cancer Research Center of Toulouse, U1037, Toulouse, France
- Université de Toulouse, Toulouse, France
| | - Marine Fraisse
- Inserm, Cancer Research Center of Toulouse, U1037, Toulouse, France
- Université de Toulouse, Toulouse, France
| | - Sarah Scotland
- Inserm, Cancer Research Center of Toulouse, U1037, Toulouse, France
- Université de Toulouse, Toulouse, France
| | - Clément Larrue
- Inserm, Cancer Research Center of Toulouse, U1037, Toulouse, France
- Université de Toulouse, Toulouse, France
| | - Héléna Boutzen
- Inserm, Cancer Research Center of Toulouse, U1037, Toulouse, France
- Université de Toulouse, Toulouse, France
| | - Virginie Féliu
- Inserm, Cancer Research Center of Toulouse, U1037, Toulouse, France
- Université de Toulouse, Toulouse, France
- Sorbonne Universités, UPMC Université Paris 06, UMR-S 938, CDR Saint-Antoine, Paris, France
| | - Marie-Laure Nicolau-Travers
- Inserm, Cancer Research Center of Toulouse, U1037, Toulouse, France
- Université de Toulouse, Toulouse, France
- Service d'Hématologie, Centre Hospitalier Universitaire de Toulouse, Institut Universitaire du Cancer Toulouse Oncopole, Toulouse, France
| | | | - Nicolas Broin
- Inserm, Cancer Research Center of Toulouse, U1037, Toulouse, France
- Université de Toulouse, Toulouse, France
| | - Marion David
- Inserm, Cancer Research Center of Toulouse, U1037, Toulouse, France
- Université de Toulouse, Toulouse, France
| | - Nizar Serhan
- Inserm, Cancer Research Center of Toulouse, U1037, Toulouse, France
- Université de Toulouse, Toulouse, France
| | - Audrey Sarry
- Service d'Hématologie, Centre Hospitalier Universitaire de Toulouse, Institut Universitaire du Cancer Toulouse Oncopole, Toulouse, France.
| | - Suzanne Tavitian
- Service d'Hématologie, Centre Hospitalier Universitaire de Toulouse, Institut Universitaire du Cancer Toulouse Oncopole, Toulouse, France
| | - Tony Kaoma
- Proteome and Genome Research Unit, Department of Oncology, Luxembourg Institute of Health, Strassen, Luxembourg
| | - Laurent Vallar
- Proteome and Genome Research Unit, Department of Oncology, Luxembourg Institute of Health, Strassen, Luxembourg
| | - Jason Iacovoni
- Inserm, Institut des Maladies Métaboliques et Cardiovasculaires, U1048, Toulouse, France
| | - Laetitia K Linares
- Inserm, Institut de Recherche en Cancérologie de Montpellier, U1194, Montpellier, France
- Université de Montpellier, Montpellier, France
- Institut Régional du Cancer Montpellier, Montpellier, France
| | - Camille Montersino
- Inserm, Centre de Recherche en Cancérologie de Marseille, U1068, Marseille, France
- Institut Paoli-Calmettes, Marseille, France
- Université Aix-Marseille, Marseille, France
- CNRS, UMR7258, Marseille, France
| | - Rémy Castellano
- Inserm, Centre de Recherche en Cancérologie de Marseille, U1068, Marseille, France
- Institut Paoli-Calmettes, Marseille, France
- Université Aix-Marseille, Marseille, France
- CNRS, UMR7258, Marseille, France
| | | | - Yves Collette
- Inserm, Centre de Recherche en Cancérologie de Marseille, U1068, Marseille, France
- Institut Paoli-Calmettes, Marseille, France
- Université Aix-Marseille, Marseille, France
- CNRS, UMR7258, Marseille, France
| | - Olivier Duchamp
- Consortium IMODI "Innovative MODels Initiative against Cancer," France
- Oncodesign, Dijon, France
| | - Yara Barreira
- Consortium IMODI "Innovative MODels Initiative against Cancer," France
- Inserm, Service d'Expérimentation Animale, UMS006, Toulouse, France
| | - Pierre Hirsch
- Sorbonne Universités, UPMC Université Paris 06, UMR-S 938, CDR Saint-Antoine, Paris, France
- Inserm, UMR-S938, CDR Saint-Antoine, Paris, France
- Sorbonne Universités, UPMC Université Paris 06, GRC n°07, Groupe de Recherche Clinique sur les Myéloproliférations Aiguës et Chroniques MyPAC, Paris, France
- AP-HP, Hôpital Saint-Antoine, Paris, France
| | - Tony Palama
- Université de Toulouse III Paul Sabatier, INSA, UPS, INP, LISBP, Toulouse, France
- INRA, UMR792, Ingénierie des Systèmes Biologiques & des Procédés, Toulouse, France
- CNRS, UMR5504, Toulouse, France
| | - Lara Gales
- Université de Toulouse III Paul Sabatier, INSA, UPS, INP, LISBP, Toulouse, France
- INRA, UMR792, Ingénierie des Systèmes Biologiques & des Procédés, Toulouse, France
- CNRS, UMR5504, Toulouse, France
| | - François Delhommeau
- Sorbonne Universités, UPMC Université Paris 06, UMR-S 938, CDR Saint-Antoine, Paris, France
- Inserm, UMR-S938, CDR Saint-Antoine, Paris, France
- Sorbonne Universités, UPMC Université Paris 06, GRC n°07, Groupe de Recherche Clinique sur les Myéloproliférations Aiguës et Chroniques MyPAC, Paris, France
- AP-HP, Hôpital Saint-Antoine, Paris, France
| | - Barbara H Garmy-Susini
- Inserm, Institut des Maladies Métaboliques et Cardiovasculaires, U1048, Toulouse, France
| | - Jean-Charles Portais
- Université de Toulouse III Paul Sabatier, INSA, UPS, INP, LISBP, Toulouse, France
- INRA, UMR792, Ingénierie des Systèmes Biologiques & des Procédés, Toulouse, France
- CNRS, UMR5504, Toulouse, France
| | - François Vergez
- Inserm, Cancer Research Center of Toulouse, U1037, Toulouse, France
- Université de Toulouse, Toulouse, France
- Consortium IMODI "Innovative MODels Initiative against Cancer," France
| | - Mary Selak
- Division of Hematology & Oncology, Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Gwenn Danet-Desnoyers
- Division of Hematology & Oncology, Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Martin Carroll
- Division of Hematology & Oncology, Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Christian Récher
- Inserm, Cancer Research Center of Toulouse, U1037, Toulouse, France
- Université de Toulouse, Toulouse, France
- Consortium IMODI "Innovative MODels Initiative against Cancer," France
- Service d'Hématologie, Centre Hospitalier Universitaire de Toulouse, Institut Universitaire du Cancer Toulouse Oncopole, Toulouse, France
| | - Jean-Emmanuel Sarry
- Inserm, Cancer Research Center of Toulouse, U1037, Toulouse, France.
- Université de Toulouse, Toulouse, France
- Consortium IMODI "Innovative MODels Initiative against Cancer," France
| |
Collapse
|