2
|
Wong SHD, Xu X, Chen X, Xin Y, Xu L, Lai CHN, Oh J, Wong WKR, Wang X, Han S, You W, Shuai X, Wong N, Tan Y, Duan L, Bian L. Manipulation of the Nanoscale Presentation of Integrin Ligand Produces Cancer Cells with Enhanced Stemness and Robust Tumorigenicity. NANO LETTERS 2021; 21:3225-3236. [PMID: 33764789 DOI: 10.1021/acs.nanolett.1c00501] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Developing strategies for efficient expansion of cancer stem-like cells (CSCs) in vitro will help investigate the mechanism underlying tumorigenesis and cancer recurrence. Herein, we report a dynamic culture substrate tethered with integrin ligand-bearing magnetic nanoparticles via a flexible polymeric linker to enable magnetic manipulation of the nanoscale ligand tether mobility. The cancer cells cultured on the substrate with high ligand tether mobility develop into large semispherical colonies with CSCs features, which can be abrogated by magnetically restricting the ligand tether mobility. Mechanistically, the substrate with high ligand tether mobility suppresses integrin-mediated mechanotransduction and histone-related methylation, thereby enhancing cancer cell stemness. The culture-derived high-stemness cells can generate tumors both locally and at the distant lung and uterus much more efficiently than the low-stemness cells. We believe that this magnetic nanoplatform provides a promising strategy for investigating the dynamic interaction between CSCs and the microenvironment and establishing a cost-effective tumor spheroid model.
Collapse
Affiliation(s)
- Siu Hong Dexter Wong
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, 999077, China
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong, 999077, China
| | - Xiao Xu
- Department of Orthopedics, Shenzhen Intelligent Orthopaedics and Biomedical Innovation Platform, Guangdong Artificial Intelligence Biomedical Innovation Platform, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, 518035, China
| | - Xi Chen
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, 999077, China
- Shenzhen Research Institute, The Hong Kong Polytechnic University, Shenzhen 518000, China
| | - Ying Xin
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, 999077, China
- Shenzhen Research Institute, The Hong Kong Polytechnic University, Shenzhen 518000, China
| | - Limei Xu
- Department of Orthopedics, Shenzhen Intelligent Orthopaedics and Biomedical Innovation Platform, Guangdong Artificial Intelligence Biomedical Innovation Platform, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, 518035, China
| | - Chun Him Nathanael Lai
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong, 999077, China
| | - Jiwon Oh
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong, 999077, China
| | - Wai Ki Ricky Wong
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong, 999077, China
| | - Xuemei Wang
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong, 999077, China
| | - Shisong Han
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong, 999077, China
- PCFM Lab of Ministry of Education, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
- Laboratory of Interventional Radiology, Department of Minimally Invasive Interventional Radiology, and Department of Radiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Wenxing You
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong, 999077, China
- Department of Surgery at Sir Y. K. Pao Centre for Cancer, The Chinese University of Hong Kong, Hong Kong, 999077, China
| | - Xintao Shuai
- PCFM Lab of Ministry of Education, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
- Laboratory of Interventional Radiology, Department of Minimally Invasive Interventional Radiology, and Department of Radiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Nathalie Wong
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong, 999077, China
- Department of Surgery at Sir Y. K. Pao Centre for Cancer, The Chinese University of Hong Kong, Hong Kong, 999077, China
| | - Youhua Tan
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, 999077, China
- Shenzhen Research Institute, The Hong Kong Polytechnic University, Shenzhen 518000, China
| | - Li Duan
- Department of Orthopedics, Shenzhen Intelligent Orthopaedics and Biomedical Innovation Platform, Guangdong Artificial Intelligence Biomedical Innovation Platform, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, 518035, China
| | - Liming Bian
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong, 999077, China
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, 518172, China
- China Orthopedic Regenerative Medicine Group (CORMed) Hangzhou, Zhejiang, 310058, China
| |
Collapse
|
3
|
Kütük SG, Nazıroğlu M. Selenium Diminishes Docetaxel-Induced Cell Death, Oxidative Stress, and Inflammation in the Laryngotracheal Epithelium of the Mouse. Biol Trace Elem Res 2020; 196:184-194. [PMID: 31729642 DOI: 10.1007/s12011-019-01914-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 09/20/2019] [Indexed: 01/31/2023]
Abstract
Docetaxel (DOCX) kills tumor cells through the formation of microtubules, calcium ion influx, apoptosis, and inflammation. However, DOCX has adverse effect on normal tissues through the production of reactive oxygen species (ROS), despite the adverse effect was inhibited by antioxidants. We investigated the protective role of selenium against DOCX-induced apoptosis and mitochondrial oxidative injury in laryngotracheal epithelial (LARYN) cells of mice. Thirty-two mice were divided into four groups (n = 8). The first group was used as a control. The second and third groups were treated with sodium selenite (Na-Sel) and DOCX, respectively. The fourth group was the combined group of Na-Sel and DOCX. At the end of the experiment, LARYN mucosa and cells were obtained from the mice. In the LARYN cells, the cell viability level was low in DOCX group, although glutathione peroxidase activity and cell viability level were increased by the treatment of Na-Sel. Increased lipid peroxidation, intracellular ROS, mitochondrial membrane depolarization, cell death levels, TNF-α, IL-1β, IL-6, caspase -3, and -9 activities in the DOCX group of LARYN cells were diminished by the treatment of Na-Sel. In conclusion, DOCX increased mitochondrial ROS, cell death, and inflammation in the LARYN cells, although the increase was reduced in the cells by Na-Sel treatment. DOCX-induced adverse oxidant, inflammatory, and apoptotic effects in the tissue might be reduced by the Na-Sel treatment.
Collapse
Affiliation(s)
- Sinem Gökçe Kütük
- Department of Otorhinolaryngology, Aydın State Hospital, Aydın, Turkey
| | - Mustafa Nazıroğlu
- Department of Biophysics, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey.
- Drug Discovery Unit, BSN Health, Analyses, Innovation, Consultancy, Organization, Agriculture and Industry LTD, Göller Bölgesi Teknokenti, Isparta, Turkey.
| |
Collapse
|
4
|
Expression and Role of Oct3/4 in Injury-Repair Process of Rat Alveolar Epithelium after 5-Fu Treatment. BIOMED RESEARCH INTERNATIONAL 2017; 2017:3856839. [PMID: 28948165 PMCID: PMC5602623 DOI: 10.1155/2017/3856839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 06/03/2017] [Accepted: 06/12/2017] [Indexed: 11/17/2022]
Abstract
OBJECTIVE We aimed to investigate how the embryonic stem cell-related gene Oct3/4 changes during the injury-repair process of distal pulmonary epithelium induced by 5-fluorouracil (5-Fu). METHODS We have developed the lung injury model induced by 5-Fu and observed the dynamic changes of Oct3/4 by indirect immunofluorescence, Western blot, and quantitative real-time PCR. Immunofluorescence double staining was used to compare the positions of Oct3/4(+) cells and other reported alveolar epithelial stem cells. RESULTS Oct3/4(+) cells were not found in normal rat lung epithelial cells. However, after treatment with 5-Fu, Oct3/4(+) cells appeared at 12 h, reached the peak at 24 h, then decreased at 48 h, and eventually disappeared at 72 h. Oct3/4 was localized in the nucleus. We found that the sites of Clara cell secretory protein and surfactant protein-C dual positive cells were apparently different from Oct3/4(+) cells. CONCLUSIONS Our results revealed that, in rat alveolar epithelium, expression of Oct3/4 could be induced after treatment with 5-Fu, then decreased gradually, and was silenced following the alveolar epithelial differentiation. We hold that Oct3/4(+) cells are lung stem cells, which can provide new evidence for identification and isolation of lung epithelial stem cells.
Collapse
|