1
|
MYB oncoproteins: emerging players and potential therapeutic targets in human cancer. Oncogenesis 2021; 10:19. [PMID: 33637673 PMCID: PMC7910556 DOI: 10.1038/s41389-021-00309-y] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 02/05/2021] [Accepted: 02/10/2021] [Indexed: 01/31/2023] Open
Abstract
MYB transcription factors are highly conserved from plants to vertebrates, indicating that their functions embrace fundamental mechanisms in the biology of cells and organisms. In humans, the MYB gene family is composed of three members: MYB, MYBL1 and MYBL2, encoding the transcription factors MYB, MYBL1, and MYBL2 (also known as c-MYB, A-MYB, and B-MYB), respectively. A truncated version of MYB, the prototype member of the MYB family, was originally identified as the product of the retroviral oncogene v-myb, which causes leukaemia in birds. This led to the hypothesis that aberrant activation of vertebrate MYB could also cause cancer. Despite more than three decades have elapsed since the isolation of v-myb, only recently investigators were able to detect MYB genes rearrangements and mutations, smoking gun evidence of the involvement of MYB family members in human cancer. In this review, we will highlight studies linking the activity of MYB family members to human malignancies and experimental therapeutic interventions tailored for MYB-expressing cancers.
Collapse
|
2
|
Burkholderia Lethal Factor 1, a Novel Anti-Cancer Toxin, Demonstrates Selective Cytotoxicity in MYCN-Amplified Neuroblastoma Cells. Toxins (Basel) 2018; 10:toxins10070261. [PMID: 29954071 PMCID: PMC6071135 DOI: 10.3390/toxins10070261] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 06/15/2018] [Accepted: 06/20/2018] [Indexed: 11/16/2022] Open
Abstract
Immunotoxins are being investigated as anti-cancer therapies and consist of a cytotoxic enzyme fused to a cancer targeting antibody. All currently used toxins function via the inhibition of protein synthesis, making them highly potent in both healthy and transformed cells. This non-specific cell killing mechanism causes dose-limiting side effects that can severely limit the potential of immunotoxin therapy. In this study, the recently characterised bacterial toxin Burkholderia lethal factor 1 (BLF1) is investigated as a possible alternative payload for targeted toxin therapy in the treatment of neuroblastoma. BLF1 inhibits translation initiation by inactivation of eukaryotic initiation translation factor 4A (eIF4A), a putative anti-cancer target that has been shown to regulate a number of oncogenic proteins at the translational level. We show that cellular delivery of BLF1 selectively induces apoptosis in neuroblastoma cells that display MYCN amplification but has little effect on non-transformed cells. Future immunotoxins based on this enzyme may therefore have higher specificity towards MYCN-amplified cancer cells than more conventional ribosome-inactivating proteins, leading to an increased therapeutic window and decreased side effects.
Collapse
|
3
|
Rajbhandari P, Lopez G, Capdevila C, Salvatori B, Yu J, Rodriguez-Barrueco R, Martinez D, Yarmarkovich M, Weichert-Leahey N, Abraham BJ, Alvarez MJ, Iyer A, Harenza JL, Oldridge D, De Preter K, Koster J, Asgharzadeh S, Seeger RC, Wei JS, Khan J, Vandesompele J, Mestdagh P, Versteeg R, Look AT, Young RA, Iavarone A, Lasorella A, Silva JM, Maris JM, Califano A. Cross-Cohort Analysis Identifies a TEAD4-MYCN Positive Feedback Loop as the Core Regulatory Element of High-Risk Neuroblastoma. Cancer Discov 2018; 8:582-599. [PMID: 29510988 PMCID: PMC5967627 DOI: 10.1158/2159-8290.cd-16-0861] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 11/06/2017] [Accepted: 02/23/2018] [Indexed: 01/21/2023]
Abstract
High-risk neuroblastomas show a paucity of recurrent somatic mutations at diagnosis. As a result, the molecular basis for this aggressive phenotype remains elusive. Recent progress in regulatory network analysis helped us elucidate disease-driving mechanisms downstream of genomic alterations, including recurrent chromosomal alterations. Our analysis identified three molecular subtypes of high-risk neuroblastomas, consistent with chromosomal alterations, and identified subtype-specific master regulator proteins that were conserved across independent cohorts. A 10-protein transcriptional module-centered around a TEAD4-MYCN positive feedback loop-emerged as the regulatory driver of the high-risk subtype associated with MYCN amplification. Silencing of either gene collapsed MYCN-amplified (MYCNAmp) neuroblastoma transcriptional hallmarks and abrogated viability in vitro and in vivo Consistently, TEAD4 emerged as a robust prognostic marker of poor survival, with activity independent of the canonical Hippo pathway transcriptional coactivators YAP and TAZ. These results suggest novel therapeutic strategies for the large subset of MYCN-deregulated neuroblastomas.Significance: Despite progress in understanding of neuroblastoma genetics, little progress has been made toward personalized treatment. Here, we present a framework to determine the downstream effectors of the genetic alterations sustaining neuroblastoma subtypes, which can be easily extended to other tumor types. We show the critical effect of disrupting a 10-protein module centered around a YAP/TAZ-independent TEAD4-MYCN positive feedback loop in MYCNAmp neuroblastomas, nominating TEAD4 as a novel candidate for therapeutic intervention. Cancer Discov; 8(5); 582-99. ©2018 AACR.This article is highlighted in the In This Issue feature, p. 517.
Collapse
Affiliation(s)
- Presha Rajbhandari
- Department of Systems Biology, Columbia University, New York, New York
- Department of Biological Sciences, Columbia University, New York, New York
| | - Gonzalo Lopez
- Department of Systems Biology, Columbia University, New York, New York
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Claudia Capdevila
- Department of Systems Biology, Columbia University, New York, New York
| | | | - Jiyang Yu
- Department of Systems Biology, Columbia University, New York, New York
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Ruth Rodriguez-Barrueco
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, New York
- Departament de Patologia i Terapèutica Experimental, Facultat de Medicina i Ciències de la Salut, IDIBELL, Universitat de Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Daniel Martinez
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Mark Yarmarkovich
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Nina Weichert-Leahey
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Brian J Abraham
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts
| | - Mariano J Alvarez
- Department of Systems Biology, Columbia University, New York, New York
| | - Archana Iyer
- Department of Systems Biology, Columbia University, New York, New York
| | - Jo Lynne Harenza
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Derek Oldridge
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Katleen De Preter
- Center for Medical Genetics & Cancer Research Institute Ghent (CRIG), Ghent University, Gent, Belgium
| | - Jan Koster
- Department of Oncogenomics, Academic Medical Center, Amsterdam, the Netherlands
| | - Shahab Asgharzadeh
- Division of Hematology/Oncology, Saban Research Institute, The Children's Hospital Los Angeles, Los Angeles, California
- Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Robert C Seeger
- Division of Hematology/Oncology, Saban Research Institute, The Children's Hospital Los Angeles, Los Angeles, California
- Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Jun S Wei
- Genetics Branch, Oncogenomics Section, Center for Cancer Research, NIH, Bethesda, Maryland
| | - Javed Khan
- Genetics Branch, Oncogenomics Section, Center for Cancer Research, NIH, Bethesda, Maryland
| | - Jo Vandesompele
- Center for Medical Genetics & Cancer Research Institute Ghent (CRIG), Ghent University, Gent, Belgium
| | - Pieter Mestdagh
- Center for Medical Genetics & Cancer Research Institute Ghent (CRIG), Ghent University, Gent, Belgium
| | - Rogier Versteeg
- Department of Oncogenomics, Academic Medical Center, Amsterdam, the Netherlands
| | - A Thomas Look
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Richard A Young
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Antonio Iavarone
- Department of Neurology and Pathology and Cell Biology, Institute for Cancer Genetics, Columbia University, New York, New York
| | - Anna Lasorella
- Department of Pediatrics and Pathology and Cell Biology, Institute for Cancer Genetics, Columbia University, New York, New York
| | - Jose M Silva
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - John M Maris
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania.
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Abramson Family Cancer Research Institute, Philadelphia, Pennsylvania
| | - Andrea Califano
- Department of Systems Biology, Columbia University, New York, New York.
- Department of Biomedical Informatics, Columbia University, New York, New York
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York
- Herbert Irving Comprehensive Cancer Center and J.P. Sulzberger Columbia Genome Center, Columbia University, New York, New York
| |
Collapse
|
4
|
Shao M, Ren Z, Zhang R. MYBL2 protects against H9c2 injury induced by hypoxia via AKT and NF‑κB pathways. Mol Med Rep 2018; 17:4832-4838. [PMID: 29328450 DOI: 10.3892/mmr.2018.8387] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Accepted: 05/25/2017] [Indexed: 11/06/2022] Open
Abstract
Cardiovascular diseases have become one of the major public health problems in many countries. The downregulation of MYBL2 was found in H9c2 and native cardiomyocytes cells after hypoxia treatment. The present study aimed to investigate the effects of MYB proto‑oncogene like 2 (MYBL2) on H9c2 injury induced by hypoxia. Reverse transcription‑quantitative polymerase chain reaction and western blot were performed on H9c2 cells to determine the mRNA and protein levels of MYBL2, respectively. Small interfering RNA (siRNA) was employed to downregulate MYBL2 expression in H9c2 cells to investigate changes in cell proliferation and apoptosis. Cell proliferation was assessed by a Cell Counting kit‑8 assay and the percentage of apoptotic cells was determined using an Annexin V‑fluorescein isothiocyanate/propidium iodide apoptosis detection kit. The nuclear factor‑κB (NF‑κB) and AKT signaling pathways in H9c2 cells were investigated by western blot analysis. The results demonstrated that the overexpression of MYBL2 promoted cell proliferation and suppressed apoptosis. Furthermore, overexpression of MYBL2 suppressed the expression of phosphorylated (p)‑AKT, p‑NF‑κB inhibitor α, p‑p65 and B‑cell CLL/lymphoma 3 (Bcl‑3). The results indicated that MYBL2 may improve cell viability and inhibit H9c2 apoptosis via the inhibition of AKT and NF‑κB pathways. Therefore, MYBL2 may be a potential therapeutic target for the treatment of myocardial infarction.
Collapse
Affiliation(s)
- Mingfeng Shao
- Department of Cardiology, Linyi People's Hospital, Linyi, Shandong 276003, P.R. China
| | - Zexiang Ren
- Department of Internal Medicine, Linyi People's Hospital, Linyi, Shandong 276003, P.R. China
| | - Rongjun Zhang
- Department of Cardiology, Linyi People's Hospital, Linyi, Shandong 276003, P.R. China
| |
Collapse
|
5
|
Hsu CL, Chang HY, Chang JY, Hsu WM, Huang HC, Juan HF. Unveiling MYCN regulatory networks in neuroblastoma via integrative analysis of heterogeneous genomics data. Oncotarget 2017; 7:36293-36310. [PMID: 27167114 PMCID: PMC5095001 DOI: 10.18632/oncotarget.9202] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Accepted: 04/19/2016] [Indexed: 12/31/2022] Open
Abstract
MYCN, an oncogenic transcription factor of the Myc family, is a major driver of neuroblastoma tumorigenesis. Due to the difficulty in drugging MYCN directly, revealing the molecules in MYCN regulatory networks will help to identify effective therapeutic targets for neuroblastoma therapy. Here we perform ChIP-sequencing and small RNA-sequencing of neuroblastoma cells to determine the MYCN-binding sites and MYCN-associated microRNAs, and integrate various types of genomic data to construct MYCN regulatory networks. The overall analysis indicated that MYCN-regulated genes were involved in a wide range of biological processes and could be used as signatures to identify poor-prognosis MYCN-non-amplified patients. Analysis of the MYCN binding sites showed that MYCN principally served as an activator. Using a computational approach, we identified 32 MYCN co-regulators, and some of these findings are supported by previous studies. Moreover, we investigated the interplay between MYCN transcriptional and microRNA post-transcriptional regulations and identified several microRNAs, such as miR-124-3p and miR-93-5p, which may significantly contribute to neuroblastoma pathogenesis. We also found MYCN and its regulated microRNAs acted together to repress the tumor suppressor genes. This work provides a comprehensive view of MYCN regulations for exploring therapeutic targets in neuroblastoma, as well as insights into the mechanism of neuroblastoma tumorigenesis.
Collapse
Affiliation(s)
- Chia-Lang Hsu
- Department of Life Science, Institute of Molecular and Cellular Biology, Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei 106, Taiwan
| | - Hsin-Yi Chang
- Department of Life Science, Institute of Molecular and Cellular Biology, Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei 106, Taiwan
| | - Jen-Yun Chang
- Department of Life Science, Institute of Molecular and Cellular Biology, Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei 106, Taiwan
| | - Wen-Ming Hsu
- Department of Surgery, National Taiwan University Hospital, Taipei 100, Taiwan
| | - Hsuan-Cheng Huang
- Institute of Biomedical Informatics, Center for Systems and Synthetic Biology, National Yang-Ming University, Taipei 112, Taiwan
| | - Hsueh-Fen Juan
- Department of Life Science, Institute of Molecular and Cellular Biology, Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei 106, Taiwan
| |
Collapse
|
6
|
Rodríguez-Hernández CJ, Mateo-Lozano S, García M, Casalà C, Briansó F, Castrejón N, Rodríguez E, Suñol M, Carcaboso AM, Lavarino C, Mora J, de Torres C. Cinacalcet inhibits neuroblastoma tumor growth and upregulates cancer-testis antigens. Oncotarget 2017; 7:16112-29. [PMID: 26893368 PMCID: PMC4941301 DOI: 10.18632/oncotarget.7448] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 02/05/2016] [Indexed: 12/14/2022] Open
Abstract
The calcium–sensing receptor is a G protein-coupled receptor that exerts cell-type specific functions in numerous tissues and some cancers. We have previously reported that this receptor exhibits tumor suppressor properties in neuroblastoma. We have now assessed cinacalcet, an allosteric activator of the CaSR approved for clinical use, as targeted therapy for this developmental tumor using neuroblastoma cell lines and patient-derived xenografts (PDX) with different MYCN and TP53 status. In vitro, acute exposure to cinacalcet induced endoplasmic reticulum stress coupled to apoptosis via ATF4-CHOP-TRB3 in CaSR-positive, MYCN-amplified cells. Both phenotypes were partially abrogated by phospholipase C inhibitor U73122. Prolonged in vitro treatment also promoted dose- and time-dependent apoptosis in CaSR-positive, MYCN-amplified cells and, irrespective of MYCN status, differentiation in surviving cells. Cinacalcet significantly inhibited tumor growth in MYCN-amplified xenografts and reduced that of MYCN-non amplified PDX. Morphology assessment showed fibrosis in MYCN-amplified xenografts exposed to the drug. Microarrays analyses revealed up-regulation of cancer-testis antigens (CTAs) in cinacalcet-treated MYCN-amplified tumors. These were predominantly CTAs encoded by genes mapping on chromosome X, which are the most immunogenic. Other modulated genes upon prolonged exposure to cinacalcet were involved in differentiation, cell cycle exit, microenvironment remodeling and calcium signaling pathways. CTAs were up-regulated in PDX and in vitro models as well. Moreover, progressive increase of CaSR expression upon cinacalcet treatment was seen both in vitro and in vivo. In summary, cinacalcet reduces neuroblastoma tumor growth and up-regulates CTAs. This effect represents a therapeutic opportunity and provides surrogate circulating markers of neuroblastoma response to this treatment.
Collapse
Affiliation(s)
- Carlos J Rodríguez-Hernández
- Developmental Tumor Biology Laboratory, Institut de Recerca Pediàtrica - Hospital Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain
| | - Silvia Mateo-Lozano
- Developmental Tumor Biology Laboratory, Institut de Recerca Pediàtrica - Hospital Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain
| | - Marta García
- Developmental Tumor Biology Laboratory, Institut de Recerca Pediàtrica - Hospital Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain
| | - Carla Casalà
- Developmental Tumor Biology Laboratory, Institut de Recerca Pediàtrica - Hospital Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain
| | - Ferran Briansó
- Statistics and Bioinformatics Unit, Vall d'Hebron Research Institute, Barcelona, Spain
| | - Nerea Castrejón
- Developmental Tumor Biology Laboratory, Institut de Recerca Pediàtrica - Hospital Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain
| | - Eva Rodríguez
- Developmental Tumor Biology Laboratory, Institut de Recerca Pediàtrica - Hospital Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain
| | - Mariona Suñol
- Department of Pathology, Institut de Recerca Pediàtrica - Hospital Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain
| | - Angel M Carcaboso
- Developmental Tumor Biology Laboratory, Institut de Recerca Pediàtrica - Hospital Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain
| | - Cinzia Lavarino
- Developmental Tumor Biology Laboratory, Institut de Recerca Pediàtrica - Hospital Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain.,Department of Oncology, Institut de Recerca Pediàtrica - Hospital Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain
| | - Jaume Mora
- Developmental Tumor Biology Laboratory, Institut de Recerca Pediàtrica - Hospital Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain.,Department of Oncology, Institut de Recerca Pediàtrica - Hospital Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain
| | - Carmen de Torres
- Developmental Tumor Biology Laboratory, Institut de Recerca Pediàtrica - Hospital Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain.,Department of Oncology, Institut de Recerca Pediàtrica - Hospital Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain
| |
Collapse
|
7
|
Tsubota S, Kishida S, Shimamura T, Ohira M, Yamashita S, Cao D, Kiyonari S, Ushijima T, Kadomatsu K. PRC2-Mediated Transcriptomic Alterations at the Embryonic Stage Govern Tumorigenesis and Clinical Outcome in MYCN-Driven Neuroblastoma. Cancer Res 2017; 77:5259-5271. [PMID: 28807939 DOI: 10.1158/0008-5472.can-16-3144] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 05/23/2017] [Accepted: 07/27/2017] [Indexed: 11/16/2022]
Abstract
Pediatric cancers such as neuroblastoma are thought to involve a dysregulation of embryonic development. However, it has been difficult to identify the critical events that trigger tumorigenesis and differentiate them from normal development. In this study, we report the establishment of a spheroid culture method that enriches early-stage tumor cells from TH-MYCN mice, a preclinical model of neuroblastoma. Using this method, we found that tumorigenic cells were evident as early as day E13.5 during embryo development, when the MYC and PRC2 transcriptomes were significantly altered. Ezh2, an essential component of PRC2, was expressed in embryonic and postnatal tumor lesions and physically associated with N-MYC and we observed that H3K27me3 was increased at PRC2 target genes. PRC2 inhibition suppressed in vitro sphere formation, derepressed its target genes, and suppressed in situ tumor growth. In clinical specimens, expression of MYC and PRC2 target genes correlated strongly and predicted survival outcomes. Together, our findings highlighted PRC2-mediated transcriptional control during embryogenesis as a critical step in the development and clinical outcome of neuroblastoma. Cancer Res; 77(19); 5259-71. ©2017 AACR.
Collapse
Affiliation(s)
- Shoma Tsubota
- Department of Biochemistry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Satoshi Kishida
- Department of Biochemistry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Teppei Shimamura
- Division of Systems Biology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Miki Ohira
- Research Institute for Clinical Oncology, Saitama Cancer Center, Saitama, Japan
| | - Satoshi Yamashita
- Division of Epigenomics, National Cancer Center Research Institute, Tokyo, Japan
| | - Dongliang Cao
- Department of Biochemistry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shinichi Kiyonari
- Department of Biochemistry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Toshikazu Ushijima
- Division of Epigenomics, National Cancer Center Research Institute, Tokyo, Japan
| | - Kenji Kadomatsu
- Department of Biochemistry, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| |
Collapse
|
8
|
MYBL2 (B-Myb): a central regulator of cell proliferation, cell survival and differentiation involved in tumorigenesis. Cell Death Dis 2017. [PMID: 28640249 PMCID: PMC5520903 DOI: 10.1038/cddis.2017.244] [Citation(s) in RCA: 196] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Limitless cell proliferation, evasion from apoptosis, dedifferentiation, metastatic spread and therapy resistance: all these properties of a cancer cell contribute to its malignant phenotype and affect patient outcome. MYBL2 (alias B-Myb) is a transcription factor of the MYB transcription factor family and a physiological regulator of cell cycle progression, cell survival and cell differentiation. When deregulated in cancer cells, MYBL2 mediates the deregulation of these properties. In fact, MYBL2 is overexpressed and associated with poor patient outcome in numerous cancer entities. MYBL2 and players of its downstream transcriptional network can be used as prognostic and/or predictive biomarkers as well as potential therapeutic targets to offer less toxic and more specific anti-cancer therapies in future. In this review, we summarize current knowledge on the physiological roles of MYBL2 and highlight the impact of its deregulation on cancer initiation and progression.
Collapse
|
9
|
MYCN induces neuroblastoma in primary neural crest cells. Oncogene 2017; 36:5075-5082. [PMID: 28459463 PMCID: PMC5582212 DOI: 10.1038/onc.2017.128] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 02/21/2017] [Accepted: 03/23/2017] [Indexed: 12/14/2022]
Abstract
Neuroblastoma (NBL) is an embryonal cancer of the sympathetic nervous system (SNS), which causes 15% of pediatric cancer deaths. High-risk NBL is characterized by N-Myc amplification and segmental chromosomal gains and losses. Owing to limited disease models, the etiology of NBL is largely unknown, including both the cell of origin and the majority of oncogenic drivers. We have established a novel system for studying NBL based on the transformation of neural crest cells (NCCs), the progenitor cells of the SNS, isolated from mouse embryonic day 9.5 trunk neural tube explants. Based on pathology and gene expression analysis, we report the first successful transformation of wild-type NCCs into NBL by enforced expression of N-Myc, to generate phenotypically and molecularly accurate tumors that closely model human MYCN-amplified NBL. Using comparative genomic hybridization, we found that NCC-derived NBL tumors acquired copy number gains and losses that are syntenic to those observed in human MYCN-amplified NBL including 17q gain, 2p gain and loss of 1p36. When p53-compromised NCCs were transformed with N-Myc, we generated primitive neuroectodermal tumors with divergent differentiation including osteosarcoma. These subcutaneous tumors were metastatic to regional lymph nodes, liver and lung. Our novel experimental approach accurately models human NBL and establishes a new system with potential to study early stages of NBL oncogenesis, to functionally assess NBL oncogenic drivers and to characterize NBL metastasis.
Collapse
|
10
|
Corda G, Sala A. Cutaneous cylindroma: it's all about MYB. J Pathol 2016; 239:391-3. [PMID: 27185061 DOI: 10.1002/path.4746] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 05/11/2016] [Indexed: 12/30/2022]
Abstract
Cutaneous cylindroma is a rare benign tumour that occasionally turns into malignant cylindrocarcinoma. The cancer can be sporadic or emerge in the context of Brooke-Spiegler syndrome (BSS), an inheritable condition characterized by mutation of the gene CYLD, encoding a tumour suppressor protein that controls the activity of the transcription factor NF-kB. Sporadic cylindromas present histological features shared with adenoid cystic carcinoma (ACC), a head and neck cancer originating from salivary or other exocrine glands. Like ACCs, sporadic cylindromas express, although at lower frequency, the aberrant fusion transcript MYB-NFIB. In a paper recently published in the Journal of Pathology, the research teams led by Neil Rajan and Goran Stenman demonstrate that CYLD-defective cyclindromas in BSS patients are negative for the MYB-NFIB fusion. Only the wild-type MYB oncoprotein is activated in the majority of these tumours. RNA interference studies in cells derived from BSS patients indicate that ablating MYB expression results in a striking reduction of cylindroma cell proliferation, suggesting that MYB plays a pivotal role in the biology of this cancer. The take-home message of the study is that activation of MYB, in its wild-type form or fusion derivatives, is a common feature of spontaneous and hereditary cylindromas, constituting a potentially actionable therapeutic target. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Gabriele Corda
- College of Health and Life Sciences, Brunel University, London, UK.,Institute of Environment, Health and Societies, Brunel University, London, UK
| | - Arturo Sala
- College of Health and Life Sciences, Brunel University, London, UK.,Institute of Environment, Health and Societies, Brunel University, London, UK
| |
Collapse
|
11
|
Mateo-Lozano S, García M, Rodríguez-Hernández CJ, de Torres C. Regulation of Differentiation by Calcium-Sensing Receptor in Normal and Tumoral Developing Nervous System. Front Physiol 2016; 7:169. [PMID: 27242543 PMCID: PMC4861737 DOI: 10.3389/fphys.2016.00169] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 04/25/2016] [Indexed: 12/14/2022] Open
Abstract
During normal development of the nervous system (NS), neural progenitor cells (NPCs) produce specialized populations of neurons and glial cells upon cell fate restriction and terminal differentiation. These sequential processes require the dynamic regulation of thousands of genes. The calcium-sensing receptor (CaSR) is temporally and spatially regulated in both neurons and glial cells during development of the NS. In particular, CaSR expression and function have been shown to play a significant role during differentiation of NPCs toward the oligodendrocyte lineage and also in maturation of cerebellar granule cell precursors (GCPs). Moreover, CaSR regulates axonal and dendritic growth in both central and peripheral nervous systems (PNSs), a process necessary for proper construction of mature neuronal networks. On the other hand, several lines of evidence support a role for CaSR in promotion of cell differentiation and inhibition of proliferation in neuroblastoma, a tumor arising from precursor cells of developing PNS. Thus, among the variety of NS functions in which the CaSR participates, this mini-review focuses on its role in differentiation of normal and tumoral cells. Current knowledge of the mechanisms responsible for CaSR regulation and function in these contexts is also discussed, together with the therapeutic opportunities provided by CaSR allosteric modulators.
Collapse
Affiliation(s)
- Silvia Mateo-Lozano
- Developmental Tumor Biology Laboratory, Institut de Recerca Pediàtrica - Hospital Sant Joan de Déu Barcelona, Spain
| | - Marta García
- Developmental Tumor Biology Laboratory, Institut de Recerca Pediàtrica - Hospital Sant Joan de Déu Barcelona, Spain
| | - Carlos J Rodríguez-Hernández
- Developmental Tumor Biology Laboratory, Institut de Recerca Pediàtrica - Hospital Sant Joan de Déu Barcelona, Spain
| | - Carmen de Torres
- Developmental Tumor Biology Laboratory, Institut de Recerca Pediàtrica - Hospital Sant Joan de DéuBarcelona, Spain; Department of Oncology, Institut de Recerca Pediàtrica - Hospital Sant Joan de DéuBarcelona, Spain
| |
Collapse
|
12
|
Honisch S, Yu W, Liu G, Alesutan I, Towhid ST, Tsapara A, Schleicher S, Handgretinger R, Stournaras C, Lang F. Chorein addiction in VPS13A overexpressing rhabdomyosarcoma cells. Oncotarget 2016; 6:10309-19. [PMID: 25871399 PMCID: PMC4496357 DOI: 10.18632/oncotarget.3582] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 02/13/2015] [Indexed: 12/12/2022] Open
Abstract
Chorein encoded by VPS13A (vacuolar protein sorting-associated protein 13A) is defective in chorea-acanthocytosis. Chorein fosters neuronal cell survival, cortical actin polymerization and cell stiffness. In view of its anti-apoptotic effect in neurons, we explored whether chorein is expressed in cancer cells and influences cancer cell survival. RT-PCR was employed to determine transcript levels, specific siRNA to silence chorein, FACS analysis to follow apoptosis and Western blotting to quantify protein abundance. Chorein transcripts were detected in various cancer cell types. The mRNA coding for chorein and chorein protein were most abundant in drug resistant, poorly differentiated human rhabdomyosarcoma cells. Chorein silencing significantly reduced the ratio of phosphorylated (and thus activated) to total phosphoinositide 3 kinase (PI-3K), pointing to inactivation of this crucial pro-survival signaling molecule. Moreover, chorein silencing diminished transcript levels and protein expression of anti-apoptotic BCL-2 and enhanced transcript levels of pro-apoptotic Bax. Silencing of chorein in rhabdomyosarcoma cells was followed by mitochondrial depolarization, caspase 3 activation and stimulation of early and late apoptosis. In conclusion, chorein is expressed in various cancer cells. In cells with high chorein expression levels chorein silencing promotes apoptotic cell death, an effect paralleled by down-regulation of PI-3K activity and BCL-2/Bax expression ratio.
Collapse
Affiliation(s)
- Sabina Honisch
- Department of Physiology, University of Tübingen, Tübingen, Germany
| | - Willi Yu
- Department of Physiology, University of Tübingen, Tübingen, Germany
| | - Guilai Liu
- Department of Physiology, University of Tübingen, Tübingen, Germany
| | - Ioana Alesutan
- Department of Physiology, University of Tübingen, Tübingen, Germany
| | - Syeda T Towhid
- Department of Physiology, University of Tübingen, Tübingen, Germany
| | - Anna Tsapara
- Department of Biochemistry, University of Crete Medical School, Heraklion, Greece
| | - Sabine Schleicher
- Department of Hematology and Oncology, Children's Hospital, University Hospital of Tuebingen, Tübingen, Germany
| | - Rupert Handgretinger
- Department of Hematology and Oncology, Children's Hospital, University Hospital of Tuebingen, Tübingen, Germany
| | - Christos Stournaras
- Department of Physiology, University of Tübingen, Tübingen, Germany.,Department of Biochemistry, University of Crete Medical School, Heraklion, Greece
| | - Florian Lang
- Department of Physiology, University of Tübingen, Tübingen, Germany
| |
Collapse
|
13
|
Olivero M, Dettori D, Arena S, Zecchin D, Lantelme E, Di Renzo MF. The stress phenotype makes cancer cells addicted to CDT2, a substrate receptor of the CRL4 ubiquitin ligase. Oncotarget 2015; 5:5992-6002. [PMID: 25115388 PMCID: PMC4171607 DOI: 10.18632/oncotarget.2042] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
CDT2/L2DTL/RAMP is one of the substrate receptors of the Cullin Ring Ubiquitin Ligase 4 that targets for ubiquitin mediated degradation a number of substrates, such as CDT1, p21 and CHK1, involved in the regulation of cell cycle and survival. Here we show that CDT2 depletion was alone able to induce the apoptotic death in 12/12 human cancer cell lines from different tissues, regardless of the mutation profile and CDT2 expression level. Cell death was associated to rereplication and to loss of CDT1 degradation. Conversely, CDT2 depletion did not affect non-transformed human cells, such as immortalized kidney, lung and breast cell lines, and primary cultures of endothelial cells and osteoblasts. The ectopic over-expression of an activated oncogene, such as the mutation-activated RAS or the amplified MET in non-transformed immortalized breast cell lines and primary human osteoblasts, respectively, made cells transformed in vitro, tumorigenic in vivo, and susceptible to CDT2 loss. The widespread effect of CDT2 depletion in different cancer cells suggests that CDT2 is not in a synthetic lethal interaction to a single specific pathway. CDT2 likely is a non-oncogene to which transformed cells become addicted because of their enhanced cellular stress, such as replicative stress and DNA damage.
Collapse
Affiliation(s)
- Martina Olivero
- Department of Oncology, University of Torino, Candiolo, Torino, Italy; Candiolo Cancer Institute - FPO IRCCS, Candiolo, Torino, Italy
| | - Daniela Dettori
- Department of Oncology, University of Torino, Candiolo, Torino, Italy; Candiolo Cancer Institute - FPO IRCCS, Candiolo, Torino, Italy; present address: HUGEF, Human Genetics Foundation, Torino, Italy
| | - Sabrina Arena
- Department of Oncology, University of Torino, Candiolo, Torino, Italy; Candiolo Cancer Institute - FPO IRCCS, Candiolo, Torino, Italy
| | - Davide Zecchin
- Department of Oncology, University of Torino, Candiolo, Torino, Italy; Candiolo Cancer Institute - FPO IRCCS, Candiolo, Torino, Italy; present address: Signal Transduction Laboratory, Cancer Research UK London Research Institute, London U.K
| | - Erica Lantelme
- Department of Oncology, University of Torino, Candiolo, Torino, Italy; Candiolo Cancer Institute - FPO IRCCS, Candiolo, Torino, Italy; present address: Washington University in St. Louis, St. Louis, MO
| | - Maria Flavia Di Renzo
- Department of Oncology, University of Torino, Candiolo, Torino, Italy; Candiolo Cancer Institute - FPO IRCCS, Candiolo, Torino, Italy
| |
Collapse
|
14
|
Cheng YJ, Lee YC, Chiu WC, Tsai JW, Su YH, Hung AC, Chang PC, Huang CJ, Chai CY, Yuan SSF. High Id1 expression, a generally negative prognostic factor, paradoxically predicts a favorable prognosis for adjuvant paclitaxel plus cisplatin therapy in surgically treated lung cancer patients. Oncotarget 2015; 5:11564-75. [PMID: 25344919 PMCID: PMC4294339 DOI: 10.18632/oncotarget.2595] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2014] [Accepted: 10/18/2014] [Indexed: 12/24/2022] Open
Abstract
Adjuvant chemotherapy is commonly given to surgically treated non-small-cell lung cancer (NSCLC) patients. However, the prerequisite for chemotherapy needs to be scrutinized in order to maximize the benefits to patients. In this study, we observed that NSCLC cells with high Id1 protein expression were vulnerable to the treatment of paclitaxel and cisplatin. In addition, paclitaxel and cisplatin caused Id1 protein degradation through ubiquitination. In the nude mice xenograft model, the tumor growth was reduced to a large degree in the Id1-overexpressing group upon treatment with paclitaxel and cisplatin. Furthermore, immunohistochemical staining for Id1 followed by Kaplan-Meier survival analysis showed that surgically treated NSCLC patients with high Id1 expression in primary tumor tissues had better disease-free and overall survivals after adjuvant paclitaxel and cisplatin chemotherapy. In summary, our current data suggest that Id1, a generally negative prognostic factor, predicts a favorable prognosis in the case of surgically treated NSCLC patients receiving the definitive adjuvant chemotherapy. The distinct role of Id1 reported in this study may arise from the phenomenon of Id1 dependence of NSCLC cells for survival, which renders the cancer cells additionally susceptive to the adjuvant chemotherapy with paclitaxel and cisplatin.
Collapse
Affiliation(s)
- Yu-Jen Cheng
- Division of Thoracic Surgery, Department of Surgery, and Cancer Center, E-DA Hospital, Kaohsiung, Taiwan. Department of Postgraduate Medicine, School of Medicine for International Student, I-Shou University, Kaohsiung, Taiwan
| | - Yi-Chen Lee
- Department of Respiratory Therapy, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Wen-Chin Chiu
- Division of Thoracic Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Jen-Wei Tsai
- Department of Anatomic Pathology, E-DA Hospital, Kaohsiung, Taiwan
| | - Yu-Han Su
- Translational Research Center, Department of Medical Research, and Department of Obstetrics and Gynecology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Amos C Hung
- Translational Research Center, Department of Medical Research, and Department of Obstetrics and Gynecology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Po-Chih Chang
- Division of General Surgery, Department of Surgery, E-DA Hospital, Kaohsiung, Taiwan
| | - Chih-Jen Huang
- Department of Radiation Oncology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chee-Yin Chai
- Department of Pathology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Shyng-Shiou F Yuan
- Translational Research Center, Department of Medical Research, and Department of Obstetrics and Gynecology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan. School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
15
|
Chayka O, D'Acunto CW, Middleton O, Arab M, Sala A. Identification and pharmacological inactivation of the MYCN gene network as a therapeutic strategy for neuroblastic tumor cells. J Biol Chem 2014; 290:2198-212. [PMID: 25477524 PMCID: PMC4303671 DOI: 10.1074/jbc.m114.624056] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The MYC family of transcription factors consists of three well characterized members, c-MYC, L-MYC, and MYCN, deregulated in the majority of human cancers. In neuronal tumors such as neuroblastoma, MYCN is frequently activated by gene amplification, and reducing its expression by RNA interference has been shown to promote growth arrest and apoptosis of tumor cells. From a clinical perspective, RNA interference is not yet a viable option, and small molecule inhibitors of transcription factors are difficult to develop. We therefore planned to identify, at the global level, the genes interacting functionally with MYCN required to promote fitness of tumor cells facing oncogenic stress. To find genes whose inactivation is synthetically lethal to MYCN, we implemented a genome-wide approach in which we carried out a drop-out shRNA screen using a whole genome library that was delivered into isogenic neuroblastoma cell lines expressing or not expressing MYCN. After the screen, we selected for in-depth analysis four shRNAs targeting AHCY, BLM, PKMYT1, and CKS1B. These genes were chosen because they are directly regulated by MYC proteins, associated with poor prognosis of neuroblastoma patients, and inhibited by small molecule compounds. Mechanistically, we found that BLM and PKMYT1 are required to limit oncogenic stress and promote stabilization of the MYCN protein. Cocktails of small molecule inhibitors of CKS1B, AHCY, BLM, and PKMYT1 profoundly affected the growth of all neuroblastoma cell lines but selectively caused death of MYCN-amplified cells. Our findings suggest that drugging the MYCN network is a promising avenue for the treatment of high risk, neuroblastic cancers.
Collapse
Affiliation(s)
- Olesya Chayka
- From the Brunel Institute of Cancer Genetics and Pharmacogenomics, Brunel University London, London UB8 3PH, United Kingdom and the Institute of Child Health, University College London, London WC1N 1EH, United Kingdom
| | - Cosimo Walter D'Acunto
- the Institute of Child Health, University College London, London WC1N 1EH, United Kingdom
| | - Odette Middleton
- the Institute of Child Health, University College London, London WC1N 1EH, United Kingdom
| | - Maryam Arab
- From the Brunel Institute of Cancer Genetics and Pharmacogenomics, Brunel University London, London UB8 3PH, United Kingdom and
| | - Arturo Sala
- From the Brunel Institute of Cancer Genetics and Pharmacogenomics, Brunel University London, London UB8 3PH, United Kingdom and the Institute of Child Health, University College London, London WC1N 1EH, United Kingdom
| |
Collapse
|
16
|
De Schutter T, Andrei G, Topalis D, Naesens L, Snoeck R. Cidofovir selectivity is based on the different response of normal and cancer cells to DNA damage. BMC Med Genomics 2013; 6:18. [PMID: 23702334 PMCID: PMC3681722 DOI: 10.1186/1755-8794-6-18] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Accepted: 05/17/2013] [Indexed: 12/05/2022] Open
Abstract
Background Cidofovir (CDV) proved efficacious in treatment of human papillomaviruses (HPVs) hyperplasias. Antiproliferative effects of CDV have been associated with apoptosis induction, S-phase accumulation, and increased levels of tumor suppressor proteins. However, the molecular mechanisms for the selectivity and antitumor activity of CDV against HPV-transformed cells remain unexplained. Methods We evaluated CDV drug metabolism and incorporation into cellular DNA, in addition to whole genome gene expression profiling by means of microarrays in two HPV+ cervical carcinoma cells, HPV- immortalized keratinocytes, and normal keratinocytes. Results Determination of the metabolism and drug incorporation of CDV into genomic DNA demonstrated a higher rate of drug incorporation in HPV+ tumor cells and immortalized keratinocytes compared to normal keratinocytes. Gene expression profiling clearly showed distinct and specific drug effects in the cell types investigated. Although an effect on inflammatory response was seen in all cell types, different pathways were identified in normal keratinocytes compared to immortalized keratinocytes and HPV+ tumor cells. Notably, Rho GTPase pathways, LXR/RXR pathways, and acute phase response signaling were exclusively activated in immortalized cells. CDV exposed normal keratinocytes displayed activated cell cycle regulation upon DNA damage signaling to allow DNA repair via homologous recombination, resulting in genomic stability and survival. Although CDV induced cell cycle arrest in HPV- immortalized cells, DNA repair was not activated in these cells. In contrast, HPV+ cells lacked cell cycle regulation, leading to genomic instability and eventually apoptosis. Conclusions Taken together, our data provide novel insights into the mechanism of action of CDV and its selectivity for HPV-transformed cells. The proposed mechanism suggests that this selectivity is based on the inability of HPV+ cells to respond to DNA damage, rather than on a direct anti-HPV effect. Since cell cycle control is deregulated by the viral oncoproteins E6 and E7 in HPV+ cells, these cells are more susceptible to DNA damage than normal keratinocytes. Our findings underline the therapeutic potential of CDV for HPV-associated malignancies as well as other neoplasias.
Collapse
Affiliation(s)
- Tim De Schutter
- Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, KU Leuven, Leuven, Belgium
| | | | | | | | | |
Collapse
|
17
|
Sottile F, Gnemmi I, Cantilena S, D'Acunto WC, Sala A. A chemical screen identifies the chemotherapeutic drug topotecan as a specific inhibitor of the B-MYB/MYCN axis in neuroblastoma. Oncotarget 2012; 3:535-45. [PMID: 22619121 PMCID: PMC3388183 DOI: 10.18632/oncotarget.498] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
The transcription factor MycN is the prototypical neuroblastoma oncogene and a potential therapeutic target. However, its strong expression caused by gene amplification in about 30% of neuroblastoma patients is a considerable obstacle to the development of therapeutic approaches aiming at eliminating its tumourigenic activity. We have previously reported that B-Myb is essentially required for transcription of the MYCN amplicon and have also shown that B-MYB and MYCN are engaged in a feed forward loop promoting the survival/proliferation of neuroblastoma cells. We postulated that pharmacological strategies breaking the B-MYB/MYCN axis should result in clinically desirable effects. Thus, we implemented a high throughput chemical screen, using a curated library of ~1500 compounds from the National Cancer Institute, whose endpoint was the identification of small molecules that inhibited B-Myb. At the end of the screening, we found that the compounds pinafide, ellipticine and camptothecin inhibited B-Myb transcriptional activity in luciferase assays. One of the compounds, the topoisomerase-1 inhibitor camptothecin, is of considerable clinical interest since its derivatives topotecan and irinotecan are currently used as first and second line treatment agents for various types of cancer, including neuroblastoma. We found that neuroblastoma cells with amplification of MYCN are more sensitive than MYCN negative cells to camptothecin and topotecan killing. Campothecin and topotecan caused selective down-regulation of B-Myb and MycN expression in neuroblastoma cells. Notably, forced overexpression of B-Myb could antagonize the killing effect of topotecan and camptothecin, demonstrating that the transcription factor is a key target of the drugs. These results suggest that camptothecin and its analogues should be more effective in patients whose tumours feature amplification of MYCN and/or overexpression of B-MYB.
Collapse
|
18
|
Abstract
National Cancer Institute has announced 24 provocative questions on cancer. Here I try to answer some of them by linking the dots of existing knowledge.
Collapse
Affiliation(s)
- Mikhail V Blagosklonny
- Department of Cell Stress Biology, Roswell Park Cancer Institute, BLSC, L3-312, Elm and Carlton Streets, Buffalo, NY 14263, USA.
| |
Collapse
|
19
|
Lynch J, Fay J, Meehan M, Bryan K, Watters KM, Murphy DM, Stallings RL. MiRNA-335 suppresses neuroblastoma cell invasiveness by direct targeting of multiple genes from the non-canonical TGF-β signalling pathway. Carcinogenesis 2012; 33:976-85. [PMID: 22382496 DOI: 10.1093/carcin/bgs114] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Transforming growth factor-β (TGF-β) signaling regulates many diverse cellular activities through both canonical (SMAD-dependent) and non-canonical branches, which includes the mitogen-activated protein kinase (MAPK), Rho-like guanosine triphosphatase and phosphatidylinositol-3-kinase/AKT pathways. Here, we demonstrate that miR-335 directly targets and downregulates genes in the TGF-β non-canonical pathways, including the Rho-associated coiled-coil containing protein (ROCK1) and MAPK1, resulting in reduced phosphorylation of downstream pathway members. Specifically, inhibition of ROCK1 and MAPK1 reduces phosphorylation levels of the motor protein myosin light chain (MLC) leading to a significant inhibition of the invasive and migratory potential of neuroblastoma cells. Additionally, miR-335 targets the leucine-rich alpha-2-glycoprotein 1 (LRG1) messenger RNA, which similarly results in a significant reduction in the phosphorylation status of MLC and a decrease in neuroblastoma cell migration and invasion. Thus, we link LRG1 to the migratory machinery of the cell, altering its activity presumably by exerting its effect within the non-canonical TGF-β pathway. Moreover, we demonstrate that the MYCN transcription factor, whose coding sequence is highly amplified in a particularly clinically aggressive neuroblastoma tumor subtype, directly binds to a region immediately upstream of the miR-335 transcriptional start site, resulting in transcriptional repression. We conclude that MYCN contributes to neuroblastoma cell migration and invasion, by directly downregulating miR-335, resulting in the upregulation of the TGF-β signaling pathway members ROCK1, MAPK1 and putative member LRG1, which positively promote this process. Our results provide novel insight into the direct regulation of TGF-β non-canonical signaling by miR-335, which in turn is downregulated by MYCN.
Collapse
Affiliation(s)
- Jennifer Lynch
- Department of Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, York House, York Street, Dublin 2, Ireland
| | | | | | | | | | | | | |
Collapse
|
20
|
Anaplastic Lymphoma Kinase (ALK) regulates initiation of transcription of MYCN in neuroblastoma cells. Oncogene 2012; 31:5193-200. [PMID: 22286764 DOI: 10.1038/onc.2012.12] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Neuroblastoma is a neural crest-derived embryonal tumour of the postganglionic sympathetic nervous system and a disease with several different chromosomal gains and losses, which include MYCN-amplified neuroblastoma on chromosome 2, deletions of parts of the chromosomes 1p and 11q, gain of parts of 17q and triploidy. Recently, activating mutations of the ALK (Anaplastic Lymphoma Kinase) RTK (Receptor Tyrosine Kinase) gene have been described in neuroblastoma. A meta-analysis of neuroblastoma cases revealed that ALK mutations (49 of 709 cases) in relation to genomic subtype were most frequently observed in MYCN amplified tumours (8.9%), correlating with a poor clinical outcome. MYCN proteins target proliferation and apoptotic pathways, and have an important role in the progression of neuroblastoma. Here, we show that both wild-type and gain-of-function mutants in ALK are able to stimulate transcription at the MYCN promoter and initiate mRNA transcription of the MYCN gene in both neuronal and neuroblastoma cell lines. Further, this stimulation of MYCN gene transcription and de novo MYCN protein expression is abrogated by specific ALK inhibitors, such as crizotinib (PF-2341066), NVP-TAE684, and by small interfering RNA to ALK resulting in a decrease in proliferation rate. Finally, co-transfection of ALK gain-of-function mutations together with MYCN leads to an increase in transformation potential. Taken together, our results indicate that ALK signalling regulates initiation of transcription of the MYCN gene providing a possible explanation for the poor clinical outcome observed when MYCN is amplified together with activated ALK.
Collapse
|
21
|
Abstract
The transcription factor B-Myb plays a critical role in regulating gene expression and is implicated in controlling carcinogenesis and cellular senescence. Transcription of the B-Myb gene is regulated by retinoblastoma proteins acting directly on the B-Myb promoter. Recently, we found that microRNAs also control the abundance of B-Myb mRNA during senescence, adding another level of complexity to B-Myb regulation. This review focuses on the importance of B-Myb in cancer and senescence, with an emphasis on the regulation of B-Myb expression and activity.
Collapse
Affiliation(s)
- Ivan Martinez
- Department of Genetics and Yale Comprehensive Cancer Center, Yale School of Medicine, New Haven, Connecticut 06520-8005, USA
| | | |
Collapse
|