1
|
Mishra J, Chakraborty S, Nandi P, Manna S, Baral T, Niharika, Roy A, Mishra P, Patra SK. Epigenetic regulation of androgen dependent and independent prostate cancer. Adv Cancer Res 2024; 161:223-320. [PMID: 39032951 DOI: 10.1016/bs.acr.2024.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
Prostate cancer is one of the most common malignancies among men worldwide. Besides genetic alterations, epigenetic modulations including DNA methylation, histone modifications and miRNA mediated alteration of gene expression are the key driving forces for the prostate tumor development and cancer progression. Aberrant expression and/or the activity of the epigenetic modifiers/enzymes, results in aberrant expression of genes involved in DNA repair, cell cycle regulation, cell adhesion, apoptosis, autophagy, tumor suppression and hormone response and thereby disease progression. Altered epigenome is associated with prostate cancer recurrence, progression, aggressiveness and transition from androgen-dependent to androgen-independent phenotype. These epigenetic modifications are reversible and various compounds/drugs targeting the epigenetic enzymes have been developed that are effective in cancer treatment. This chapter focuses on the epigenetic alterations in prostate cancer initiation and progression, listing different epigenetic biomarkers for diagnosis and prognosis of the disease and their potential as therapeutic targets. This chapter also summarizes different epigenetic drugs approved for prostate cancer therapy and the drugs available for clinical trials.
Collapse
Affiliation(s)
- Jagdish Mishra
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha, India
| | - Subhajit Chakraborty
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha, India
| | - Piyasa Nandi
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha, India
| | - Soumen Manna
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha, India
| | - Tirthankar Baral
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha, India
| | - Niharika
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha, India
| | - Ankan Roy
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha, India
| | - Prahallad Mishra
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha, India
| | - Samir Kumar Patra
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha, India.
| |
Collapse
|
2
|
Gong J, Kim DM, Freeman MR, Kim H, Ellis L, Smith B, Theodorescu D, Posadas E, Figlin R, Bhowmick N, Freedland SJ. Genetic and biological drivers of prostate cancer disparities in Black men. Nat Rev Urol 2024; 21:274-289. [PMID: 37964070 DOI: 10.1038/s41585-023-00828-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/05/2023] [Indexed: 11/16/2023]
Abstract
Black men with prostate cancer have historically had worse outcomes than white men with prostate cancer. The causes of this disparity in outcomes are multi-factorial, but a potential basis is that prostate cancers in Black men are biologically distinct from prostate cancers in white men. Evidence suggests that genetic and ancestral factors, molecular pathways involving androgen and non-androgen receptor signalling, inflammation, epigenetics, the tumour microenvironment and tumour metabolism are contributing factors to the racial disparities observed. Key genetic and molecular pathways linked to prostate cancer risk and aggressiveness have potential clinical relevance. Describing biological drivers of prostate cancer disparities could inform efforts to improve outcomes for Black men with prostate cancer.
Collapse
Affiliation(s)
- Jun Gong
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| | - Daniel M Kim
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Michael R Freeman
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Urology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Hyung Kim
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Urology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Leigh Ellis
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Bethany Smith
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Dan Theodorescu
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Urology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Edwin Posadas
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Robert Figlin
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Neil Bhowmick
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Stephen J Freedland
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Urology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Section of Urology, Durham VA Medical Center, Durham, NC, USA
| |
Collapse
|
3
|
Temilola DO, Wium M, Paccez J, Salukazana AS, Otu HH, Carbone GM, Kaestner L, Cacciatore S, Zerbini LF. Potential of miRNAs in Plasma Extracellular Vesicle for the Stratification of Prostate Cancer in a South African Population. Cancers (Basel) 2023; 15:3968. [PMID: 37568783 PMCID: PMC10417259 DOI: 10.3390/cancers15153968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/29/2023] [Accepted: 08/01/2023] [Indexed: 08/13/2023] Open
Abstract
Prostate cancer (PCa) is the most common cause of cancer death among African men. The analysis of microRNAs (miRNAs) in plasma extracellular vesicles (EVs) can be utilized as a non-invasive tool for the diagnosis of PCa. In this study, we used small RNA sequencing to profile miRNAs cargo in plasma EVs from South African PCa patients. We evaluated the differential expression of miRNAs between low and high Gleason scores in the plasma EVs of South African patients and in the prostatic tissue from data available in the Cancer Genome Atlas (TCGA) Data Portal. We identified 7 miRNAs differently expressed in both EVs and prostatic tissues. We evaluated their expression using qPCR in a larger cohort of 10 patients with benign prostatic hyperplasia (BPH) and 24 patients with PCa. Here, we reported that the ratio between two of these miRNAs (i.e., miR-194-5p/miR-16-5p) showed a higher concentration in PCa compared to BPH and in metastatic PCa compared to localized PCa. We explored for the first time the profiling of miRNAs cargo in plasma EVs as a tool for the identification of putative markers in the South African population. Our finding indicated the ratio miR-194-5p/miR-16-5p as a non-invasive marker for the evaluation of PCa aggressiveness in this population.
Collapse
Affiliation(s)
- Dada Oluwaseyi Temilola
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town 7925, South Africa
- Integrative Biomedical Sciences Division, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
| | - Martha Wium
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town 7925, South Africa
| | - Juliano Paccez
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town 7925, South Africa
| | - Azola Samkele Salukazana
- Division of Urology, University of Cape Town, Groote Schuur Hospital, Cape Town 7925, South Africa
| | - Hasan H. Otu
- Department of Electrical and Computer Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Giuseppina M. Carbone
- Institute of Oncology Research (IOR), Università della Svizzera italiana, 6900 Bellinzona, Switzerland
| | - Lisa Kaestner
- Division of Urology, University of Cape Town, Groote Schuur Hospital, Cape Town 7925, South Africa
| | - Stefano Cacciatore
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town 7925, South Africa
| | - Luiz Fernando Zerbini
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town 7925, South Africa
| |
Collapse
|
4
|
Gujrati H, Ha S, Wang BD. Deregulated microRNAs Involved in Prostate Cancer Aggressiveness and Treatment Resistance Mechanisms. Cancers (Basel) 2023; 15:3140. [PMID: 37370750 PMCID: PMC10296615 DOI: 10.3390/cancers15123140] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/06/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
Prostate cancer (PCa) is the most frequently diagnosed cancer and the second leading cause of cancer deaths among American men. Complex genetic and epigenetic mechanisms are involved in the development and progression of PCa. MicroRNAs (miRNAs) are short noncoding RNAs that regulate protein expression at the post-transcriptional level by targeting mRNAs for degradation or inhibiting protein translation. In the past two decades, the field of miRNA research has rapidly expanded, and emerging evidence has revealed miRNA dysfunction to be an important epigenetic mechanism underlying a wide range of diseases, including cancers. This review article focuses on understanding the functional roles and molecular mechanisms of deregulated miRNAs in PCa aggressiveness and drug resistance based on the existing literature. Specifically, the miRNAs differentially expressed (upregulated or downregulated) in PCa vs. normal tissues, advanced vs. low-grade PCa, and treatment-responsive vs. non-responsive PCa are discussed. In particular, the oncogenic and tumor-suppressive miRNAs involved in the regulation of (1) the synthesis of the androgen receptor (AR) and its AR-V7 splice variant, (2) PTEN expression and PTEN-mediated signaling, (3) RNA splicing mechanisms, (4) chemo- and hormone-therapy resistance, and (5) racial disparities in PCa are discussed and summarized. We further provide an overview of the current advances and challenges of miRNA-based biomarkers and therapeutics in clinical practice for PCa diagnosis/prognosis and treatment.
Collapse
Affiliation(s)
- Himali Gujrati
- Department of Pharmaceutical Sciences, University of Maryland Eastern Shore School of Pharmacy, Princess Anne, MD 21853, USA
| | - Siyoung Ha
- Department of Pharmaceutical Sciences, University of Maryland Eastern Shore School of Pharmacy, Princess Anne, MD 21853, USA
| | - Bi-Dar Wang
- Department of Pharmaceutical Sciences, University of Maryland Eastern Shore School of Pharmacy, Princess Anne, MD 21853, USA
- Hormone Related Cancers Program, University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore, MD 21201, USA
| |
Collapse
|
5
|
Gujrati H, Ha S, Mohamed A, Wang BD. MicroRNA-mRNA Regulatory Network Mediates Activation of mTOR and VEGF Signaling in African American Prostate Cancer. Int J Mol Sci 2022; 23:ijms23062926. [PMID: 35328346 PMCID: PMC8949405 DOI: 10.3390/ijms23062926] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 02/25/2022] [Accepted: 03/05/2022] [Indexed: 12/11/2022] Open
Abstract
African American (AA) men exhibit 1.6-fold higher prostate cancer (PCa) incidence and 2.4-fold higher mortality rates compared to European American (EA) men. In addition to socioeconomic factors, emerging evidence suggests that intrinsic biological differences may explain part of PCa disparities. In this study, we applied microRNA (miRNA)-driven bioinformatics to evaluate whether differential miRNA-mRNA regulatory networks play a role in promoting the AA PCa disparities. 10 differentially expressed miRNAs were imported to mirPath V.3 algorithm, leading to identification of 58 signaling pathways differentially regulated in AA PCa versus EA PCa. Among these pathways, we particularly focused on mTOR and VEGF signaling, where we identified 5 reciprocal miRNA-mRNA pairings: miR-34a-5p/HIF1A, miR-34a-5p/PIK3CB, miR-34a-5p/IGFBP2, miR-99b-5p/MTOR and miR-96-5p/MAPKAPK2 in AA PCa versus EA PCa. RT-qPCR validation confirmed that miR-34a-5p, miR-99b-5p and MAPKAPK2 were downregulated, while miR-96-5p, IGFBP2, HIF1A, PIK3CB and MTOR were upregulated in AA PCa versus EA PCa cells. Transfection of miRNA mimics/antagomir followed by RT-qPCR and Western blot analysis further verified that IGFBP2, HIF1A and PIK3CB are negatively regulated by miR-34a-5p, whereas MTOR and MAPKAPK2 are negatively regulated by miR-99b-5p and miR-96-5p, respectively, at mRNA and protein levels. Targeting reciprocal pairings by miR-34a-5p mimic, miR-99b-5p mimic or miR-96-5p antagomir downregulates HIF1α, PI3Kβ, mTOR, IGFBP2 but upregulates MAPKAPK2, subsequently reducing cell proliferation and sensitizing docetaxel-induced cytotoxicity in PCa cells. These results suggest that miRNA-mRNA regulatory network plays a critical role in AA PCa disparities, and targeting these core miRNA-mRNA pairings may reduce PCa aggressiveness and overcome the chemoresistance in AA patients.
Collapse
Affiliation(s)
- Himali Gujrati
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland Eastern Shore, Princess Anne, MD 21853, USA; (H.G.); (S.H.)
| | - Siyoung Ha
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland Eastern Shore, Princess Anne, MD 21853, USA; (H.G.); (S.H.)
| | - Azah Mohamed
- Toxicology Program, University of Maryland Eastern Shore, Princess Anne, MD 21853, USA;
| | - Bi-Dar Wang
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland Eastern Shore, Princess Anne, MD 21853, USA; (H.G.); (S.H.)
- Hormone Related Cancers Program, University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore, MD 21201, USA
- Correspondence:
| |
Collapse
|
6
|
Taheri M, Khoshbakht T, Jamali E, Kallenbach J, Ghafouri-Fard S, Baniahmad A. Interaction between Non-Coding RNAs and Androgen Receptor with an Especial Focus on Prostate Cancer. Cells 2021; 10:3198. [PMID: 34831421 PMCID: PMC8619311 DOI: 10.3390/cells10113198] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/10/2021] [Accepted: 11/11/2021] [Indexed: 12/16/2022] Open
Abstract
The androgen receptor (AR) is a member of the nuclear receptor superfamily and has three functional domains, namely the N-terminal, DNA binding, and C-terminal domain. The N-terminal domain harbors potent transactivation functions, whereas the C-terminal domain binds to androgens and antiandrogens used to treat prostate cancer. AR has genomic activity being DNA binding-dependent or through interaction with other DNA-bound transcription factors, as well as a number of non-genomic, non-canonical functions, such as the activation of the ERK, AKT, and MAPK pathways. A bulk of evidence indicates that non-coding RNAs have functional interactions with AR. This type of interaction is implicated in the pathogenesis of human malignancies, particularly prostate cancer. In the current review, we summarize the available data on the role of microRNAs, long non-coding RNAs, and circular RNAs on the expression of AR and modulation of AR signaling, as well as the effects of AR on their expression. Recognition of the complicated interaction between non-coding RNAs and AR has practical importance in the design of novel treatment options, as well as modulation of response to conventional therapeutics.
Collapse
Affiliation(s)
- Mohammad Taheri
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran 1983535511, Iran;
- Institute of Human Genetics, Jena University Hospital, 07747 Jena, Germany;
| | - Tayyebeh Khoshbakht
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran 1983535511, Iran;
| | - Elena Jamali
- Department of Pathology, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran 1983535511, Iran;
| | - Julia Kallenbach
- Institute of Human Genetics, Jena University Hospital, 07747 Jena, Germany;
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran 1983535511, Iran
| | - Aria Baniahmad
- Institute of Human Genetics, Jena University Hospital, 07747 Jena, Germany;
| |
Collapse
|
7
|
Gurbuz V, Sozen S, Bilen CY, Konac E. miR-148a, miR-152 and miR-200b promote prostate cancer metastasis by targeting DNMT1 and PTEN expression. Oncol Lett 2021; 22:805. [PMID: 34630712 PMCID: PMC8488332 DOI: 10.3892/ol.2021.13066] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 09/07/2021] [Indexed: 12/14/2022] Open
Abstract
MicroRNAs (miRs) modulate the expression of target genes in the signal pathway on transcriptome level. The present study investigated the ‘epigenetic-based miRNA (epi-miRNA)-mRNA’ regulatory network of miR-34b, miR-34c, miR-148a, miR-152, miR-200a and miR-200b epi-miRNAs and their target genes, DNA methyltransferase (DNMT1, 3a and 3b), phosphate and tensin homolog (PTEN) and NK3 Homeobox 1 (NKX3.1), in prostate cancer (PCa) using reverse transcription-quantitative PCR. The expression level of NKX3.1 were not significantly different between the PCa, Met-PCa and control groups. However, in the PCa and Met-PCa groups, the expression level of DNMT1 was upregulated, while DNMT3a, DNMT3b and PTEN were downregulated. Overexpression of DNMT1 (~5 and ~6-fold increase in the PCa and Met-PCa groups respectively) was accompanied by a decreased expression in PTEN, indicating a potential negative association. Both groups indicated that a high level of DNMT1 is associated with the aggressiveness of cancer, and there is a a directly proportional relationship between this gene and PSA, GS and TNM staging. A significant ~2 to ~5-fold decrease in the expression levels of DNMT3a and DNMT3b was found in both groups. In the PCa group, significant associations were identified between miR-34b and DNMT1/DNMT3b; between miR-34c/miR-148a and all target genes; between miR-152 and DNMT1/DNMT3b and PTEN; and between miR-200a/b and DNMT1. In the Met-PCa group, miR-148a, miR-152 and miR-200b exhibited a significant association with all target genes. A significant negative association was identified between PTEN and DNMT1 in the Met-PCa group. It was also revealed that that miR-148a, miR-152 and miR-200b increased the expression of DNMT1 and suppressed PTEN. Furthermore, the ‘epi-miRNA-mRNA’ bidirectional feedback loop was emphasised and the methylation pattern in PCa anti-cancer therapeutics was highlighted.
Collapse
Affiliation(s)
- Venhar Gurbuz
- Department of Medical Biology and Genetics, Faculty of Medicine, Gazi University, Ankara 06510, Turkey
| | - Sinan Sozen
- Department of Urology, Faculty of Medicine, Gazi University, Ankara 06510, Turkey
| | - Cenk Y Bilen
- Department of Urology, Faculty of Medicine, Hacettepe University, Ankara 06100, Turkey
| | - Ece Konac
- Department of Medical Biology and Genetics, Faculty of Medicine, Gazi University, Ankara 06510, Turkey
| |
Collapse
|
8
|
Wang C, Chen Q, Xu H. Wnt/β-catenin signal transduction pathway in prostate cancer and associated drug resistance. Discov Oncol 2021; 12:40. [PMID: 35201496 PMCID: PMC8777554 DOI: 10.1007/s12672-021-00433-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 09/01/2021] [Indexed: 11/22/2022] Open
Abstract
Globally, prostate cancer ranks second in cancer burden of the men. It occurs more frequently in black men compared to white or Asian men. Usually, high rates exist for men aged 60 and above. In this review, we focus on the Wnt/β-catenin signal transduction pathway in prostate cancer since many studies have reported that β-catenin can function as an oncogene and is important in Wnt signaling. We also relate its expression to the androgen receptor and MMP-7 protein, both critical to prostate cancer pathogenesis. Some mutations in the androgen receptor also impact the androgen-β-catenin axis and hence, lead to the progression of prostate cancer. We have also reviewed MiRNAs that modulate this pathway in prostate cancer. Finally, we have summarized the impact of Wnt/β-catenin pathway proteins in the drug resistance of prostate cancer as it is a challenging facet of therapy development due to the complexity of signaling pathways interaction and cross-talk.
Collapse
Affiliation(s)
- Chunyang Wang
- Urology Department, PLA General Hospital, Beijing, 100853, China
| | - Qi Chen
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230031, Anhui, China
| | - Huachao Xu
- Department of Urologic Oncology Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230031, Anhui, China.
| |
Collapse
|
9
|
Dovey ZS, Nair SS, Chakravarty D, Tewari AK. Racial disparity in prostate cancer in the African American population with actionable ideas and novel immunotherapies. Cancer Rep (Hoboken) 2021; 4:e1340. [PMID: 33599076 PMCID: PMC8551995 DOI: 10.1002/cnr2.1340] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 11/22/2020] [Accepted: 12/02/2020] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND African Americans (AAs) in the United States are known to have a higher incidence and mortality for Prostate Cancer (PCa). The drivers of this epidemiological disparity are multifactorial, including socioeconomic factors leading to lifestyle and dietary issues, healthcare access problems, and potentially tumor biology. RECENT FINDINGS Although recent evidence suggests once access is equal, AA men have equal outcomes to Caucasian American (CA) men, differences in PCa incidence remain, and there is much to do to reverse disparities in mortality across the USA. A deeper understanding of these issues, both at the clinical and molecular level, can facilitate improved outcomes in the AA population. This review first discusses PCa oncogenesis in the context of its diverse hallmarks before benchmarking key molecular and genomic differences for PCa in AA men that have emerged in the recent literature. Studies have emphasized the importance of tumor microenvironment that contributes to both the unequal cancer burden and differences in clinical outcome between the races. Management of comorbidities like obesity, hypertension, and diabetes will provide an essential means of reducing prostate cancer incidence in AA men. Although requiring further AA specific research, several new treatment strategies such as immune checkpoint inhibitors used in combination PARP inhibitors and other emerging vaccines, including Sipuleucel-T, have demonstrated some proven efficacy. CONCLUSION Genomic profiling to integrate clinical and genomic data for diagnosis, prognosis, and treatment will allow physicians to plan a "Precision Medicine" approach to AA men. There is a pressing need for further research for risk stratification, which may allow early identification of AA men with higher risk disease based on their unique clinical, genomic, and immunological profiles, which can then be mapped to appropriate clinical trials. Treatment options are outlined, with a concise description of recent work in AA specific populations, detailing several targeted therapies, including immunotherapy. Also, a summary of current clinical trials involving AA men is presented, and it is important that policies are adopted to ensure that AA men are actively recruited. Although it is encouraging that many of these explore the lifestyle and educational initiatives and therapeutic interventions, there is much still work to be done to reduce incidence and mortality in AA men and equalize current racial disparities.
Collapse
Affiliation(s)
- Zachary S. Dovey
- The Department of UrologyIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Sujit S. Nair
- The Department of UrologyIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Dimple Chakravarty
- The Department of UrologyIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Ashutosh K. Tewari
- The Department of UrologyIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| |
Collapse
|
10
|
Shiina M, Hashimoto Y, Kulkarni P, Dasgupta P, Shahryari V, Yamamura S, Tanaka Y, Dahiya R. Role of miR-182/PDCD4 axis in aggressive behavior of prostate cancer in the African Americans. BMC Cancer 2021; 21:1028. [PMID: 34525952 PMCID: PMC8444584 DOI: 10.1186/s12885-021-08723-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 08/23/2021] [Indexed: 12/11/2022] Open
Abstract
Background Prostate cancer is one of the most commonly diagnosed cancers among men. African Americans (AA) are at an increased risk of developing prostate cancer compared to European Americans (EA). miRNAs play a critical role in these tumors, leading to tumor progression. In this study, we investigated the role of miR-182 in racial disparity in prostate cancer. Results We found significantly increased levels of miR-182 in prostate cancer tissues compared to BPH. Also, miR-182 shows increased expression in AA prostate cancer cell line and tissue samples compared to EA. We performed biochemical recurrence (BCR) - free survival time in AA and EA patients and found that high miR-182 expression had significantly shorter BCR-free survival than patients with low miR-182 expression (P = 0.031). To elucidate the role of miR-182, we knocked down miR-182 in EA (DU-145 and LNCaP) and AA (MDA-PCa-2b) cell lines and found an increase in apoptosis, arrest of the cell cycle, and inhibition of colony formation in the AA cell line to a greater extent than EA cell lines. Conclusions Our results showed that PDCD4 is a direct miR-182 target and its inhibition is associated with aggressiveness and high Gleason grade in prostate cancer among AA. These findings show that miR-182 is highly expressed in AA patients and miR-182 may be a target for effective therapy in AA patients. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-021-08723-6.
Collapse
Affiliation(s)
- Marisa Shiina
- Department of Urology, Urology Research Center, Veterans Affairs Medical Center and University of California San Francisco School of Medicine (UCSF), 4150 Clement Street, San Francisco, CA, 94121, USA.
| | - Yutaka Hashimoto
- Department of Urology, Urology Research Center, Veterans Affairs Medical Center and University of California San Francisco School of Medicine (UCSF), 4150 Clement Street, San Francisco, CA, 94121, USA
| | - Priyanka Kulkarni
- Department of Urology, Urology Research Center, Veterans Affairs Medical Center and University of California San Francisco School of Medicine (UCSF), 4150 Clement Street, San Francisco, CA, 94121, USA
| | - Pritha Dasgupta
- Department of Urology, Urology Research Center, Veterans Affairs Medical Center and University of California San Francisco School of Medicine (UCSF), 4150 Clement Street, San Francisco, CA, 94121, USA
| | - Varahram Shahryari
- Department of Urology, Urology Research Center, Veterans Affairs Medical Center and University of California San Francisco School of Medicine (UCSF), 4150 Clement Street, San Francisco, CA, 94121, USA
| | - Soichiro Yamamura
- Department of Urology, Urology Research Center, Veterans Affairs Medical Center and University of California San Francisco School of Medicine (UCSF), 4150 Clement Street, San Francisco, CA, 94121, USA
| | - Yuichiro Tanaka
- Department of Urology, Urology Research Center, Veterans Affairs Medical Center and University of California San Francisco School of Medicine (UCSF), 4150 Clement Street, San Francisco, CA, 94121, USA
| | - Rajvir Dahiya
- Department of Urology, Urology Research Center, Veterans Affairs Medical Center and University of California San Francisco School of Medicine (UCSF), 4150 Clement Street, San Francisco, CA, 94121, USA
| |
Collapse
|
11
|
Varghese RS, Barefoot ME, Jain S, Chen Y, Zhang Y, Alley A, Kroemer AH, Tadesse MG, Kumar D, Sherif ZA, Ressom HW. Integrative Analysis of DNA Methylation and microRNA Expression Reveals Mechanisms of Racial Heterogeneity in Hepatocellular Carcinoma. Front Genet 2021; 12:708326. [PMID: 34557219 PMCID: PMC8453167 DOI: 10.3389/fgene.2021.708326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 08/05/2021] [Indexed: 11/13/2022] Open
Abstract
Pathologic alterations in epigenetic regulation have long been considered a hallmark of many cancers, including hepatocellular carcinoma (HCC). In a healthy individual, the relationship between DNA methylation and microRNA (miRNA) expression maintains a fine balance; however, disruptions in this harmony can aid in the genesis of cancer or the propagation of existing cancers. The balance between DNA methylation and microRNA expression and its potential disturbance in HCC can vary by race. There is emerging evidence linking epigenetic events including DNA methylation and miRNA expression to cancer disparities. In this paper, we evaluate the epigenetic mechanisms of racial heterogenity in HCC through an integrated analysis of DNA methylation, miRNA, and combined regulation of gene expression. Specifically, we generated DNA methylation, mRNA-seq, and miRNA-seq data through the analysis of tumor and adjacent non-tumor liver tissues from African Americans (AA) and European Americans (EA) with HCC. Using mixed ANOVA, we identified cytosine-phosphate-guanine (CpG) sites, mRNAs, and miRNAs that are significantly altered in HCC vs. adjacent non-tumor tissue in a race-specific manner. We observed that the methylome was drastically changed in EA with a significantly larger number of differentially methylated and differentially expressed genes than in AA. On the other hand, the miRNA expression was altered to a larger extent in AA than in EA. Pathway analysis functionally linked epigenetic regulation in EA to processes involved in immune cell maturation, inflammation, and vascular remodeling. In contrast, cellular proliferation, metabolism, and growth pathways are found to predominate in AA as a result of this epigenetic analysis. Furthermore, through integrative analysis, we identified significantly differentially expressed genes in HCC with disparate epigenetic regulation, associated with changes in miRNA expression for AA and DNA methylation for EA.
Collapse
Affiliation(s)
- Rency S. Varghese
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, United States
| | - Megan E. Barefoot
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, United States
| | - Sidharth Jain
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, United States
| | - Yifan Chen
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, United States
| | - Yunxi Zhang
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, United States
| | - Amber Alley
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, United States
| | | | - Mahlet G. Tadesse
- Department of Mathematics and Statistics, Georgetown University, Washington, DC, United States
| | - Deepak Kumar
- Department of Pharmaceutical Sciences, North Carolina Central University, Durham, NC, United States
| | - Zaki A. Sherif
- Department of Biochemistry and Molecular Biology, College of Medicine, Howard University, Washington, DC, United States
| | - Habtom W. Ressom
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, United States
| |
Collapse
|
12
|
Vengaloor Thomas T, Gordy XZ, Lirette ST, Albert AA, Gordy DP, Vijayakumar S, Vijayakumar V. Lack of Racial Survival Differences in Metastatic Prostate Cancer in National Cancer Data Base (NCDB): A Different Finding Compared to Non-metastatic Disease. Front Oncol 2020; 10:533070. [PMID: 33072567 PMCID: PMC7531281 DOI: 10.3389/fonc.2020.533070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 08/17/2020] [Indexed: 12/24/2022] Open
Abstract
Background: Inconsistent findings have been reported in the literature regarding racial differences in survival outcomes between African American and white patients with metastatic prostate cancer (mPCa). The current study utilized a national database to determine whether racial differences exist among the target population to address this inconsistency. Methods: This study retrospectively reviewed prostate cancer (PCa) patient data (N = 1,319,225) from the National Cancer Database (NCDB). The data were divided into three groupings based on the metastatic status: (1) no metastasis (N = 318,291), (2) bone metastasis (N = 29,639), and (3) metastases to locations other than bone, such as brain, liver, or lung (N = 952). Survival probabilities of African American and white PCa patients with bone metastasis were examined through parametric proportional hazards Weibull models and Bayesian survival analysis. These results were compared to patients with no metastasis or other types of metastases. Results: No statistically supported racial disparities were observed for African American and white men with bone metastasis (p = 0.885). Similarly, there were no racial disparities in survival for those men suffering from other metastases (liver, lung, or brain). However, racial disparities in survival were observed among the two racial groups with non-metastatic PCa (p < 0.001) or when metastasis status was not taken into account (p < 0.001). The Bayesian analysis corroborates the finding. Conclusion: This research supports our previous findings and shows that there are no racial differences in survival outcomes between African American and white patients with mPCa. In contrast, racial disparities in the survival outcome continue to exist among non-metastatic PCa patients. Further research is warranted to explain this difference.
Collapse
Affiliation(s)
- Toms Vengaloor Thomas
- Department of Radiation Oncology, University of Mississippi Medical Center, Jackson, MS, United States
| | - Xiaoshan Z Gordy
- Department of Health Sciences, University of Mississippi Medical Center, Jackson, MS, United States
| | - Seth T Lirette
- Department of Data Science, University of Mississippi Medical Center, Jackson, MS, United States
| | - Ashley A Albert
- Department of Radiation Oncology, University of Mississippi Medical Center, Jackson, MS, United States
| | - David P Gordy
- Department of Radiology, University of Mississippi Medical Center, Jackson, MS, United States
| | - Srinivasan Vijayakumar
- Department of Radiation Oncology, University of Mississippi Medical Center, Jackson, MS, United States
| | - Vani Vijayakumar
- Department of Radiology, University of Mississippi Medical Center, Jackson, MS, United States
| |
Collapse
|
13
|
Parikh RB, Robinson KW, Chhatre S, Medvedeva E, Cashy JP, Veera S, Bauml JM, Fojo T, Navathe AS, Malkowicz SB, Mamtani R, Jayadevappa R. Comparison by Race of Conservative Management for Low-Risk and Intermediate-Risk Prostate Cancers in Veterans From 2004 to 2018. JAMA Netw Open 2020; 3:e2018318. [PMID: 32986109 PMCID: PMC7522702 DOI: 10.1001/jamanetworkopen.2020.18318] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 07/10/2020] [Indexed: 12/12/2022] Open
Abstract
Importance Conservative management (ie, active surveillance or watchful waiting) is a guideline-based strategy for men with low-risk and intermediate-risk prostate cancer. However, use of conservative management is controversial for African American patients, who have worse prostate cancer outcomes compared with White patients. Objective To examine the association of African American race with the receipt and duration of conservative management in the Veterans Health Administration (VA), a large equal-access health system. Design, Setting, and Participants This cohort study used data from the VA Corporate Data Warehouse for 51 543 African American and non-Hispanic White veterans diagnosed with low-risk and intermediate-risk localized node-negative prostate cancer between January 1, 2004, and December 31, 2013. Men who did not receive continuous VA care were excluded. Data were analyzed from February 1 to June 30, 2020. Exposures All patients received either definitive therapy (ie, prostatectomy, radiation, androgen deprivation therapy) or conservative management (ie, active surveillance or watchful waiting). Main Outcomes and Measures Receipt of conservative management and (for patients receiving conservative management) time from diagnosis to definitive therapy. Results The median (interquartile range) age of the 51 543 veterans in our cohort was 65 (61-70) years, and 14 830 veterans (28.8%) were African American individuals. Compared with White veterans, African American veterans were more likely to have intermediate-risk disease (18 988 [51.7%] vs 8526 [57.5%]), 3 or more comorbidities (15 438 [42.1%] vs 7614 [51.3%]), and high disability-related or income-related needs (9078 [24.7%] vs 4614 [31.1%]). Overall, 20 606 veterans (40.0%) received conservative management. African American veterans with low-risk disease (adjusted relative risk, 0.95; 95% CI, 0.92-0.98; P < .001) and intermediate-risk disease (adjusted relative risk, 0.92; 95% CI, 0.87-0.97; P = .002) were less likely to receive conservative management than White veterans. Compared with White veterans, African American veterans with low-risk disease (adjusted hazard ratio, 1.71; 95% CI, 1.50-1.95; P < .001) and intermediate-risk disease (adjusted hazard ratio, 1.46; 95% CI, 1.27-1.69; P < .001) who received conservative management were more likely to receive definitive therapy within 5 years of diagnosis (restricted mean survival time [SE] at 5 years, 1679 [5.3] days vs 1740 [2.4] days; P < .001). Conclusions and Relevance In this study, conservative management was less commonly used and less durable for African American veterans than for White veterans. Prospective trials should assess the comparative effectiveness of conservative management in African American men with prostate cancer.
Collapse
Affiliation(s)
- Ravi B. Parikh
- Corporal Michael J. Crescenz VA Medical Center, Philadelphia, Pennsylvania
- Center for Health Equity Research and Promotion, Philadelphia, Pennsylvania
- Perelman School of Medicine, University of Pennsylvania, Philadelphia
- Abramson Cancer Center, University of Pennsylvania, Philadelphia
- Leonard Davis Institute of Health Economics, University of Pennsylvania, Philadelphia
| | - Kyle W. Robinson
- Corporal Michael J. Crescenz VA Medical Center, Philadelphia, Pennsylvania
- Perelman School of Medicine, University of Pennsylvania, Philadelphia
- Abramson Cancer Center, University of Pennsylvania, Philadelphia
| | - Sumedha Chhatre
- Corporal Michael J. Crescenz VA Medical Center, Philadelphia, Pennsylvania
- Center for Health Equity Research and Promotion, Philadelphia, Pennsylvania
- Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Elina Medvedeva
- Corporal Michael J. Crescenz VA Medical Center, Philadelphia, Pennsylvania
- Center for Health Equity Research and Promotion, Philadelphia, Pennsylvania
| | - John P. Cashy
- Corporal Michael J. Crescenz VA Medical Center, Philadelphia, Pennsylvania
- Center for Health Equity Research and Promotion, Philadelphia, Pennsylvania
| | - Shika Veera
- Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Joshua M. Bauml
- Corporal Michael J. Crescenz VA Medical Center, Philadelphia, Pennsylvania
- Perelman School of Medicine, University of Pennsylvania, Philadelphia
- Abramson Cancer Center, University of Pennsylvania, Philadelphia
- Leonard Davis Institute of Health Economics, University of Pennsylvania, Philadelphia
| | - Tito Fojo
- Herbert Irving Comprehensive Cancer Center, the College of Physicians and Surgeons at Columbia University, New York, New York
| | - Amol S. Navathe
- Corporal Michael J. Crescenz VA Medical Center, Philadelphia, Pennsylvania
- Center for Health Equity Research and Promotion, Philadelphia, Pennsylvania
- Perelman School of Medicine, University of Pennsylvania, Philadelphia
- Leonard Davis Institute of Health Economics, University of Pennsylvania, Philadelphia
| | - S. Bruce Malkowicz
- Corporal Michael J. Crescenz VA Medical Center, Philadelphia, Pennsylvania
- Perelman School of Medicine, University of Pennsylvania, Philadelphia
- Abramson Cancer Center, University of Pennsylvania, Philadelphia
| | - Ronac Mamtani
- Perelman School of Medicine, University of Pennsylvania, Philadelphia
- Abramson Cancer Center, University of Pennsylvania, Philadelphia
| | - Ravishankar Jayadevappa
- Corporal Michael J. Crescenz VA Medical Center, Philadelphia, Pennsylvania
- Center for Health Equity Research and Promotion, Philadelphia, Pennsylvania
- Perelman School of Medicine, University of Pennsylvania, Philadelphia
- Abramson Cancer Center, University of Pennsylvania, Philadelphia
- Leonard Davis Institute of Health Economics, University of Pennsylvania, Philadelphia
| |
Collapse
|
14
|
Coordinated AR and microRNA regulation in prostate cancer. Asian J Urol 2020; 7:233-250. [PMID: 32742925 PMCID: PMC7385519 DOI: 10.1016/j.ajur.2020.06.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 03/22/2020] [Accepted: 04/17/2020] [Indexed: 12/26/2022] Open
Abstract
The androgen receptor (AR) remains a key driver of prostate cancer (PCa) progression, even in the advanced castrate-resistant stage, where testicular androgens are absent. It is therefore of critical importance to understand the molecular mechanisms governing its activity and regulation during prostate tumourigenesis. MicroRNAs (miRs) are small ∼22 nt non-coding RNAs that regulate target gene, often through association with 3′ untranslated regions (3′UTRs) of transcripts. They display dysregulation during cancer progression, can function as oncogenes or tumour suppressors, and are increasingly recognised as targets or regulators of hormonal action. Thus, understanding factors which modulate miRs synthesis is essential. There is increasing evidence for complex and dynamic bi-directional cross-talk between the multi-step miR biogenesis cascade and the AR signalling axis in PCa. This review summarises the wealth of mechanisms by which miRs are regulated by AR, and conversely, how miRs impact AR's transcriptional activity, including that of AR splice variants. In addition, we assess the implications of the convergence of these pathways on the clinical employment of miRs as PCa biomarkers and therapeutic targets.
Collapse
|
15
|
Sørensen AE, Udesen PB, Maciag G, Geiger J, Saliani N, Januszewski AS, Jiang G, Ma RC, Hardikar AA, Wissing MLM, Englund ALM, Dalgaard LT. Hyperandrogenism and Metabolic Syndrome Are Associated With Changes in Serum-Derived microRNAs in Women With Polycystic Ovary Syndrome. Front Med (Lausanne) 2019; 6:242. [PMID: 31737638 PMCID: PMC6839444 DOI: 10.3389/fmed.2019.00242] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 10/14/2019] [Indexed: 12/21/2022] Open
Abstract
Polycystic ovary syndrome (PCOS) remains one of the most common endocrine disorder in premenopausal women with an unfavorable metabolic risk profile. Here, we investigate whether biochemical hyperandrogenism, represented by elevated serum free testosterone, resulted in an aberrant circulating microRNA (miRNAs) expression profile and whether miRNAs can identify those PCOS women with metabolic syndrome (MetS). Accordingly, we measured serum levels of miRNAs as well as biochemical markers related to MetS in a case-control study of 42 PCOS patients and 20 Controls. Patients were diagnosed based on the Rotterdam consensus criteria and stratified based on serum free testosterone levels (≥0.034 nmol/l) into either a normoandrogenic (n = 23) or hyperandrogenic (n = 19) PCOS group. Overall, hyperandrogenic PCOS women were more insulin resistant compared to normoandrogenic PCOS women and had a higher prevalence of MetS. A total of 750 different miRNAs were analyzed using TaqMan Low-Density Arrays. Altered levels of seven miRNAs (miR-485-3p, -1290, -21-3p, -139-3p, -361-5p, -572, and -143-3p) were observed in PCOS patients when compared with healthy Controls. Stratification of PCOS women revealed that 20 miRNAs were differentially expressed between the three groups. Elevated serum free testosterone levels, adjusted for age and BMI, were significantly associated with five miRNAs (miR-1290, -20a-5p, -139-3p, -433-3p, and -361-5p). Using binary logistic regression and receiver operating characteristic curves (ROC), a combination panel of three miRNAs (miR-361-5p, -1225-3p, and -34-3p) could correctly identify all of the MetS cases within the PCOS group. This study is the first to report comprehensive miRNA profiling in different subgroups of PCOS women with respect to MetS and suggests that circulating miRNAs might be useful as diagnostic biomarkers of MetS for a different subset of PCOS.
Collapse
Affiliation(s)
- Anja E Sørensen
- Department of Science and Environment, Roskilde University, Roskilde, Denmark.,Odense University Hospital, The Danish Diabetes Academy, Odense, Denmark
| | - Pernille B Udesen
- Department of Science and Environment, Roskilde University, Roskilde, Denmark.,Fertility Clinic, Department of Gynecology and Obstetrics, Zealand University Hospital, Køge, Denmark
| | - Grzegorz Maciag
- Department of Science and Environment, Roskilde University, Roskilde, Denmark
| | - Julian Geiger
- Department of Science and Environment, Roskilde University, Roskilde, Denmark
| | - Negar Saliani
- Department of Science and Environment, Roskilde University, Roskilde, Denmark
| | - Andrzej S Januszewski
- Diabetes and Islet Biology Group, NHMRC Clinical Trials Centre, University of Sydney, Camperdown, NSW, Australia
| | - Guozhi Jiang
- Department of Medicine & Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Ronald C Ma
- Department of Medicine & Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Anandwardhan A Hardikar
- Diabetes and Islet Biology Group, NHMRC Clinical Trials Centre, University of Sydney, Camperdown, NSW, Australia
| | - Marie Louise M Wissing
- Fertility Clinic, Department of Gynecology and Obstetrics, Zealand University Hospital, Køge, Denmark
| | - Anne Lis M Englund
- Fertility Clinic, Department of Gynecology and Obstetrics, Zealand University Hospital, Køge, Denmark
| | - Louise T Dalgaard
- Department of Science and Environment, Roskilde University, Roskilde, Denmark
| |
Collapse
|
16
|
Bhagirath D, Yang TL, Tabatabai ZL, Shahryari V, Majid S, Dahiya R, Tanaka Y, Saini S. Role of a novel race-related tumor suppressor microRNA located in frequently deleted chromosomal locus 8p21 in prostate cancer progression. Carcinogenesis 2019; 40:633-642. [PMID: 30874288 PMCID: PMC7331454 DOI: 10.1093/carcin/bgz058] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 02/07/2019] [Accepted: 03/12/2019] [Indexed: 12/14/2022] Open
Abstract
The prostate cancer (PCa) genome is characterized by deletions of chromosome 8p21-22 region that increase significantly with tumor grade and are associated with poor prognosis. We proposed and validated a novel, paradigm-shifting hypothesis that this region is associated with a set of microRNA genes-miR-3622, miR-3622b, miR-383-that are lost in PCa and play important mechanistic roles in PCa progression and metastasis. Extending our hypothesis, in this study, we evaluated the role of a microRNA gene located in chromosome 8p-miR-4288-by employing clinical samples and cell lines. Our data suggests that (i) miR-4288 is widely downregulated in primary prostate tumors and cell lines; (ii) miR-4288 expression is lost in metastatic castration-resistant PCa; (ii) miR-4288 downregulation is race-related PCa alteration that is prevalent in Caucasian patients and not in African Americans; (iii) in Caucasians, miR-4288 was found to be associated with increasing tumor grade and high serum prostate-specific antigen, suggesting that miR-4288 downregulation/loss may be associated with tumor progression specifically in Caucasians; (iv) miR-4288 possess significant potential as a molecular biomarker to predict aggressiveness/metastasis; and (v) miR-4288 is anti-proliferative, is anti-invasive and inhibits epithelial-to-mesenchymal transition; and (vi) miR-4288 directly represses expression of metastasis/invasion-associated genes MMP16 and ROCK1. Thus, the present study demonstrates a tumor suppressor role for a novel miRNA located with a frequently lost region in PCa, strengthening our hypothesis that this locus is causally related to PCa disease progression via loss of microRNA genes. Our study suggests that miR-4288 may be a novel biomarker and therapeutic target, particularly in Caucasians.
Collapse
Affiliation(s)
- Divya Bhagirath
- Department of Urology, Veterans Affairs Medical Center, San Francisco and University of California, San Francisco, CA, USA
| | - Thao Ly Yang
- Department of Urology, Veterans Affairs Medical Center, San Francisco and University of California, San Francisco, CA, USA
| | - Z Laura Tabatabai
- Department of Urology, Veterans Affairs Medical Center, San Francisco and University of California, San Francisco, CA, USA
| | - Varahram Shahryari
- Department of Urology, Veterans Affairs Medical Center, San Francisco and University of California, San Francisco, CA, USA
| | - Shahana Majid
- Department of Urology, Veterans Affairs Medical Center, San Francisco and University of California, San Francisco, CA, USA
| | - Rajvir Dahiya
- Department of Urology, Veterans Affairs Medical Center, San Francisco and University of California, San Francisco, CA, USA
| | - Yuichiro Tanaka
- Department of Urology, Veterans Affairs Medical Center, San Francisco and University of California, San Francisco, CA, USA
| | - Sharanjot Saini
- Department of Urology, Veterans Affairs Medical Center, San Francisco and University of California, San Francisco, CA, USA
| |
Collapse
|
17
|
Hashimoto Y, Shiina M, Dasgupta P, Kulkarni P, Kato T, Wong RK, Tanaka Y, Shahryari V, Maekawa S, Yamamura S, Saini S, Deng G, Tabatabai ZL, Majid S, Dahiya R. Upregulation of miR-130b Contributes to Risk of Poor Prognosis and Racial Disparity in African-American Prostate Cancer. Cancer Prev Res (Phila) 2019; 12:585-598. [PMID: 31266828 DOI: 10.1158/1940-6207.capr-18-0509] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 05/23/2019] [Accepted: 06/24/2019] [Indexed: 12/18/2022]
Abstract
Prostate cancer incidence and mortality rates are higher in African-American (AA) than in European-American (EA) men. The main objective of this study was to elucidate the role of miR-130b as a contributor to prostate cancer health disparity in AA patients. We also determined whether miR-130b is a prognostic biomarker and a new therapeutic candidate for AA prostate cancer. A comprehensive approach of using cell lines, tissue samples, and the TCGA database was employed. We performed a series of functional assays such as cell proliferation, migration, invasion, RT2-PCR array, qRT-PCR, cell cycle, luciferase reporter, immunoblot, and IHC. Various statistical approaches such as Kaplan-Meier, uni-, and multivariate analyses were utilized to determine the clinical significance of miR-130b. Our results showed that elevated levels of miR-130b correlated with race disparity and PSA levels/failure and acted as an independent prognostic biomarker for AA patients. Two tumor suppressor genes, CDKN1B and FHIT, were validated as direct functional targets of miR-130b. We also found race-specific cell-cycle pathway activation in AA patients with prostate cancer. Functionally, miR-130b inhibition reduced cell proliferation, colony formation, migration/invasion, and induced cell-cycle arrest. Inhibition of miR-130b modulated critical prostate cancer-related biological pathways in AA compared with EA prostate cancer patients. In conclusion, attenuation of miR-130b expression has tumor suppressor effects in AA prostate cancer. miR-130b is a significant contributor to prostate cancer racial disparity as its overexpression is a risk factor for poor prognosis in AA patients with prostate cancer. Thus, regulation of miR-130b may provide a novel therapeutic approach for the management of prostate cancer in AA patients.
Collapse
Affiliation(s)
- Yutaka Hashimoto
- Department of Urology, San Francisco VA Medical Center, San Francisco, California.,University of California San Francisco, San Francisco, California
| | - Marisa Shiina
- Department of Urology, San Francisco VA Medical Center, San Francisco, California.,University of California San Francisco, San Francisco, California
| | - Pritha Dasgupta
- Department of Urology, San Francisco VA Medical Center, San Francisco, California.,University of California San Francisco, San Francisco, California
| | - Priyanka Kulkarni
- Department of Urology, San Francisco VA Medical Center, San Francisco, California.,University of California San Francisco, San Francisco, California
| | - Taku Kato
- Department of Urology, San Francisco VA Medical Center, San Francisco, California.,University of California San Francisco, San Francisco, California
| | - Ryan K Wong
- Department of Urology, San Francisco VA Medical Center, San Francisco, California.,University of California San Francisco, San Francisco, California
| | - Yuichiro Tanaka
- Department of Urology, San Francisco VA Medical Center, San Francisco, California.,University of California San Francisco, San Francisco, California
| | - Varahram Shahryari
- Department of Urology, San Francisco VA Medical Center, San Francisco, California.,University of California San Francisco, San Francisco, California
| | - Shigekatsu Maekawa
- Department of Urology, San Francisco VA Medical Center, San Francisco, California.,University of California San Francisco, San Francisco, California
| | - Soichiro Yamamura
- Department of Urology, San Francisco VA Medical Center, San Francisco, California.,University of California San Francisco, San Francisco, California
| | - Sharanjot Saini
- Department of Urology, San Francisco VA Medical Center, San Francisco, California.,University of California San Francisco, San Francisco, California
| | - Guoren Deng
- Department of Urology, San Francisco VA Medical Center, San Francisco, California.,University of California San Francisco, San Francisco, California
| | - Z Laura Tabatabai
- Department of Pathology, San Francisco VA Medical Center, California.,University of California San Francisco, San Francisco, California
| | - Shahana Majid
- Department of Urology, San Francisco VA Medical Center, San Francisco, California. .,University of California San Francisco, San Francisco, California
| | - Rajvir Dahiya
- Department of Urology, San Francisco VA Medical Center, San Francisco, California. .,University of California San Francisco, San Francisco, California
| |
Collapse
|
18
|
Hooker SE, Woods-Burnham L, Bathina M, Lloyd S, Gorjala P, Mitra R, Nonn L, Kimbro KS, Kittles RA. Genetic Ancestry Analysis Reveals Misclassification of Commonly Used Cancer Cell Lines. Cancer Epidemiol Biomarkers Prev 2019; 28:1003-1009. [PMID: 30787054 PMCID: PMC6548687 DOI: 10.1158/1055-9965.epi-18-1132] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 12/20/2018] [Accepted: 02/14/2019] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Given the scarcity of cell lines from underrepresented populations, it is imperative that genetic ancestry for these cell lines is characterized. Consequences of cell line mischaracterization include squandered resources and publication retractions. METHODS We calculated genetic ancestry proportions for 15 cell lines to assess the accuracy of previous race/ethnicity classification and determine previously unknown estimates. DNA was extracted from cell lines and genotyped for ancestry informative markers representing West African (WA), Native American (NA), and European (EUR) ancestry. RESULTS Of the cell lines tested, all previously classified as White/Caucasian were accurately described with mean EUR ancestry proportions of 97%. Cell lines previously classified as Black/African American were not always accurately described. For instance, the 22Rv1 prostate cancer cell line was recently found to carry mixed genetic ancestry using a much smaller panel of markers. However, our more comprehensive analysis determined the 22Rv1 cell line carries 99% EUR ancestry. Most notably, the E006AA-hT prostate cancer cell line, classified as African American, was found to carry 92% EUR ancestry. We also determined the MDA-MB-468 breast cancer cell line carries 23% NA ancestry, suggesting possible Afro-Hispanic/Latina ancestry. CONCLUSIONS Our results suggest predominantly EUR ancestry for the White/Caucasian-designated cell lines, yet high variance in ancestry for the Black/African American-designated cell lines. In addition, we revealed an extreme misclassification of the E006AA-hT cell line. IMPACT Genetic ancestry estimates offer more sophisticated characterization leading to better contextualization of findings. Ancestry estimates should be provided for all cell lines to avoid erroneous conclusions in disparities literature.
Collapse
Affiliation(s)
- Stanley E Hooker
- Division of Health Equities, Department of Population Sciences, City of Hope Comprehensive Cancer Center, Duarte, California
| | - Leanne Woods-Burnham
- Division of Health Equities, Department of Population Sciences, City of Hope Comprehensive Cancer Center, Duarte, California
| | - Madhavi Bathina
- Division of Health Equities, Department of Population Sciences, City of Hope Comprehensive Cancer Center, Duarte, California
| | - Stacy Lloyd
- Department of Molecular and Cellular Biology and Alkek Center for Molecular Discovery, Baylor College of Medicine, Houston, Texas
| | - Priyatham Gorjala
- College of Medicine, Roseman University of Health Sciences, Las Vegas, Nevada
| | - Ranjana Mitra
- College of Medicine, Roseman University of Health Sciences, Las Vegas, Nevada
| | - Larisa Nonn
- The Department of Pathology, University of Illinois, Chicago, Illinois
| | - K Sean Kimbro
- Biomedical/Biotechnology Research Institute (BBRI), North Carolina Central University, Durham, North Carolina
| | - Rick A Kittles
- Division of Health Equities, Department of Population Sciences, City of Hope Comprehensive Cancer Center, Duarte, California.
| |
Collapse
|
19
|
Gao G, Xiu D, Yang B, Sun D, Wei X, Ding Y, Ma Y, Wang Z. miR-129-5p inhibits prostate cancer proliferation via targeting ETV1. Onco Targets Ther 2019; 12:3531-3544. [PMID: 31190859 PMCID: PMC6512784 DOI: 10.2147/ott.s183435] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Background Prostate cancer is one of the most commonly diagnosed diseases in males. Methods RT-qPCR was used to detect miR-129-5p expression in tumor tissues and adjacent normal tissues from patients with prostate cancer. The cell proliferation assay and colony forming assay were used to study the role of miR-129-5p in mediating prostate cancer cell growth. Bioinformatic analysis and dual luciferase assay were performed to predict and confirm ETV1 as a target gene of miR-129-5p. Results We found that miR-129-5p levels were decreased significantly in human prostate cancer tissues compared with matched normal tissues from patients with prostate cancer. Overexpression of miR-129-5p suppressed prostate cancer cell growth while antagonist of miR-129-5p promoted cell proliferation in immortal prostate cell line RWPE-1. In addition, elevation of miR-129-5p decreased ETV1 expression in prostate cancer cells while downregulation of miR-129-5p increased ETV1 expression in RWPE-1. Mechanistically, ETV1 is confirmed a direct target of miR-129-5p in prostate cancer cells. Through repression of ETV1 expression, miR-129-5p could inactivate YAP signaling in prostate cancer cells. In addition, overexpression of ETV1 attenuated miR-129-5p induced cell proliferation in prostate cancer cells. Correlation analysis further revealed that there was a negative correlation between miR-129-5p levels and ETV1 mRNA levels in tumor tissues from patients with prostate cancer. Conclusion Our results identified miR-129-5p as a tumor suppressor in prostate cancer via repression of ETV1.
Collapse
Affiliation(s)
- Ge Gao
- Department of Pathology, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Dianhui Xiu
- Department of Radiology, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Bin Yang
- Department of Breast Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Daju Sun
- Department of Pathology, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Xin Wei
- Department of Urology, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China,
| | - Youpeng Ding
- Department of Urology, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China,
| | - Yanan Ma
- Department of Urology, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China,
| | - Zhixin Wang
- Department of Urology, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China,
| |
Collapse
|
20
|
Karakas C, Wang C, Deng F, Huang H, Wang D, Lee P. Molecular mechanisms involving prostate cancer racial disparity. AMERICAN JOURNAL OF CLINICAL AND EXPERIMENTAL UROLOGY 2017; 5:34-48. [PMID: 29181436 PMCID: PMC5698597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 10/30/2017] [Indexed: 06/07/2023]
Abstract
Prostate cancer (PCa) is the second leading cause of cancer-related deaths in the United States. The African (AA) descent has greater incidence and mortality rates of PCa as compared to Caucasian (CA) men. While socioeconomic differences across racial groups contribute to disparity in PCa, increasing evidence points that genetic and molecular alterations play important roles in racial disparities associated with PCa. In this review, we focus on genetic and molecular influences that contribute to racial disparity between AA and CA men including: androgen and estrogen receptor signaling pathways, growth factors, apoptotic proteins, genetic, genomic and epigenetic alterations. Future translational studies will identify prognostic and predictive biomarkers for AA PCa and assist in the development of new targeted-therapies specifically for AA men with PCa.
Collapse
Affiliation(s)
- Cansu Karakas
- Department of Pathology, New York University School of MedicineNew York, NY, USA
| | - Cassie Wang
- Department of Bioengineering, University of PennsylvaniaPennsylvania, PA, USA
| | - Fangming Deng
- Department of Pathology, New York University School of MedicineNew York, NY, USA
| | - Hongying Huang
- Department of Pathology, New York University School of MedicineNew York, NY, USA
| | - Dongwen Wang
- Department of Urology, First Hospital of Shanxi Medical UniversityTaiyuan, Shanxi, China
| | - Peng Lee
- Department of Pathology, New York University School of MedicineNew York, NY, USA
- Department of Urology, New York University School of MedicineNew York, NY, USA
- Department of New York Harbor Healthcare System, New York University School of MedicineNew York, NY, USA
| |
Collapse
|