1
|
Cao K, Xu J, Cao W, Wang X, Lv W, Zeng M, Zou X, Liu J, Feng Z. Assembly of mitochondrial succinate dehydrogenase in human health and disease. Free Radic Biol Med 2023; 207:247-259. [PMID: 37490987 DOI: 10.1016/j.freeradbiomed.2023.07.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 07/18/2023] [Accepted: 07/19/2023] [Indexed: 07/27/2023]
Abstract
Mitochondrial succinate dehydrogenase (SDH), also known as electron transport chain (ETC) Complex II, is the only enzyme complex engaged in both oxidative phosphorylation and the tricarboxylic acid (TCA) cycle. SDH has received increasing attention due to its crucial role in regulating mitochondrial metabolism and human health. Despite having the fewest subunits among the four ETC complexes, functional SDH is formed via a sequential and well-coordinated assembly of subunits. Along with the discovery of subunit-specific assembly factors, the dynamic involvement of the SDH assembly process in a broad range of diseases has been revealed. Recently, we reported that perturbation of SDH assembly in different tissues leads to interesting and distinct pathophysiological changes in mice, indicating a need to understand the intricate SDH assembly process in human health and diseases. Thus, in this review, we summarize recent findings on SDH pathogenesis with respect to disease and a focus on SDH assembly.
Collapse
Affiliation(s)
- Ke Cao
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, China; Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Jie Xu
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, China
| | - Wenli Cao
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, China
| | - Xueqiang Wang
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, Shandong, 266071, China
| | - Weiqiang Lv
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, China
| | - Mengqi Zeng
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, Shandong, 266071, China
| | - Xuan Zou
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, China
| | - Jiankang Liu
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, China; School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, Shandong, 266071, China.
| | - Zhihui Feng
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China; School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, Shandong, 266071, China.
| |
Collapse
|
2
|
Snezhkina A, Pavlov V, Fedorova M, Kalinin D, Pudova E, Kobelyatskaya A, Bakhtogarimov I, Krasnov G, Kudryavtseva A. Comprehensive Genetic Study of Malignant Cervical Paraganglioma. Int J Mol Sci 2023; 24:ijms24098220. [PMID: 37175927 PMCID: PMC10179044 DOI: 10.3390/ijms24098220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 04/27/2023] [Accepted: 04/28/2023] [Indexed: 05/15/2023] Open
Abstract
Malignant middle ear paraganglioma (MEPGL) is an exceedingly rare tumor of the neuroendocrine system. In general, MEPGLs represent as slow growing and hypervascularized benign neoplasms. The genetic basis of MEPGL tumorigenesis has been poorly investigated. We report a case of malignant MEPGL accompanied by the comprehensive genetic analysis of the primary tumor and metastasis. Based on whole-exome sequencing data, the germline pathogenic mutation p.R230H in the SDHB gene, encoding for subunit B of mitochondrial complex II, was found in a patient. Analysis of somatic mutation spectra revealed five novel variants in different genes, including a potentially deleterious variant in UNC13C that was common for the tumor and metastasis. Identified somatic variants clustered into SBS1 and SBS5 mutational signatures. Of note, the primary tumor was characterized by Ki-67 4% and had an elevated mutational load (1.4/Mb); the metastasis' mutational load was about 4.5 times higher (6.4/Mb). In addition, we revealed somatic loss of the wild-type SDHB allele, as well as loss of heterozygosity (LOH) at the 11p locus. Thus, germline mutation in SDHB combined with somatic LOH seem to be drivers that lead to the tumor's initiation and progression. Other somatic changes identified can be additional disease-causing factors. Obtained results expand our understanding of molecular genetic mechanisms associated with the development of this rare tumor.
Collapse
Affiliation(s)
- Anastasiya Snezhkina
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Vladislav Pavlov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Maria Fedorova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Dmitry Kalinin
- Vishnevsky Institute of Surgery, Ministry of Health of the Russian Federation, 117997 Moscow, Russia
| | - Elena Pudova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | | | - Ildar Bakhtogarimov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - George Krasnov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Anna Kudryavtseva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| |
Collapse
|
3
|
Yoshihama K, Mutai H, Sekimizu M, Ito F, Saito S, Nakamura S, Mikoshiba T, Nagai R, Takebayashi A, Miya F, Kosaki K, Ozawa H, Matsunaga T. Molecular basis of carotid body tumor and associated clinical features in Japan identified by genomic, immunohistochemical, and clinical analyses. Clin Genet 2023; 103:466-471. [PMID: 36597280 DOI: 10.1111/cge.14294] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 12/29/2022] [Accepted: 01/01/2023] [Indexed: 01/05/2023]
Abstract
Carotid body tumor (CBT) is classified as a paraganglioma (PGL). Here, we report the genetic background, protein expression pattern, and clinical findings of 30 Japanese CBT cases. Germline pathogenic or likely pathogenic (P/LP) variants of genes encoding succinate dehydrogenase subunits (SDHs) were detected in 15 of 30 cases (50%). The SDHB variants were the most frequently detected, followed by SDHA and SDHD variants. One case with SDHAF2 variant was bilateral CBT, and other two multiple PGL cases were not detected P/LP variants. The three cases with germline variants that could be tested did not have somatic P/LP variants of the same genes. Immunohistochemical analysis showed negative SDHB signals in CBT tissues in five cases with germline P/LP variants of SDHB, SDHD, or SDHA. In addition, SDHB signals in CBT tissues were negative in four of nine cases without germline P/LP variants of SDHs. These findings suggest the involvement of unidentified molecular mechanisms affecting SDHs.
Collapse
Affiliation(s)
- Keisuke Yoshihama
- Department of Otolaryngology, Head and Neck Surgery, Keio University School of Medicine, Tokyo, Japan
- Division of Hearing and Balance Research, National Institute of Sensory Organs, National Hospital Organization Tokyo Medical Center, Tokyo, Japan
| | - Hideki Mutai
- Division of Hearing and Balance Research, National Institute of Sensory Organs, National Hospital Organization Tokyo Medical Center, Tokyo, Japan
| | - Mariko Sekimizu
- Department of Otolaryngology, Head and Neck Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Fumihiro Ito
- Department of Otolaryngology, National Hospital Organization Tokyo Medical Center, Tokyo, Japan
| | - Shin Saito
- Department of Otolaryngology, Head and Neck Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Shintaro Nakamura
- Department of Otolaryngology, Head and Neck Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Takuya Mikoshiba
- Department of Otolaryngology, Head and Neck Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Ryoto Nagai
- Department of Otolaryngology, Head and Neck Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Akiko Takebayashi
- Department of Otolaryngology, Head and Neck Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Fuyuki Miya
- Center for Medical Genetics, Keio University School of Medicine, Tokyo, Japan
| | - Kenjiro Kosaki
- Center for Medical Genetics, Keio University School of Medicine, Tokyo, Japan
| | - Hiroyuki Ozawa
- Department of Otolaryngology, Head and Neck Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Tatsuo Matsunaga
- Division of Hearing and Balance Research, National Institute of Sensory Organs, National Hospital Organization Tokyo Medical Center, Tokyo, Japan
- Department of Otolaryngology, National Hospital Organization Tokyo Medical Center, Tokyo, Japan
- Medical Genetics Center, National Hospital Organization Tokyo Medical Center, Tokyo, Japan
| |
Collapse
|
4
|
Mendelian inheritance revisited: dominance and recessiveness in medical genetics. Nat Rev Genet 2023:10.1038/s41576-023-00574-0. [PMID: 36806206 DOI: 10.1038/s41576-023-00574-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/14/2022] [Indexed: 02/22/2023]
Abstract
Understanding the consequences of genotype for phenotype (which ranges from molecule-level effects to whole-organism traits) is at the core of genetic diagnostics in medicine. Many measures of the deleteriousness of individual alleles exist, but these have limitations for predicting the clinical consequences. Various mechanisms can protect the organism from the adverse effects of functional variants, especially when the variant is paired with a wild type allele. Understanding why some alleles are harmful in the heterozygous state - representing dominant inheritance - but others only with the biallelic presence of pathogenic variants - representing recessive inheritance - is particularly important when faced with the deluge of rare genetic alterations identified by high throughput DNA sequencing. Both awareness of the specific quantitative and/or qualitative effects of individual variants and the elucidation of allelic and non-allelic interactions are essential to optimize genetic diagnosis and counselling.
Collapse
|
5
|
Snezhkina A, Fedorova M, Kobelyatskaya A, Markova D, Lantsova M, Ikonnikova A, Emelyanova M, Kalinin D, Pudova E, Melnikova N, Dmitriev A, Krasnov G, Pavlov V, Kudryavtseva A. The SDHD:p.H102R Variant Is Frequent in Russian Patients with Head and Neck Paragangliomas and Associated with Loss of 11p15.5 Region and Hypermethylation of H19-DMR. Int J Mol Sci 2022; 24:ijms24010628. [PMID: 36614070 PMCID: PMC9820527 DOI: 10.3390/ijms24010628] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/26/2022] [Accepted: 12/27/2022] [Indexed: 12/31/2022] Open
Abstract
Head and neck paragangliomas (HNPGLs) are rare neuroendocrine neoplasms derived from the parasympathetic paraganglia of the head and neck. At least 30% of HNPGLs are linked to germline mutations, predominantly in SDHx genes. In this study, we analyzed an extended cohort of Russian patients with HNPGLs using whole-exome sequencing and found a highly frequent missense variant p.H102R in the SDHD gene. We determined this variant in 34% of the SDHD mutation carriers. This variant was associated with somatic loss of the gene wild-type allele. Data from the B allele frequency method and microsatellite and microdeletion analysis indicated evident LOH at the 11p15.5 region and potential loss of the whole of chromosome 11. We found hypermethylation of H19-DMR in all tumors, whereas differential methylation of KvDMR was mostly retained. These findings do not support the paternal transmission of SDHD:p.H102R but are in agreement with the Hensen model. Using targeted sequencing, we also studied the variant frequency in a control cohort; we found SDHD:p.H102R in 1.9% of cases, allowing us to classify this variant as pathogenic. The immunohistochemistry of SDHB showed that the SDHD:p.H102R mutation, even in combination with wild-type allele loss, does not always lead to SDH deficiency. The obtained results demonstrate the frequent variant associated with HNPGLs in a Russian population and support its pathogenicity. Our findings help with understanding the mechanism of tumorigenesis and are also important for the development of cost-effective genetic screening programs.
Collapse
Affiliation(s)
- Anastasiya Snezhkina
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
- Correspondence:
| | - Maria Fedorova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| | | | - Daria Markova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| | - Margarita Lantsova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| | - Anna Ikonnikova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| | - Marina Emelyanova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| | - Dmitry Kalinin
- Vishnevsky Institute of Surgery, Ministry of Health of the Russian Federation, Moscow 117997, Russia
| | - Elena Pudova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| | - Nataliya Melnikova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| | - Alexey Dmitriev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| | - George Krasnov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| | - Vladislav Pavlov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| | - Anna Kudryavtseva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| |
Collapse
|
6
|
Savvateeva M, Kudryavtseva A, Lukyanova E, Kobelyatskaya A, Pavlov V, Fedorova M, Pudova E, Guvatova Z, Kalinin D, Golovyuk A, Bulavkina E, Katunina I, Krasnov G, Snezhkina A. Somatic Mutation Profiling in Head and Neck Paragangliomas. J Clin Endocrinol Metab 2022; 107:1833-1842. [PMID: 35460558 PMCID: PMC9202733 DOI: 10.1210/clinem/dgac250] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Indexed: 11/19/2022]
Abstract
CONTEXT Head and neck paragangliomas (HNPGLs) are rare neoplasms with a high degree of heritability. Paragangliomas present as polygenic diseases caused by combined alterations in multiple genes; however, many driver changes remain unknown. OBJECTIVE The objective of the study was to analyze somatic mutation profiles in HNPGLs. METHODS Whole-exome sequencing of 42 tumors and matched normal tissues obtained from Russian patients with HNPGLs was carried out. Somatic mutation profiling included variant calling and utilizing MutSig and SigProfiler packages. RESULTS 57% of patients harbored germline and somatic variants in paraganglioma (PGL) susceptibility genes or potentially related genes. Somatic variants in novel genes were found in 17% of patients without mutations in any known PGL-related genes. The studied cohort was characterized by 6 significantly mutated genes: SDHD, BCAS4, SLC25A14, RBM3, TP53, and ASCC1, as well as 4 COSMIC single base substitutions (SBS)-96 mutational signatures (SBS5, SBS29, SBS1, and SBS7b). Tumors with germline variants specifically displayed SBS11 and SBS19, when an SBS33-specific mutational signature was identified for cases without those. Beta allele frequency analysis of copy number variations revealed loss of heterozygosity of the wild-type allele in 1 patient with germline mutation c.287-2A>G in the SDHB gene. In patients with germline mutation c.A305G in the SDHD gene, frequent potential loss of chromosome 11 was observed. CONCLUSION These results give an understanding of somatic changes and the mutational landscape associated with HNPGLs and are important for the identification of molecular mechanisms involved in tumor development.
Collapse
Affiliation(s)
- Maria Savvateeva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Anna Kudryavtseva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Elena Lukyanova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | | | - Vladislav Pavlov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Maria Fedorova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Elena Pudova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Zulfiya Guvatova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Dmitry Kalinin
- Vishnevsky Institute of Surgery, Ministry of Health of the Russian Federation, 117997 Moscow, Russia
| | - Alexander Golovyuk
- Vishnevsky Institute of Surgery, Ministry of Health of the Russian Federation, 117997 Moscow, Russia
| | - Elizaveta Bulavkina
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Irina Katunina
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - George Krasnov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Anastasiya Snezhkina
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| |
Collapse
|
7
|
Chatzikyriakou P, Touska P, Moonim MT, Obholzer R, Afridi S, Sandison A, Oakey RJ, Izatt L. Case report of a man with multiple paragangliomas and pathogenic germline variants in both NF1 and SDHD. Cancer Genet 2021; 256-257:110-114. [PMID: 34107390 DOI: 10.1016/j.cancergen.2021.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 05/10/2021] [Accepted: 05/20/2021] [Indexed: 11/24/2022]
Abstract
We report a novel case of multiple paragangliomas in a patient who was identified with pathogenic variants in both NF1 and SDHD genes. The proband is a man with known familial NF1 disease, diagnosed clinically in childhood. Multiple head and neck paragangliomas (HNPGL) were found during investigations for acute left sided neurological symptoms, in the region of his known plexiform neurofibroma. He was referred for genetic counselling. He underwent surgery to remove a left carotid body tumor (CBT). A pheochromocytoma and paraganglioma gene panel was tested. Blood and HNPGL tumor DNA were analyzed by whole exome sequencing. In addition to the NF1 truncating variant c.5107delA, p.(Ser1703AlafsTer7), the SDHD truncating pathogenic variant c.3G > A, p.(Met1?) was found. Tumor sequencing showed no LOH of SDHD or NF1, but monoallelic loss of 11p15 and 11q12.2-q12.3 was observed. Co-occurrence of pathogenic variants in multiple cancer susceptibility genes is rare but possible, identified by the increased use of panel testing. This is the first description of a patient presenting with NF1 and SDHD dual pathology, with HNPGL development due to SDHD. This case illustrates the central role of genetic sequencing in PPGLs and the strong genotype-phenotype correlations of different genes.
Collapse
Affiliation(s)
- Prodromos Chatzikyriakou
- Department of Medical and Molecular Genetics, King's College London, Guy's Hospital, London SE1 9RT, United Kingdom.
| | - Philip Touska
- Department of Radiology, Guy's and St Thomas' NHS Foundation Trust, London SE1 9RT, United Kingdom.
| | - Mufaddal T Moonim
- Cellular Pathology, Imperial College Healthcare Trust, London, United Kingdom.
| | - Rupert Obholzer
- Department of ENT and Skull Base Surgery, Guy's and St Thomas' NHS Foundation Trust, London SE1 9RT, United Kingdom.
| | - Shazia Afridi
- Department of Neurology, Guy's and St Thomas' NHS Foundation Trust, London SE1 9RT, United Kingdom.
| | - Ann Sandison
- Department of Head and Neck / Oral Pathology, Guy's and St Thomas' NHS Foundation Trust, London SE1 9RT, United Kingdom.
| | - Rebecca J Oakey
- Department of Medical and Molecular Genetics, King's College London, Guy's Hospital, London SE1 9RT, United Kingdom.
| | - Louise Izatt
- Department of Medical and Molecular Genetics, King's College London, Guy's Hospital, London SE1 9RT, United Kingdom; Department of Clinical Genetics, Guy's and St Thomas' NHS Foundation Trust, London SE1 9RT, United Kingdom.
| |
Collapse
|
8
|
Koenighofer M, Parzefall T, Frohne A, Frei E, Schoefer C, Laccone F, Feil P, Frei K, Lucas T. Incomplete penetrance of a novel SDHD variation causing familial head and neck paraganglioma. Clin Otolaryngol 2021; 46:1044-1049. [PMID: 33851515 PMCID: PMC8453574 DOI: 10.1111/coa.13782] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 03/02/2021] [Accepted: 03/28/2021] [Indexed: 01/25/2023]
Abstract
Objective Identification of variations in tumour suppressor genes encoding the tetrameric succinate dehydrogenase (SDHx) mitochondrial enzyme complex may lead to personalised therapeutic concepts for the orphan disease, familial paraganglioma (PGL) type 1‐5. We undertook to determine the causative variation in a family suffering from idiopathic early‐onset (22 ± 2 years) head and neck PGL by PCR and Sanger sequencing. Design Prospective genetic study. Setting Tertiary Referral Otolaryngology Centre. Participants Twelve family members. Main outcome measures Main outcomes were clinical analysis and SDH genotyping Results and Conclusions A novel heterozygous c.298delA frameshift variation in exon 3 of SDH subunit D (SDHD) was associated with a paternal transmission pattern of PGL in affected family members available to the study. Family history over five generations in adulthood indicated a variable penetrance for PGL inheritance in older generations. The c.298delA variant would cause translation of a 34‐residue C‐terminus distal to lysine residue 99 in the predicted transmembrane domain II of the full‐length sequence p.(Thr100LeufsTer35) and would affect the translation products of all protein‐coding SDHD isoforms containing transmembrane topologies required for positional integration in the inner mitochondrial membrane and complex formation. These results underly the importance of genetic screening for PGL also in cases of unclear inheritance, and variation carriers should benefit from screening and lifelong follow‐up.
Collapse
Affiliation(s)
- Martin Koenighofer
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical University of Vienna, Vienna, Austria
| | - Thomas Parzefall
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical University of Vienna, Vienna, Austria
| | - Alexandra Frohne
- Center of Anatomy and Cell biology, Medical University of Vienna, Vienna, Austria
| | - Elisabeth Frei
- Center of Anatomy and Cell biology, Medical University of Vienna, Vienna, Austria
| | - Christian Schoefer
- Center of Anatomy and Cell biology, Medical University of Vienna, Vienna, Austria
| | - Franco Laccone
- Department of Medical Genetics, Medical University of Vienna, Vienna, Austria
| | - Patricia Feil
- Department of Pediatric Surgery, Medical University of Vienna, Vienna, Austria
| | - Klemens Frei
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical University of Vienna, Vienna, Austria
| | - Trevor Lucas
- Center of Anatomy and Cell biology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
9
|
Job S, Georges A, Burnichon N, Buffet A, Amar L, Bertherat J, Bouatia-Naji N, de Reyniès A, Drui D, Lussey-Lepoutre C, Favier J, Gimenez-Roqueplo AP, Castro-Vega LJ. Transcriptome Analysis of lncRNAs in Pheochromocytomas and Paragangliomas. J Clin Endocrinol Metab 2020; 105:5611198. [PMID: 31678991 DOI: 10.1210/clinem/dgz168] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 10/31/2019] [Indexed: 12/14/2022]
Abstract
CONTEXT Pheochromocytomas and paragangliomas (PPGLs) are neuroendocrine tumors explained by germline or somatic mutations in about 70% of cases. Patients with SDHB mutations are at high risk of developing metastatic disease, yet no reliable tumor biomarkers are available to predict tumor aggressiveness. OBJECTIVE We aimed at identifying long noncoding RNAs (lncRNAs) specific for PPGL molecular groups and metastatic progression. DESIGN AND METHODS To analyze the expression of lncRNAs, we used a mining approach of transcriptome data from a well-characterized series of 187 tumor tissues. Clustering consensus analysis was performed to determine a lncRNA-based classification, and informative transcripts were validated in an independent series of 51 PPGLs. The expression of metastasis-related lncRNAs was confirmed by RT-qPCR. Receiver operating characteristic (ROC) curve analysis was used to estimate the predictive accuracy of potential markers. MAIN OUTCOME MEASURE Univariate/multivariate and metastasis-free survival (MFS) analyses were carried out for the assessment of risk factors and clinical outcomes. RESULTS Four lncRNA-based subtypes strongly correlated with mRNA expression clusters (chi-square P-values from 1.38 × 10-32 to 1.07 × 10-67). We identified one putative lncRNA (GenBank: BC063866) that accurately discriminates metastatic from benign tumors in patients with SDHx mutations (area under the curve 0.95; P = 4.59 × 10-05). Moreover, this transcript appeared as an independent risk factor associated with poor clinical outcome of SDHx carriers (log-rank test P = 2.29 × 10-05). CONCLUSION Our findings extend the spectrum of transcriptional dysregulations in PPGL to lncRNAs and provide a novel biomarker that could be useful to identify potentially metastatic tumors in patients carrying SDHx mutations.
Collapse
Affiliation(s)
- Sylvie Job
- Programme Cartes d'Identité des Tumeurs, Ligue Nationale Contre Le Cancer, Paris, France
| | - Adrien Georges
- Paris University, PARCC, INSERM, Equipe labellisée par la Ligue contre le cancer, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, Paris, France
| | - Nelly Burnichon
- Paris University, PARCC, INSERM, Equipe labellisée par la Ligue contre le cancer, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, Paris, France
- Genetics department, AP-HP, Hôpital européen Georges Pompidou, Paris France
| | - Alexandre Buffet
- Paris University, PARCC, INSERM, Equipe labellisée par la Ligue contre le cancer, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, Paris, France
| | - Laurence Amar
- Paris University, PARCC, INSERM, Equipe labellisée par la Ligue contre le cancer, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, Paris, France
- Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Hypertension unit, Paris, France
| | - Jérôme Bertherat
- INSERM, U1016, Institut Cochin, Paris, France. 10 CNRS UMR8104, Paris, France
- Rare Adrenal Cancer Network COMETE, Paris, France
| | - Nabila Bouatia-Naji
- Paris University, PARCC, INSERM, Equipe labellisée par la Ligue contre le cancer, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, Paris, France
| | - Aurélien de Reyniès
- Programme Cartes d'Identité des Tumeurs, Ligue Nationale Contre Le Cancer, Paris, France
| | - Delphine Drui
- Service d'Endocrinologie, Diabétologie et Maladies Métaboliques, L'institut du Thorax, Centre Hospitalier Universitaire de Nantes, Hôpital Nord Laënnec, Nantes, France
| | - Charlotte Lussey-Lepoutre
- Paris University, PARCC, INSERM, Equipe labellisée par la Ligue contre le cancer, Paris, France
- Sorbonne Université, Pitié-Salpêtrière Hospital, Department of nuclear medicine, Paris, France
| | - Judith Favier
- Paris University, PARCC, INSERM, Equipe labellisée par la Ligue contre le cancer, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, Paris, France
| | - Anne-Paule Gimenez-Roqueplo
- Paris University, PARCC, INSERM, Equipe labellisée par la Ligue contre le cancer, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, Paris, France
- Genetics department, AP-HP, Hôpital européen Georges Pompidou, Paris France
- Rare Adrenal Cancer Network COMETE, Paris, France
| | - Luis Jaime Castro-Vega
- Paris University, PARCC, INSERM, Equipe labellisée par la Ligue contre le cancer, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, Paris, France
| |
Collapse
|
10
|
Moosavi B, Zhu XL, Yang WC, Yang GF. Molecular pathogenesis of tumorigenesis caused by succinate dehydrogenase defect. Eur J Cell Biol 2020; 99:151057. [DOI: 10.1016/j.ejcb.2019.151057] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 09/19/2019] [Accepted: 10/29/2019] [Indexed: 12/14/2022] Open
|
11
|
Koopman K, Gaal J, de Krijger RR. Pheochromocytomas and Paragangliomas: New Developments with Regard to Classification, Genetics, and Cell of Origin. Cancers (Basel) 2019; 11:cancers11081070. [PMID: 31362359 PMCID: PMC6721302 DOI: 10.3390/cancers11081070] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 07/22/2019] [Accepted: 07/23/2019] [Indexed: 12/11/2022] Open
Abstract
Pheochromocytomas (PCC) and paragangliomas (PGL) are rare neuroendocrine tumors that arise in the adrenal medulla and in extra-adrenal locations, such as the head, neck, thorax, abdomen, and pelvis. Classification of these tumors into those with or without metastatic potential on the basis of gross or microscopic features is challenging. Recent insights and scoring systems have attempted to develop solutions for this, as described in the latest World Health Organization (WHO) edition on endocrine tumor pathology. PCC and PGL are amongst the tumors most frequently accompanied by germline mutations. More than 20 genes are responsible for a hereditary background in up to 40% of these tumors; somatic mutations in the same and several additional genes form the basis for another 30%. However, this does not allow for a complete understanding of the pathogenesis or targeted treatment of PCC and PGL, for which surgery is the primary treatment and for which metastasis is associated with poor outcome. This review describes recent insights into the cell of origin of these tumors, the latest developments with regard to the genetic background, and the current status of tumor classification including proposed scoring systems.
Collapse
Affiliation(s)
- Karen Koopman
- Martini Hospital, 9728 NT Groningen, The Netherlands
| | - Jose Gaal
- Department of Pathology, Isala Hospital, 8025AB Zwolle, The Netherlands
| | - Ronald R de Krijger
- Department of Pathology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands.
- Princess Maxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands.
| |
Collapse
|
12
|
HNF1B nephropathy has a slow-progressive phenotype in childhood-with the exception of very early onset cases: results of the German Multicenter HNF1B Childhood Registry. Pediatr Nephrol 2019; 34:1065-1075. [PMID: 30666461 DOI: 10.1007/s00467-018-4188-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 11/06/2018] [Accepted: 12/20/2018] [Indexed: 12/17/2022]
Abstract
BACKGROUND HNF1B gene mutations are an important cause of bilateral (cystic) dysplasia in children, complicated by chronic renal insufficiency. The clinical variability, the absence of genotype-phenotype correlations, and limited long-term data render counseling of affected families difficult. METHODS Longitudinal data of 62 children probands with genetically proven HNF1B nephropathy was obtained in a multicenter approach. Genetic family cascade screening was performed in 30/62 cases. RESULTS Eighty-seven percent of patients had bilateral dysplasia, 74% visible bilateral, and 16% unilateral renal cysts at the end of observation. Cyst development was non-progressive in 72% with a mean glomerular filtration rate (GFR) loss of - 0.33 ml/min/1.73m2 per year (± 8.9). In patients with an increase in cyst number, the annual GFR reduction was - 2.8 ml/min/1.73m2 (± 13.2), in the total cohort - 1.0 ml/min/1.73m2 (±10.3). A subset of HNF1B patients differs from this group and develops end stage renal disease (ESRD) at very early ages < 2 years. Hyperuricemia (37%) was a frequent finding at young age (median 1 year), whereas hypomagnesemia (24%), elevated liver enzymes (21%), and hyperglycemia (8%) showed an increased incidence in the teenaged child. Genetic analysis revealed no genotype-phenotype correlations but a significant parent-of-origin effect with a preponderance of 81% of maternal inheritance in dominant cases. CONCLUSIONS In most children, HNF1B nephropathy has a non-progressive course of cyst development and a slow-progressive course of kidney function. A subgroup of patients developed ESRD at very young age < 2 years requiring special medical attention. The parent-of-origin effect suggests an influence of epigenetic modifiers in HNF1B disease.
Collapse
|
13
|
Vermalle M, Tabarin A, Castinetti F. [Hereditary pheochromocytoma and paraganglioma: screening and follow-up strategies in asymptomatic mutation carriers]. ANNALES D'ENDOCRINOLOGIE 2018; 79 Suppl 1:S10-S21. [PMID: 30213301 DOI: 10.1016/s0003-4266(18)31234-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The management of pheochromocytoma and paraganglioma has deeply evolved over the last years due to the discovery of novel genes of susceptibility, especially SDHx, MAX and TMEM127. While the modalities of diagnosis and management of patients presenting with hereditary pheochromocytoma and paraganglioma are now well defined, screening and follow-up strategies for asymptomatic mutation carriers remain a matter of debate. This raises major questions as these asymptomatic patients will require a lifelong follow-up. The aim of this review is an attempt to give insights on the optimal screening and follow-up strategies of asymptomatic carriers of SDHx, MAX and TMEM127 mutations, with additional thoughts on the forensic and psychological aspects of the management of such patients with rare diseases.
Collapse
Affiliation(s)
- Marie Vermalle
- Aix-Marseille université, Institut national de la santé et de la recherche médicale (INSERM), U1251, Marseille Medical Genetics (MMG), Marseille, France; Assistance publique-Hôpitaux de Marseille (AP-HM), département d'endocrinologie, hôpital de la Conception, centre de référence des maladies rares de l'hypophyse HYPO, 13005, Marseille, France.
| | - Antoine Tabarin
- Service d'endocrinologie, diabète et nutrition, USN Haut-Leveque, 33000 CHU Bordeaux, université Bordeaux, France
| | - Frederic Castinetti
- Aix-Marseille université, Institut national de la santé et de la recherche médicale (INSERM), U1251, Marseille Medical Genetics (MMG), Marseille, France; Assistance publique-Hôpitaux de Marseille (AP-HM), département d'endocrinologie, hôpital de la Conception, centre de référence des maladies rares de l'hypophyse HYPO, 13005, Marseille, France.
| |
Collapse
|
14
|
Mathematical modeling of disease dynamics in SDHB- and SDHD-related paraganglioma: Further step in understanding hereditary tumor differences and future therapeutic strategies. PLoS One 2018; 13:e0201303. [PMID: 30106970 PMCID: PMC6091916 DOI: 10.1371/journal.pone.0201303] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 07/10/2018] [Indexed: 11/24/2022] Open
Abstract
Succinate dehydrogenase subunit B and D (SDHB and SDHD) mutations represent the most frequent cause of hereditary pheochromocytoma and paraganglioma (PPGL). Although truncation of the succinate dehydrogenase complex is thought to be the disease causing mechanism in both disorders, SDHB and SDHD patients exihibit different phenotypes. These phenotypic differences are currently unexplained by molecular genetics. The aim of this study is to compare disease dynamics in these two conditions via a Markov chain model based on 4 clinically-defined steady states. Our model corroborates at the population level phenotypic observations in SDHB and SDHD carriers and suggests potential explanations associated with the probabilities of disease maintenance and regression. In SDHB-related syndrome, PPGL maintenance seems to be reduced compared to SDHD (p = 0.04 vs 0.95) due to higher probability of tumor cell regression in SDHB vs SDHD (p = 0.87 vs 0.00). However, when SDHB-tumors give rise to metastases, metastatic cells are able to thrive with decreased probability of regression compared with SDHD counterparts (p = 0.17 vs 0.89). By constrast, almost all SDHD patients develop PGL (mainly head and neck) that persist throughout their lifetime. However, compared to SDHB, maintenance of metastatic lesions seems to be less effective for SDHD (p = 0.83 vs 0.11). These findings align with data suggesting that SDHD-related PPGL require less genetic events for tumor initiation and maintenance compared to those related to SDHB, but fail to initiate biology that promotes metastatic spread and metastatic cell survival in host tissues. By contrast, the higher number of genetic abnormalities required for tumor initiation and maintenance in SDHB PPGL result in a lower penetrance of PGL, but when cells give rise to metastases they are assumed to be better adapted to sustain survival. These proposed differences in disease progression dynamics between SDHB and SDHD diseases provide new cues for future exploration of SDHx PPGL behavior, offering considerations for future specific therapeutic and prevention strategies.
Collapse
|
15
|
Crona J, Beuschlein F, Pacak K, Skogseid B. Advances in adrenal tumors 2018. Endocr Relat Cancer 2018; 25:R405-R420. [PMID: 29794126 PMCID: PMC5976083 DOI: 10.1530/erc-18-0138] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 04/24/2018] [Indexed: 12/14/2022]
Abstract
This review aims to provide clinicians and researchers with a condensed update on the most important studies in the field during 2017. We present the academic output measured by active clinical trials and peer-reviewed published manuscripts. The most important and contributory manuscripts were summarized for each diagnostic entity, with a particular focus on manuscripts that describe translational research that have the potential to improve clinical care. Finally, we highlight the importance of collaborations in adrenal tumor research, which allowed for these recent advances and provide structures for future success in this scientific field.
Collapse
Affiliation(s)
- J Crona
- Department of Medical SciencesUppsala University, Uppsala, Sweden
| | - F Beuschlein
- Medizinische Klinik und Poliklinik IVKlinikum der Universität München, Munich, Germany
- Klinik für EndokrinologieDiabetologie und Klinische Ernährung, UniversitätsSpital Zürich, Zürich, Switzerland
| | - K Pacak
- Section on Medical NeuroendocrinologyEunice Kennedy Shriver National Institute of Child Health & Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - B Skogseid
- Department of Medical SciencesUppsala University, Uppsala, Sweden
| |
Collapse
|
16
|
Pheochromocytoma and paraganglioma: genotype versus anatomic location as determinants of tumor phenotype. Cell Tissue Res 2018; 372:347-365. [DOI: 10.1007/s00441-017-2760-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 12/01/2017] [Indexed: 12/22/2022]
|
17
|
Dias Pereira B, Nunes da Silva T, Bernardo AT, César R, Vara Luiz H, Pacak K, Mota-Vieira L. A Clinical Roadmap to Investigate the Genetic Basis of Pediatric Pheochromocytoma: Which Genes Should Physicians Think About? Int J Endocrinol 2018; 2018:8470642. [PMID: 29755524 PMCID: PMC5884154 DOI: 10.1155/2018/8470642] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 01/18/2018] [Indexed: 01/06/2023] Open
Abstract
Pheochromocytoma is very rare at a pediatric age, and when it is present, the probability of a causative genetic mutation is high. Due to high costs of genetic surveys and an increasing number of genes associated with pheochromocytoma, a sequential genetic analysis driven by clinical and biochemical phenotypes is advised. The published literature regarding the genetic landscape of pediatric pheochromocytoma is scarce, which may hinder the establishment of genotype-phenotype correlations and the selection of appropriate genetic testing at this population. In the present review, we focus on the clinical phenotypes of pediatric patients with pheochromocytoma in an attempt to contribute to an optimized genetic testing in this clinical context. We describe epidemiological data on the prevalence of pheochromocytoma susceptibility genes, including new genes that are expanding the genetic etiology of this neuroendocrine tumor in pediatric patients. The clinical phenotypes associated with a higher pretest probability for hereditary pheochromocytoma are presented, focusing on differences between pediatric and adult patients. We also describe new syndromes, as well as rates of malignancy and multifocal disease associated with these syndromes and pheochromocytoma susceptibility genes published more recently. Finally, we discuss new tools for genetic screening of patients with pheochromocytoma, with an emphasis on its applicability in a pediatric population.
Collapse
Affiliation(s)
- Bernardo Dias Pereira
- Serviço de Endocrinologia e Nutrição, Hospital do Divino Espírito Santo de Ponta Delgada (EPER), Av. D. Manuel I, 9500-370 Ponta Delgada, Açores, Portugal
| | - Tiago Nunes da Silva
- Serviço de Endocrinologia e Diabetes, Hospital Garcia de Orta (EPE), Av. Torrado da Silva, 2851-951 Almada, Setúbal, Portugal
| | - Ana Teresa Bernardo
- Serviço de Cirurgia Geral, Hospital do Divino Espírito Santo de Ponta Delgada (EPER), Av. D. Manuel I, 9500-370 Ponta Delgada, Açores, Portugal
| | - Rui César
- Serviço de Endocrinologia e Nutrição, Hospital do Divino Espírito Santo de Ponta Delgada (EPER), Av. D. Manuel I, 9500-370 Ponta Delgada, Açores, Portugal
| | - Henrique Vara Luiz
- Serviço de Endocrinologia e Diabetes, Hospital Garcia de Orta (EPE), Av. Torrado da Silva, 2851-951 Almada, Setúbal, Portugal
| | - Karel Pacak
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver NICHD, NIH, Building 10 CRC 1E-3140 10 Center Drive MSC-1109, Bethesda, MD 20892-1109, USA
| | - Luísa Mota-Vieira
- Unidade de Genética e Patologia Moleculares, Hospital do Divino Espírito Santo de Ponta Delgada (EPER), Av. D. Manuel I, 9500-370 Ponta Delgada, Açores, Portugal
- Biosystems & Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisbon, Lisbon, Portugal
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| |
Collapse
|