1
|
Haronikova L, Bonczek O, Zatloukalova P, Kokas-Zavadil F, Kucerikova M, Coates PJ, Fahraeus R, Vojtesek B. Resistance mechanisms to inhibitors of p53-MDM2 interactions in cancer therapy: can we overcome them? Cell Mol Biol Lett 2021; 26:53. [PMID: 34911439 PMCID: PMC8903693 DOI: 10.1186/s11658-021-00293-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 11/05/2021] [Indexed: 12/13/2022] Open
Abstract
Since the discovery of the first MDM2 inhibitors, we have gained deeper insights into the cellular roles of MDM2 and p53. In this review, we focus on MDM2 inhibitors that bind to the p53-binding domain of MDM2 and aim to disrupt the binding of MDM2 to p53. We describe the basic mechanism of action of these MDM2 inhibitors, such as nutlin-3a, summarise the determinants of sensitivity to MDM2 inhibition from p53-dependent and p53-independent points of view and discuss the problems with innate and acquired resistance to MDM2 inhibition. Despite progress in MDM2 inhibitor design and ongoing clinical trials, their broad use in cancer treatment is not fulfilling expectations in heterogenous human cancers. We assess the MDM2 inhibitor types in clinical trials and provide an overview of possible sources of resistance to MDM2 inhibition, underlining the need for patient stratification based on these aspects to gain better clinical responses, including the use of combination therapies for personalised medicine.
Collapse
Affiliation(s)
- Lucia Haronikova
- RECAMO, Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53, Brno, Czech Republic.
| | - Ondrej Bonczek
- RECAMO, Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53, Brno, Czech Republic
- Department of Medical Biosciences, Umea University, 901 87, Umea, Vasterbotten, Sweden
| | - Pavlina Zatloukalova
- RECAMO, Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53, Brno, Czech Republic
| | - Filip Kokas-Zavadil
- RECAMO, Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53, Brno, Czech Republic
| | - Martina Kucerikova
- RECAMO, Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53, Brno, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Philip J Coates
- RECAMO, Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53, Brno, Czech Republic
| | - Robin Fahraeus
- RECAMO, Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53, Brno, Czech Republic
- Department of Medical Biosciences, Umea University, 901 87, Umea, Vasterbotten, Sweden
- Inserm UMRS1131, Institut de Génétique Moléculaire, Université Paris 7, Hôpital St. Louis, 75010, Paris, France
| | - Borivoj Vojtesek
- RECAMO, Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53, Brno, Czech Republic.
| |
Collapse
|
2
|
Sharma A, Khan H, Singh TG, Grewal AK, Najda A, Kawecka-Radomska M, Kamel M, Altyar AE, Abdel-Daim MM. Pharmacological Modulation of Ubiquitin-Proteasome Pathways in Oncogenic Signaling. Int J Mol Sci 2021; 22:ijms222111971. [PMID: 34769401 PMCID: PMC8584958 DOI: 10.3390/ijms222111971] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/27/2021] [Accepted: 10/28/2021] [Indexed: 12/20/2022] Open
Abstract
The ubiquitin-proteasome pathway (UPP) is involved in regulating several biological functions, including cell cycle control, apoptosis, DNA damage response, and apoptosis. It is widely known for its role in degrading abnormal protein substrates and maintaining physiological body functions via ubiquitinating enzymes (E1, E2, E3) and the proteasome. Therefore, aberrant expression in these enzymes results in an altered biological process, including transduction signaling for cell death and survival, resulting in cancer. In this review, an overview of profuse enzymes involved as a pro-oncogenic or progressive growth factor in tumors with their downstream signaling pathways has been discussed. A systematic literature review of PubMed, Medline, Bentham, Scopus, and EMBASE (Elsevier) databases was carried out to understand the nature of the extensive work done on modulation of ubiquitin-proteasome pathways in oncogenic signaling. Various in vitro, in vivo studies demonstrating the involvement of ubiquitin-proteasome systems in varied types of cancers and the downstream signaling pathways involved are also discussed in the current review. Several inhibitors of E1, E2, E3, deubiquitinase enzymes and proteasome have been applied for treating cancer. Some of these drugs have exhibited successful outcomes in in vivo studies on different cancer types, so clinical trials are going on for these inhibitors. This review mainly focuses on certain ubiquitin-proteasome enzymes involved in developing cancers and certain enzymes that can be targeted to treat cancer.
Collapse
Affiliation(s)
- Anmol Sharma
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, India; (A.S.); (H.K.); (A.K.G.)
| | - Heena Khan
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, India; (A.S.); (H.K.); (A.K.G.)
| | - Thakur Gurjeet Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, India; (A.S.); (H.K.); (A.K.G.)
- Correspondence: or (T.G.S.); (M.M.A.-D.); Tel.: +91-9815951171 (T.G.S.); +966-580192142 (M.M.A.-D.)
| | - Amarjot Kaur Grewal
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, India; (A.S.); (H.K.); (A.K.G.)
| | - Agnieszka Najda
- Department of Vegetable Crops and Medicinal Plants, University of Life Sciences in Lublin, 50A Doświadczalna Street, 20-280 Lublin, Poland; (A.N.); (M.K.-R.)
| | - Małgorzata Kawecka-Radomska
- Department of Vegetable Crops and Medicinal Plants, University of Life Sciences in Lublin, 50A Doświadczalna Street, 20-280 Lublin, Poland; (A.N.); (M.K.-R.)
| | - Mohamed Kamel
- Department of Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt;
| | - Ahmed E. Altyar
- Department of Pharmacy Practice, Faculty of Pharmacy, King Abdulaziz University, P.O. Box 80260, Jeddah 21589, Saudi Arabia;
| | - Mohamed M. Abdel-Daim
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
- Correspondence: or (T.G.S.); (M.M.A.-D.); Tel.: +91-9815951171 (T.G.S.); +966-580192142 (M.M.A.-D.)
| |
Collapse
|
3
|
Shen H, Zhang J, Wang C, Jain PP, Xiong M, Shi X, Lei Y, Chen S, Yin Q, Thistlethwaite PA, Wang J, Gong K, Yuan ZY, Yuan JXJ, Shyy JYJ. MDM2-Mediated Ubiquitination of Angiotensin-Converting Enzyme 2 Contributes to the Development of Pulmonary Arterial Hypertension. Circulation 2020; 142:1190-1204. [PMID: 32755395 PMCID: PMC7497891 DOI: 10.1161/circulationaha.120.048191] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Supplemental Digital Content is available in the text. Background: Angiotensin-converting enzyme 2 (ACE2) converts angiotensin II, a potent vasoconstrictor, to angiotensin-(1–7) and is also a membrane protein that enables coronavirus disease 2019 (COVID-19) infectivity. AMP-activated protein kinase (AMPK) phosphorylation of ACE2 enhances ACE2 stability. This mode of posttranslational modification of ACE2 in vascular endothelial cells is causative of a pulmonary hypertension (PH)–protective phenotype. The oncoprotein MDM2 (murine double minute 2) is an E3 ligase that ubiquitinates its substrates to cause their degradation. In this study, we investigated whether MDM2 is involved in the posttranslational modification of ACE2 through its ubiquitination of ACE2, and whether an AMPK and MDM2 crosstalk regulates the pathogenesis of PH. Methods: Bioinformatic analyses were used to explore E3 ligase that ubiquitinates ACE2. Cultured endothelial cells, mouse models, and specimens from patients with idiopathic pulmonary arterial hypertension were used to investigate the crosstalk between AMPK and MDM2 in regulating ACE2 phosphorylation and ubiquitination in the context of PH. Results: Levels of MDM2 were increased and those of ACE2 decreased in lung tissues or pulmonary arterial endothelial cells from patients with idiopathic pulmonary arterial hypertension and rodent models of experimental PH. MDM2 inhibition by JNJ-165 reversed the SU5416/hypoxia-induced PH in C57BL/6 mice. ACE2-S680L mice (dephosphorylation at S680) showed PH susceptibility, and ectopic expression of ACE2-S680L/K788R (deubiquitination at K788) reduced experimental PH. Moreover, ACE2-K788R overexpression in mice with endothelial cell–specific AMPKα2 knockout mitigated PH. Conclusions: Maladapted posttranslational modification (phosphorylation and ubiquitination) of ACE2 at Ser-680 and Lys-788 is involved in the pathogenesis of pulmonary arterial hypertension and experimental PH. Thus, a combined intervention of AMPK and MDM2 in the pulmonary endothelium might be therapeutically effective in PH treatment.
Collapse
Affiliation(s)
- Hui Shen
- Department of Cardiology, the Affiliated Hospital of Yangzhou University, Yangzhou University, China (H.S., K.G.)
| | - Jiao Zhang
- Department of Cardiology, First Affiliated Hospital of Xi'an Jiaotong University, China (J.Z., C.W., Y.L., Z.-Y.Y.).,Division of Cardiology, Department of Medicine (J.Z., J.Y.-J.S.), University of California, San Diego, La Jolla.,Cardiovascular Research Center, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, China (J.Z., C.W., Y.L., S.C., Q.Y.)
| | - Chen Wang
- Department of Cardiology, First Affiliated Hospital of Xi'an Jiaotong University, China (J.Z., C.W., Y.L., Z.-Y.Y.).,Cardiovascular Research Center, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, China (J.Z., C.W., Y.L., S.C., Q.Y.)
| | - Pritesh P Jain
- Division of Pulmonary, Critical Care and Sleep Medicine (P.P.J., M.X., J.W., J.X.-J.Y.), University of California, San Diego, La Jolla
| | - Mingmei Xiong
- Division of Pulmonary, Critical Care and Sleep Medicine (P.P.J., M.X., J.W., J.X.-J.Y.), University of California, San Diego, La Jolla.,Department of Critical Medicine, The Third Affiliated Hospital of Guangzhou Medical University, China (M.X.)
| | | | - Yuyang Lei
- Department of Cardiology, First Affiliated Hospital of Xi'an Jiaotong University, China (J.Z., C.W., Y.L., Z.-Y.Y.).,Cardiovascular Research Center, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, China (J.Z., C.W., Y.L., S.C., Q.Y.)
| | - Shanshan Chen
- Cardiovascular Research Center, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, China (J.Z., C.W., Y.L., S.C., Q.Y.)
| | - Qian Yin
- Cardiovascular Research Center, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, China (J.Z., C.W., Y.L., S.C., Q.Y.)
| | - Patricia A Thistlethwaite
- Division of Cardiothoracic Surgery, Department of Surgery (P.A.T.), University of California, San Diego, La Jolla
| | - Jian Wang
- Division of Pulmonary, Critical Care and Sleep Medicine (P.P.J., M.X., J.W., J.X.-J.Y.), University of California, San Diego, La Jolla.,State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Disease, First Affiliated Hospital of Guangzhou Medical University, China (J.W.)
| | - Kaizheng Gong
- Department of Cardiology, the Affiliated Hospital of Yangzhou University, Yangzhou University, China (H.S., K.G.)
| | - Zu-Yi Yuan
- Department of Cardiology, First Affiliated Hospital of Xi'an Jiaotong University, China (J.Z., C.W., Y.L., Z.-Y.Y.)
| | - Jason X-J Yuan
- Division of Pulmonary, Critical Care and Sleep Medicine (P.P.J., M.X., J.W., J.X.-J.Y.), University of California, San Diego, La Jolla
| | - John Y-J Shyy
- Division of Cardiology, Department of Medicine (J.Z., J.Y.-J.S.), University of California, San Diego, La Jolla
| |
Collapse
|
4
|
Carter BZ, Mak PY, Mu H, Wang X, Tao W, Mak DH, Dettman EJ, Cardone M, Zernovak O, Seki T, Andreeff M. Combined inhibition of MDM2 and BCR-ABL1 tyrosine kinase targets chronic myeloid leukemia stem/progenitor cells in a murine model. Haematologica 2019; 105:1274-1284. [PMID: 31371419 PMCID: PMC7193504 DOI: 10.3324/haematol.2019.219261] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 07/26/2019] [Indexed: 12/14/2022] Open
Abstract
Although highly effective, BCR-ABL1 tyrosine kinase inhibitors do not target chronic myeloid leukemia (CML) stem cells. Most patients relapse upon tyrosine kinase inhibitor therapy cessation. We reported previously that combined BCR-ABL1 and BCL-2 inhibition synergistically targets CML stem/progenitor cells. p53 induces apoptosis mainly by modulating BCL-2 family proteins. Although infrequently mutated in CML, p53 is antagonized by MDM2, which is regulated by BCR-ABL1 signaling. We hypothesized that MDM2 inhibition could sensitize CML cells to tyrosine kinase inhibitors. Using an inducible transgenic Scl-tTa-BCR-ABL1 murine CML model, we found, by RT-PCR and CyTOF proteomics increased p53 signaling in CML bone marrow (BM) cells compared with controls in CD45+ and linage-SCA-1+C-KIT+ populations. CML BM cells were more sensitive to exogenous BH3 peptides than controls. Combined inhibition of BCR-ABL1 with imatinib and MDM2 with DS-5272 increased NOXA level, markedly reduced leukemic linage-SCA-1+C-KIT+ cells and hematopoiesis, decreased leukemia burden, significantly prolonged the survival of mice engrafted with BM cells from Scl-tTa-BCR-ABL1 mice, and significantly decreased CML stem cell frequency in secondary transplantations. Our results suggest that CML stem/progenitor cells have increased p53 signaling and a propensity for apoptosis. Combined MDM2 and BCR-ABL1 inhibition targets CML stem/progenitor cells and has the potential to improve cure rates for CML.
Collapse
Affiliation(s)
- Bing Z Carter
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Po Yee Mak
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hong Mu
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xiangmeng Wang
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Wenjing Tao
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Duncan H Mak
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | | | - Oleg Zernovak
- Daiichi Sankyo Co. Ltd., Oncology Laboratories, R&D Division, 2-58, Hiromachi 1-Chrome, Shinagawa-ku, Tokyo, Japan
| | - Takahiko Seki
- Daiichi Sankyo Co. Ltd., Oncology Laboratories, R&D Division, 2-58, Hiromachi 1-Chrome, Shinagawa-ku, Tokyo, Japan
| | - Michael Andreeff
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
5
|
Zhu HQ, Gao FH. Regulatory Molecules and Corresponding Processes of BCR-ABL Protein Degradation. J Cancer 2019; 10:2488-2500. [PMID: 31258755 PMCID: PMC6584333 DOI: 10.7150/jca.29528] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 05/02/2019] [Indexed: 12/24/2022] Open
Abstract
The BCR-ABL fusion protein with strong tyrosine kinase activity is one of the molecular biological bases of leukemia. Imatinib (Gleevec), a specific targeted drug for the treatment of chronic myeloid leukemia (CML), was developed for inhibiting the kinase activity of the BCR-ABL fusion protein. Despite the positive clinical efficacy of imatinib, the proportion of imatinib resistance has gradually increased. The main reason for the resistance is a decrease in sensitivity to imatinib caused by mutation or amplification of the BCR-ABL gene. In response to this phenomenon, the new generation of tyrosine kinase inhibitors (TKIs) targeting the BCR-ABL fusion protein was developed to solve the problem. However this strategy only selectively inhibits the tyrosine kinase activity of the BCR-ABL protein without eliminating the BCR-ABL protein, it does not fundamentally cure the BCR-ABL-positive leukemia patients. With the accumulation of the knowledge of cellular molecular biology, it has become possible to specifically eliminate certain proteins by cellular proteases in a specific way. Therefore, the therapeutic strategy to induce the degradation of the BCR-ABL fusion protein is superior to the strategy of inhibiting its activity. The protein degradation strategy is also a solution to the TKI resistance caused by different BCR-ABL gene point mutations. In order to provide possible exploration directions and clues for eliminating the BCR-ABL fusion protein in tumor cells, we summarize the significant molecules involved in the degradation pathway of the BCR-ABL protein, as well as the reported potent compounds that can target the BCR-ABL protein for degradation.
Collapse
Affiliation(s)
- Han-Qing Zhu
- Department of Oncology, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Feng-Hou Gao
- Department of Oncology, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| |
Collapse
|
6
|
Luo F, Liu H, Yang S, Fang Y, Zhao Z, Hu Y, Jin Y, Li P, Gao T, Cao C, Liu X. Nonreceptor Tyrosine Kinase c-Abl- and Arg-Mediated IRF3 Phosphorylation Regulates Innate Immune Responses by Promoting Type I IFN Production. THE JOURNAL OF IMMUNOLOGY 2019; 202:2254-2265. [PMID: 30842273 DOI: 10.4049/jimmunol.1800461] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 02/15/2019] [Indexed: 01/03/2023]
Abstract
The nonreceptor tyrosine kinase c-Abl plays important roles in T cell development and immune responses; however, the mechanism is poorly understood. IFN regulatory factor 3 (IRF3) is a key transcriptional regulator of type I IFN-dependent immune responses against DNA and RNA viruses. The data in this study show that IRF3 is physically associated with c-Abl in vivo and directly binds to c-Abl in vitro. IRF3 is phosphorylated by c-Abl and c-Abl-related kinase, Arg, mainly at Y292. The inhibitor AMN107 inhibits IFN-β production induced by poly(dA:dT), poly(I:C), and Sendai virus in THP-1 and mouse bone marrow-derived macrophage cells. IRF3-induced transcription of IFN-β is significantly reduced by the mutation of Y292 to F. Moreover, AMN107 suppresses gene expression of absent in melanoma 2 (AIM2) and subsequently reduces inflammasome activation induced by cytosolic bacteria, dsDNA, and DNA viruses. Consistent with this finding, Francisella tularensis subsp. holarctica live vaccine strain (Ft LVS), which is known as an activator of AIM2 inflammasome, induces death in significantly more C57BL/6 mice treated with the Abl inhibitor AMN107 or c-Abl/Arg small interfering RNA than in untreated mice. This study provides new insight into the function of c-Abl and Arg in regulating immune responses and AIM2 inflammasome activation, especially against Ft LVS infection.
Collapse
Affiliation(s)
- Fengyan Luo
- Beijing Institute of Biotechnology, Beijing 100850, China
| | - Hainan Liu
- Beijing Institute of Biotechnology, Beijing 100850, China
| | - Shasha Yang
- Institute of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, China; and
| | - Yi Fang
- 307 Hospital, Beijing 100850, China
| | - Zhihu Zhao
- Beijing Institute of Biotechnology, Beijing 100850, China
| | - Yong Hu
- Beijing Institute of Biotechnology, Beijing 100850, China
| | - Yanwen Jin
- Beijing Institute of Biotechnology, Beijing 100850, China
| | - Ping Li
- Beijing Institute of Biotechnology, Beijing 100850, China
| | - Ting Gao
- Beijing Institute of Biotechnology, Beijing 100850, China
| | - Cheng Cao
- Beijing Institute of Biotechnology, Beijing 100850, China;
| | - Xuan Liu
- Beijing Institute of Biotechnology, Beijing 100850, China;
| |
Collapse
|
7
|
Qin JJ, Wang W, Zhang R. Experimental Therapy of Advanced Breast Cancer: Targeting NFAT1-MDM2-p53 Pathway. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2017; 151:195-216. [PMID: 29096894 PMCID: PMC6663080 DOI: 10.1016/bs.pmbts.2017.07.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Advanced breast cancer, especially advanced triple-negative breast cancer, is typically more aggressive and more difficult to treat than other breast cancer phenotypes. There is currently no curable option for breast cancer patients with advanced diseases, highlighting the urgent need for novel treatment strategies. We have recently discovered that the nuclear factor of activated T cells 1 (NFAT1) activates the murine double minute 2 (MDM2) oncogene. Both MDM2 and NFAT1 are overexpressed and constitutively activated in breast cancer, particularly in advanced breast cancer, and contribute to its initiation, progression, and metastasis. MDM2 regulates cancer cell proliferation, cell cycle progression, apoptosis, migration, and invasion through both p53-dependent and -independent mechanisms. We have proposed to target the NFAT1-MDM2-p53 pathway for the treatment of human cancers, especially breast cancer. We have recently identified NFAT1 and MDM2 dual inhibitors that have shown excellent in vitro and in vivo activities against breast cancer, including triple-negative breast cancer. Herein, we summarize recent advances made in the understanding of the oncogenic functions of MDM2 and NFAT1 in breast cancer, as well as current targeting strategies and representative inhibitors. We also propose several strategies for inhibiting the NFAT1-MDM2-p53 pathway, which could be useful for developing more specific and effective inhibitors for breast cancer therapy.
Collapse
Affiliation(s)
- Jiang-Jiang Qin
- University of Houston, Houston, TX, United States; Texas Tech University Health Sciences Center, Amarillo, TX, United States
| | - Wei Wang
- University of Houston, Houston, TX, United States; Texas Tech University Health Sciences Center, Amarillo, TX, United States
| | - Ruiwen Zhang
- University of Houston, Houston, TX, United States; Texas Tech University Health Sciences Center, Amarillo, TX, United States.
| |
Collapse
|
8
|
Wu J, Kumar S, Wang F, Wang H, Chen L, Arsenault P, Mattern M, Weinstock J. Chemical Approaches to Intervening in Ubiquitin Specific Protease 7 (USP7) Function for Oncology and Immune Oncology Therapies. J Med Chem 2017; 61:422-443. [DOI: 10.1021/acs.jmedchem.7b00498] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Jian Wu
- Progenra, Inc., 277 Great Valley Parkway, Malvern, Pennsylvania 19355, United States
| | - Suresh Kumar
- Progenra, Inc., 277 Great Valley Parkway, Malvern, Pennsylvania 19355, United States
| | - Feng Wang
- Progenra, Inc., 277 Great Valley Parkway, Malvern, Pennsylvania 19355, United States
| | - Hui Wang
- Progenra, Inc., 277 Great Valley Parkway, Malvern, Pennsylvania 19355, United States
| | - Lijia Chen
- Progenra, Inc., 277 Great Valley Parkway, Malvern, Pennsylvania 19355, United States
| | - Patrick Arsenault
- Progenra, Inc., 277 Great Valley Parkway, Malvern, Pennsylvania 19355, United States
| | - Michael Mattern
- Progenra, Inc., 277 Great Valley Parkway, Malvern, Pennsylvania 19355, United States
| | - Joseph Weinstock
- Progenra, Inc., 277 Great Valley Parkway, Malvern, Pennsylvania 19355, United States
| |
Collapse
|