1
|
Rout M, Vaughan A, Sidorov EV, Sanghera DK. Improving Stroke Outcome Prediction Using Molecular and Machine Learning Approaches in Large Vessel Occlusion. J Clin Med 2024; 13:5917. [PMID: 39407977 PMCID: PMC11477941 DOI: 10.3390/jcm13195917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 09/25/2024] [Accepted: 10/01/2024] [Indexed: 10/20/2024] Open
Abstract
Introduction: Predicting stroke outcomes in acute ischemic stroke (AIS) can be challenging, especially for patients with large vessel occlusion (LVO). Available tools such as infarct volume and the National Institute of Health Stroke Scale (NIHSS) have shown limited accuracy in predicting outcomes for this specific patient population. The present study aimed to confirm whether sudden metabolic changes due to blood-brain barrier (BBB) disruption during LVO reflect differences in circulating metabolites and RNA between small and large core strokes. The second objective was to evaluate whether integrating molecular markers with existing neurological and imaging tools can enhance outcome predictions in LVO strokes. Methods: The infarction volume in patients was measured using magnetic resonance diffusion-weighted images, and the 90-day stroke outcome was defined by a modified Rankin Scale (mRS). Differential expression patterns of miRNAs were identified by RNA sequencing of serum-driven exosomes. Nuclear magnetic resonance (NMR) spectroscopy was used to identify metabolites associated with AIS with small and large infarctions. Results: We identified 41 miRNAs and 11 metabolites to be significantly associated with infarct volume in a multivariate regression analysis after adjusting for the confounders. Eight miRNAs and ketone bodies correlated significantly with infarct volume, NIHSS (severity), and mRS (outcome). Through integrative analysis of clinical, radiological, and omics data using machine learning, our study identified 11 top features for predicting stroke outcomes with an accuracy of 0.81 and AUC of 0.91. Conclusions: Our study provides a future framework for advancing stroke therapeutics by incorporating molecular markers into the existing neurological and imaging tools to improve predictive efficacy and enhance patient outcomes.
Collapse
Affiliation(s)
- Madhusmita Rout
- Department of Pediatrics, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA;
| | - April Vaughan
- Department of Neurology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA;
| | - Evgeny V. Sidorov
- Department of Neurology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA;
| | - Dharambir K. Sanghera
- Department of Pediatrics, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA;
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Department of Physiology, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
2
|
Park YJ, Kim DC, Lee SJ, Kim HS, Pak JY, Kim J, Cheong JY, Lee ES. Keratinocyte-derived circulating microRNAs in extracellular vesicles: a novel biomarker of psoriasis severity and potential therapeutic target. J Transl Med 2024; 22:235. [PMID: 38433211 PMCID: PMC10910723 DOI: 10.1186/s12967-024-05030-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 02/24/2024] [Indexed: 03/05/2024] Open
Abstract
BACKGROUND Psoriasis is a chronic inflammatory disorder characterized by pathogenic hyperproliferation of keratinocytes and immune dysregulation. Currently, objective evaluation tools reflecting the severity of psoriasis are insufficient. MicroRNAs in extracellular vesicles (EV miRNAs) have been shown to be potential biomarkers for various inflammatory diseases. Our objective was to investigate the possibility of plasma-derived EV miRNAs as a marker for the psoriasis disease severity. METHODS EVs were extracted from the plasma of 63 patients with psoriasis and 12 with Behçet's disease. We performed next-generation sequencing of the plasma-derived EV miRNAs from the psoriasis patients. Real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR) was used to validate the level of EV miRNA expression. In situ hybridization was used to discern the anatomical location of miRNAs. qRT-PCR, western blotting, and cell counting kits (CCKs) were used to investigate IGF-1 signaling in cells transfected with miRNA mimics. RESULTS We identified 19 differentially expressed EV miRNAs and validated the top three up-and down-regulated EV miRNAs. Among these, miR-625-3p was significantly increased in patients with severe psoriasis in both plasma and skin and most accurately distinguished moderate-to-severe psoriasis from mild-to-moderate psoriasis. It was produced and secreted by keratinocytes upon stimulation. We also observed a significant intensification of IGF-1 signalling and increased cell numbers in the miR-625-3p mimic transfected cells. CONCLUSIONS We propose keratinocyte-derived EV miR-625-3p as a novel and reliable biomarker for estimating the severity of psoriasis. This biomarker could objectively evaluate the severity of psoriasis in the clinical setting and might serve as a potential therapeutic target. Trial registration None.
Collapse
Affiliation(s)
- Young Joon Park
- Department of Dermatology, Ajou University School of Medicine, Ajou University Hospital, 164, World Cup-Ro, Yeongtong-Gu, Suwon-Si, Gyeonggi-Do, 16499, South Korea
| | - Dong Chan Kim
- Department of Dermatology, Ajou University School of Medicine, Ajou University Hospital, 164, World Cup-Ro, Yeongtong-Gu, Suwon-Si, Gyeonggi-Do, 16499, South Korea
| | - Soo-Jin Lee
- Department of Dermatology, Ajou University School of Medicine, Ajou University Hospital, 164, World Cup-Ro, Yeongtong-Gu, Suwon-Si, Gyeonggi-Do, 16499, South Korea
| | - Han Seul Kim
- Department of Dermatology, Ajou University School of Medicine, Ajou University Hospital, 164, World Cup-Ro, Yeongtong-Gu, Suwon-Si, Gyeonggi-Do, 16499, South Korea
| | - Ji Young Pak
- Department of Dermatology, Ajou University School of Medicine, Ajou University Hospital, 164, World Cup-Ro, Yeongtong-Gu, Suwon-Si, Gyeonggi-Do, 16499, South Korea
| | - Junho Kim
- Department of Biomedical Sciences, Graduate School of Ajou University, Suwon, Korea
| | - Jae Youn Cheong
- Ajou Translational Omics Center, Ajou University Medical Center, Suwon, Korea
| | - Eun-So Lee
- Department of Dermatology, Ajou University School of Medicine, Ajou University Hospital, 164, World Cup-Ro, Yeongtong-Gu, Suwon-Si, Gyeonggi-Do, 16499, South Korea.
| |
Collapse
|
3
|
Deng J, Li Y, Song J, Zhu F. Regulation of the TUG1/miR‑145‑5p/SOX2 axis on the migratory and invasive capabilities of melanoma cells. Exp Ther Med 2022; 24:599. [PMID: 35949341 PMCID: PMC9353493 DOI: 10.3892/etm.2022.11535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 03/01/2021] [Indexed: 11/16/2022] Open
Abstract
Melanoma is the most prevalent malignancy of cutaneous carcinomas. Taurine-upregulated gene 1 (TUG1), a lncRNA, is a pivotal regulator of cutaneous malignancies. The present study aimed to investigate the impact and possible mechanisms of action of TUG1 behind the progression of melanomas. Reverse transcription-quantitative PCR was conducted to detect the expression levels of TUG1, microRNA (miR)-145-5p and SOX2 in melanoma tissues and cell lines. Cell Counting Kit-8 (CCK-8) assays were performed to measure the proliferative ability of melanoma cells and transwell assays were used to examine the migration and invasion of melanoma cells. Dual luciferase reporter and RNA immunoprecipitation (RIP) assays were utilized to identify the interactions among TUG1, miR-145-5p and SOX2. Western blotting and immunohistochemical assays were performed to determine the expression profile of SOX2. The impact of TUG1 on melanoma tumorigenesis was assessed using tumorigenicity assays. TUG1 expression levels were elevated in melanoma tumor tissues and cell lines. Reduced TUG1 expression levels significantly inhibited the proliferative, migratory and invasive abilities of melanoma cells. The expression levels of miR-145-5p were decreased in melanoma tumor tissues and cell lines. TUG1 directly targeted miR-145-5p and downregulated miR-145-5p. Upregulation of TUG1 counteracted the promotion of the proliferative, migratory and invasive abilities of melanoma cells induced by the overexpression of miR-145-5p. SOX2 was a target of miR-145-5p and its expression was negatively regulated by miR-145-5p, while positively regulated by TUG1. TUG1 regulated SOX2 expression through sponging miR-145-5p. Silencing of TUG1 also inhibited melanoma tumorigenesis in mice. In conclusion, the TUG1/miR-145-5p/SOX2 axis regulated the migration and invasion of melanoma cells.
Collapse
Affiliation(s)
- Jiabin Deng
- Department of Burn and Plastic Surgery, The Third People's Hospital of Bengbu, Bengbu, Anhui 233000, P.R. China
| | - Yinqiu Li
- Department of Plastic Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Jiaqian Song
- Department of Plastic Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Fei Zhu
- Department of Plastic Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| |
Collapse
|
4
|
Zhang M, Xiong F, Zhang S, Guo W, He Y. Crucial Roles of miR-625 in Human Cancer. Front Med (Lausanne) 2022; 9:845094. [PMID: 35308517 PMCID: PMC8931282 DOI: 10.3389/fmed.2022.845094] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 02/09/2022] [Indexed: 12/15/2022] Open
Abstract
Genetic and epigenetic characteristics are core factors of cancer. MicroRNAs (miRNAs) are small non-coding RNAs which regulate gene expression at the post-transcriptional level via binding to corresponding mRNAs. Recently, increasing evidence has proven that miRNAs regulate the occurrence and development of human cancer. Here, we mainly review the abnormal expression of miR-625 in a variety of cancers. In summarizing the role and potential molecular mechanisms of miR-625 in various tumors in detail, we reveal that miR-625 is involved in a variety of biological processes, such as cell proliferation, invasion, migration, apoptosis, cell cycle regulation, and drug resistance. In addition, we discuss the lncRNA-miRNA-mRNA and circRNA-miRNA-mRNA networks and briefly explain the specific mechanisms of competing endogenous RNAs. In conclusion, we reveal the potential value of miR-625 in cancer diagnosis, treatment, and prognosis and hope to provide new ideas for the clinical application of miR-625.
Collapse
Affiliation(s)
- Menggang Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Open and Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, China
- Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, China
| | - Fei Xiong
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Open and Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, China
- Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, China
| | - Shuijun Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Open and Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, China
- Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, China
| | - Wenzhi Guo
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Open and Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, China
- Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, China
| | - Yuting He
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Open and Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, China
- Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, China
| |
Collapse
|
5
|
LINC00852 Regulates Cell Proliferation, Invasion, Migration and Apoptosis in Hepatocellular Carcinoma Via the miR-625/E2F1 Axis. Cell Mol Bioeng 2021; 15:207-217. [DOI: 10.1007/s12195-021-00714-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 11/15/2021] [Indexed: 02/06/2023] Open
|
6
|
Mahmoudi R, Saidijam M, Nikzad S, Tapak L, Alvandi M, Afshar S. Human exposure to low dose ionizing radiation affects miR-21 and miR-625 expression levels. Mol Biol Rep 2021; 49:1321-1327. [PMID: 34797493 DOI: 10.1007/s11033-021-06960-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 11/16/2021] [Indexed: 01/04/2023]
Abstract
BACKGROUND Recently exposure to ionizing radiation driven by artificial radiation sources such as Medical X-rays and Nuclear medicine has increased hastily. Ionizing radiation-induced the DNA damage and activate the DNA damage response signaling pathways. The aim of this study was to evaluate the role of miR-21 and miR-625 in response to low-dose ionizing radiation. MATERIALS AND METHODS In this study, the blood sample of 38 volunteer patients who underwent Cardiac scans before and after 99mTc-MIBI injection were used. The WBC of patients was used for RNA extraction and after cDNA synthesis by the poly-A method the expression level of miR-21 and miR-625 was evaluated by real-time PCR method. RESULTS The results of this study indicated that miR-21 and miR- 625 were significantly upregulated under exposure to low-dose ionizing radiation. The expression level of these miRNAs was not significantly correlated with the age and BMI of patients. More ever the bioinformatics analysis indicated that SP1 was a common target of both miRNAs and had the highest degree between hub genes. CONCLUSION In summary miR-21 and miR-625 can contribute to the response to acute low dose ionizing radiation by targeting the SP1. However further studies should be carried out on the molecular mechanism of effects of miR-21 and miR-625 in response to low dose ionizing radiation by targeting the SP1.
Collapse
Affiliation(s)
- Roghayeh Mahmoudi
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Massoud Saidijam
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Safoora Nikzad
- Department of Medical Physics, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Leili Tapak
- Department of Biostatistics, School of Public Health, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Maryam Alvandi
- Department of Nuclear Medicine and Molecular Imaging, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Saeid Afshar
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
7
|
Goričar K, Holcar M, Mavec N, Kovač V, Lenassi M, Dolžan V. Extracellular Vesicle Enriched miR-625-3p Is Associated with Survival of Malignant Mesothelioma Patients. J Pers Med 2021; 11:jpm11101014. [PMID: 34683154 PMCID: PMC8538530 DOI: 10.3390/jpm11101014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 10/03/2021] [Accepted: 10/07/2021] [Indexed: 12/29/2022] Open
Abstract
Malignant mesothelioma (MM) is characterized by poor prognosis and short survival. Extracellular vesicles (EVs) are membrane-bound particles released from cells into various body fluids, and their molecular composition reflects the characteristics of the origin cell. Blood EVs or their miRNA cargo might serve as new minimally invasive biomarkers that would enable earlier detection of MM or treatment outcome prediction. Our aim was to evaluate miRNAs enriched in serum EVs as potential prognostic biomarkers in MM patients in a pilot longitudinal study. EVs were isolated from serum samples obtained before and after treatment using ultracentrifugation on 20% sucrose cushion. Serum EV-enriched miR-103-3p, miR-126-3p and miR-625-3p were quantified using qPCR. After treatment, expression of miR-625-3p and miR-126-3p significantly increased in MM patients with poor treatment outcome (p = 0.012 and p = 0.036, respectively). A relative increase in miR-625-3p expression after treatment for more than 3.2% was associated with shorter progression-free survival (7.5 vs. 19.4 months, HR = 3.92, 95% CI = 1.20-12.80, p = 0.024) and overall survival (12.5 vs. 49.1 months, HR = 5.45, 95% CI = 1.06-28.11, p = 0.043) of MM patients. Bioinformatic analysis showed enrichment of 33 miR-625-3p targets in eight biological pathways. Serum EV-enriched miR-625-3p could therefore serve as a prognostic biomarker in MM and could contribute to a more personalized treatment.
Collapse
Affiliation(s)
- Katja Goričar
- Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia; (K.G.); (M.H.); (N.M.); (M.L.)
| | - Marija Holcar
- Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia; (K.G.); (M.H.); (N.M.); (M.L.)
| | - Nina Mavec
- Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia; (K.G.); (M.H.); (N.M.); (M.L.)
| | - Viljem Kovač
- Institute of Oncology Ljubljana, Zaloška 2, 1000 Ljubljana, Slovenia;
- Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia
| | - Metka Lenassi
- Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia; (K.G.); (M.H.); (N.M.); (M.L.)
| | - Vita Dolžan
- Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia; (K.G.); (M.H.); (N.M.); (M.L.)
- Correspondence: ; Tel.: +386-1-543-76
| |
Collapse
|
8
|
Ghafouri-Fard S, Gholipour M, Taheri M. MicroRNA Signature in Melanoma: Biomarkers and Therapeutic Targets. Front Oncol 2021; 11:608987. [PMID: 33968718 PMCID: PMC8100681 DOI: 10.3389/fonc.2021.608987] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 03/30/2021] [Indexed: 12/11/2022] Open
Abstract
Melanoma is the utmost fatal kind of skin neoplasms. Molecular changes occurring during the pathogenic processes of initiation and progression of melanoma are diverse and include activating mutations in BRAF and NRAS genes, hyper-activation of PI3K/AKT pathway, inactivation of p53 and alterations in CDK4/CDKN2A axis. Moreover, several miRNAs have been identified to be implicated in the biology of melanoma through modulation of expression of genes being involved in these pathways. In the current review, we provide a summary of the bulk of information about the role of miRNAs in the pathobiology of melanoma, their possible application as biomarkers and their emerging role as therapeutic targets for this kind of skin cancer.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahdi Gholipour
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
9
|
Wu L, Li K, Lin W, Liu J, Qi Q, Shen G, Chen W, He W. Long noncoding RNA LINC01291 promotes the aggressive properties of melanoma by functioning as a competing endogenous RNA for microRNA-625-5p and subsequently increasing IGF-1R expression. Cancer Gene Ther 2021; 29:341-357. [PMID: 33674778 PMCID: PMC8940622 DOI: 10.1038/s41417-021-00313-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 01/27/2021] [Accepted: 02/16/2021] [Indexed: 01/07/2023]
Abstract
Studies have confirmed the relationship between dysregulated long noncoding RNAs and melanoma pathogenesis. However, the regulatory functions of long intergenic non-protein coding RNA 1291 (LINC01291) in melanoma remain unknown. Therefore, we evaluated LINC01291 expression in melanoma and explored its roles in regulating tumor behaviors. Further, the molecular events via which LINC01291 affects melanoma cells were investigated. LINC01291 expression in melanoma cells was analyzed using The Cancer Genome Atlas database and quantitative real-time polymerase chain reaction. Functional assays, including the Cell Counting Kit-8 assay, colony formation assay, flow cytometry, cell migration and invasion assays, and tumor xenograft models, were used to examine LINC01291’s role in melanoma cells. Additionally, bioinformatics analysis, RNA immunoprecipitation, luciferase reporter assay, and western blotting were conducted to determine the tumor-promoting mechanism of LINC01291. LINC01291 was upregulated in melanoma tissues and cell lines. Following LINC01291 knockdown, cell proliferation, colony formation, migration, and invasion were diminished, whereas apoptosis was enhanced and the cell cycle was arrested at G0/G1. In addition, loss of LINC01291 decreased the chemoresistance of melanoma cells to cisplatin. Furthermore, LINC01291 interference inhibited melanoma tumor growth in vivo. Mechanistically, LINC01291 functions as a competing endogenous RNA by sponging microRNA-625-5p (miR-625-5p) in melanoma cells and maintaining insulin-like growth factor 1 receptor (IGF-1R) expression. Rescue experiments revealed that the roles induced by LINC01291 depletion in melanoma cells could be reversed by suppressing miR-625-5p or overexpressing IGF-1R. Our study identified the LINC01291/miR-625-5p/IGF-1R competing endogenous RNA pathway in melanoma cells, which may represent a novel diagnostic biomarker and an effective therapeutic target for melanoma.
Collapse
Affiliation(s)
- Lijun Wu
- Department of Plastic and Aesthetic Surgery, The Second Affiliated Hospital of Soochow University, Jiangsu, China
| | - Ke Li
- Department of Burn and Plastic Surgery, The First Affiliated Hospital of Soochow University, Jiangsu, China.
| | - Wei Lin
- Department of Burn and Plastic Surgery, The First Affiliated Hospital of Soochow University, Jiangsu, China
| | - Jianjiang Liu
- Department of Burn and Plastic Surgery, The First Affiliated Hospital of Soochow University, Jiangsu, China
| | - Qiang Qi
- Department of Burn and Plastic Surgery, The First Affiliated Hospital of Soochow University, Jiangsu, China
| | - Guoliang Shen
- Department of Burn and Plastic Surgery, The First Affiliated Hospital of Soochow University, Jiangsu, China
| | - Weixin Chen
- Department of Burn and Plastic Surgery, The First Affiliated Hospital of Soochow University, Jiangsu, China
| | - Wenjun He
- Department of Burn and Plastic Surgery, The First Affiliated Hospital of Soochow University, Jiangsu, China
| |
Collapse
|
10
|
Diana A, Gaido G, Maxia C, Murtas D. MicroRNAs at the Crossroad of the Dichotomic Pathway Cell Death vs. Stemness in Neural Somatic and Cancer Stem Cells: Implications and Therapeutic Strategies. Int J Mol Sci 2020; 21:E9630. [PMID: 33348804 PMCID: PMC7766058 DOI: 10.3390/ijms21249630] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/05/2020] [Accepted: 12/10/2020] [Indexed: 12/12/2022] Open
Abstract
Stemness and apoptosis may highlight the dichotomy between regeneration and demise in the complex pathway proceeding from ontogenesis to the end of life. In the last few years, the concept has emerged that the same microRNAs (miRNAs) can be concurrently implicated in both apoptosis-related mechanisms and cell differentiation. Whether the differentiation process gives rise to the architecture of brain areas, any long-lasting perturbation of miRNA expression can be related to the occurrence of neurodevelopmental/neuropathological conditions. Moreover, as a consequence of neural stem cell (NSC) transformation to cancer stem cells (CSCs), the fine modulation of distinct miRNAs becomes necessary. This event implies controlling the expression of pro/anti-apoptotic target genes, which is crucial for the management of neural/neural crest-derived CSCs in brain tumors, neuroblastoma, and melanoma. From a translational point of view, the current progress on the emerging miRNA-based neuropathology therapeutic applications and antitumor strategies will be disclosed and their advantages and shortcomings discussed.
Collapse
Affiliation(s)
- Andrea Diana
- Department of Biomedical Sciences, University of Cagliari, 09042 Monserrato, Italy
| | | | - Cristina Maxia
- Department of Biomedical Sciences, University of Cagliari, 09042 Monserrato, Italy
| | - Daniela Murtas
- Department of Biomedical Sciences, University of Cagliari, 09042 Monserrato, Italy
| |
Collapse
|
11
|
Ma GL, Qiao ZL, He D, Wang J, Kong YY, Xin XY, Wen FQ, Bao SJ, Ma ZR, Wang FS, Xie J, Hu YH. Establishment of a low-tumorigenic MDCK cell line and study of differential molecular networks. Biologicals 2020; 68:112-121. [PMID: 32928630 DOI: 10.1016/j.biologicals.2020.07.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 07/11/2020] [Accepted: 07/14/2020] [Indexed: 12/18/2022] Open
Abstract
Influenza is an acute respiratory infection caused by the influenza virus, and vaccination against influenza is considered the best way to prevent the onset and spread. MDCK (Madin-Darby canine kidney) cells are typically used to isolate the influenza virus, however, their high tumorigenicity is the main controversy in the production of influenza vaccines. Here, MDCK-C09 and MDCK-C35 monoclonal cell lines were established, which were proven to be low in tumorigenicity. RNA-seq of MDCK-C09, MDCK-C35, and MDCK-W73 cells was performed to investigate the putative tumorigenicity mechanisms. Tumor-related molecular interaction analysis of the differentially expressed genes indicates that hub genes, such as CUL3 and EGFR, may play essential roles in tumorigenicity differences between MDCK-C (MDCK-C09 and MDCK-C35) and MDCK-W (MDCK-W73) cells. Moreover, the analysis of cell proliferation regulation-associated molecular interaction shows that downregulated JUN and MYC, for instance, mediate increased proliferation of these cells. The present study provides a new low-tumorigenic MDCK cell line and describes the potential molecular mechanism for the low tumorigenicity and high proliferation rate.
Collapse
Affiliation(s)
- Gui-Lan Ma
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730030, PR China; Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou, 730030, PR China.
| | - Zi-Lin Qiao
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou, 730030, PR China.
| | - Dan He
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou, 730030, PR China.
| | - Jiao Wang
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai, China.
| | - Yan-Yan Kong
- Huashan Hospital Affiliated to Fudan University, Shanghai, China.
| | - Xiao-Yong Xin
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730030, PR China.
| | - Feng-Qin Wen
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730030, PR China.
| | - Shi-Jun Bao
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730030, PR China.
| | - Zhong-Ren Ma
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou, 730030, PR China.
| | - Fu-Shuai Wang
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai, China.
| | - Jiang Xie
- School of Computer Engineering and Science, Shanghai University, Shanghai, China.
| | - Yong-Hao Hu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730030, PR China.
| |
Collapse
|
12
|
Fathizadeh H, Hallajzadeh J, Asemi Z. Circular RNAs as diagnostic biomarker in pancreatic cancer. Pathol Res Pract 2020; 216:153075. [PMID: 32825948 DOI: 10.1016/j.prp.2020.153075] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 05/31/2020] [Accepted: 06/17/2020] [Indexed: 02/06/2023]
Abstract
Pancreatic cancer is one of the causes of death in the world. Unfortunately, common imaging technologies did not succeed in identifying this disease, and because of the absence of sensitive and specific biomarkers, it is not possible to screen and diagnose the disease. Therefore, this disease is usually diagnosed when patient is at an advanced stage of cancer and has lost the chance of surgery, and routine treatments such as radiotherapy and chemotherapy are not very effective. For this reason, the discovery of new biomarkers to overcome the diagnostic and therapeutic problems of pancreatic cancer is essential. Recently, circular RNAs (circRNAs) have been introduced as a group of noncoding RNAs that can play the role of critical regulators in various human diseases including cancer. A lot of studies revealed that circRNAs can have diverse roles in various cancers, including breast, colorectal, lung, renal, gastric, and hepatocellular carcinoma. The results of these researches have demonstrated that change in circRNAs expression levels in the tumor cells affects carcinogenesis, the stages of progression and metastasis of cancer through various mechanisms. Given that several studies have tested the role of circRNAs in pancreatic cancer, we decided to review the mechanisms proposed in these studies to conclude and summarize the work done in this regard.
Collapse
Affiliation(s)
- Hadis Fathizadeh
- Department of Microbiology, Kashan University of Medical Sciences, Kashan, Iran.
| | - Jamal Hallajzadeh
- Department of Biochemistry and Nutrition, Research Center for Evidence-Based Health Management, Maragheh University of Medical Sciences, Maragheh, Iran.
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
13
|
Lee HE, Huh JW, Kim HS. Bioinformatics Analysis of Evolution and Human Disease Related Transposable Element-Derived microRNAs. Life (Basel) 2020; 10:life10060095. [PMID: 32630504 PMCID: PMC7345915 DOI: 10.3390/life10060095] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 06/22/2020] [Accepted: 06/23/2020] [Indexed: 12/22/2022] Open
Abstract
Transposable element (TE) has the ability to insert into certain parts of the genome, and due to this event, it is possible for TEs to generate new factors and one of these factors are microRNAs (miRNA). miRNAs are non-coding RNAs made up of 19 to 24 nucleotides and numerous miRNAs are derived from TE. In this study, to support general knowledge on TE and miRNAs derived from TE, several bioinformatics tools and databases were used to analyze miRNAs derived from TE in two aspects: evolution and human disease. The distribution of TEs in diverse species presents that almost half of the genome is covered with TE in mammalians and less than a half in other vertebrates and invertebrates. Based on selected evolution-related miRNAs studies, a total of 51 miRNAs derived from TE were found and analyzed. For the human disease-related miRNAs, total of 34 miRNAs derived from TE were organized from the previous studies. In summary, abundant miRNAs derived from TE are found, however, the function of miRNAs derived from TE is not informed either. Therefore, this study provides theoretical understanding of miRNAs derived from TE by using various bioinformatics tools.
Collapse
Affiliation(s)
- Hee-Eun Lee
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Korea; (H.-E.L.); (J.-W.H.)
| | - Jae-Won Huh
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Korea; (H.-E.L.); (J.-W.H.)
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon 34113, Korea
| | - Heui-Soo Kim
- Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan 46241, Korea
- Institute of Systems Biology, Pusan National University, Busan 46241, Korea
- Correspondence: ; Tel.: +82-51-510-2259; Fax: +82-51-581-2962
| |
Collapse
|
14
|
Sun MX, An Q, Chen LM, Guo L. MIR-520f Regulated Itch Expression and Promoted Cell Proliferation in Human Melanoma Cells. Dose Response 2020; 18:1559325820918450. [PMID: 32425721 PMCID: PMC7218305 DOI: 10.1177/1559325820918450] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 03/08/2020] [Accepted: 03/11/2020] [Indexed: 12/31/2022] Open
Abstract
Accumulating evidence suggests that abnormal expression and dysfunction of microRNA is involved in development of cancers. However, the function of miR-520f especially in human melanoma remains elusive. In the current study, the underlying function of miR-520f in human melanoma was investigated. Our study demonstrated that the miR-520f level in human melanoma cell lines and clinical tissues was increased. Overexpression of miR-520f promoted cell proliferation by using the 3-(4,5-dimethylthiazole-2-yl)-2,5-diphenyltetrazolium bromide assay, colony formation, anchorage-independent growth assay, and 5-bromo-2-deoxyuridine assays. Furthermore, we revealed that miR-520f could interact with circular RNA Itchy E3 ubiquitin protein ligase (ITCH) 3'-untranslated region and suppress ITCH expression in human melanoma cells. The inhibitory effect of miR-520f-in could be partially restored by knockdown of ITCH in human melanoma cells. In summary, this study provides novel insights into miR-520f act as a crucial role in the regulation of human melanoma cell growth via regulating ITCH, which might be a potential biomarker and therapeutic target of human melanoma.
Collapse
Affiliation(s)
- Ming-xia Sun
- Department of Dermatology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, People’s Republic of China
| | - Qun An
- Department of Burns and Plastic Surgery, The Second People Hospital of Dezhou, People’s Republic of China
| | - La-mei Chen
- Department of Dermatology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, People’s Republic of China
| | - Ling Guo
- Department of Dermatology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, People’s Republic of China
| |
Collapse
|
15
|
Dao R, Wudu M, Hui L, Jiang J, Xu Y, Ren H, Qiu X. Knockdown of lncRNA MIR503HG suppresses proliferation and promotes apoptosis of non-small cell lung cancer cells by regulating miR-489-3p and miR-625-5p. Pathol Res Pract 2020; 216:152823. [PMID: 31983569 DOI: 10.1016/j.prp.2020.152823] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 12/16/2019] [Accepted: 01/09/2020] [Indexed: 12/24/2022]
Abstract
The long noncoding RNA (lncRNA) MIR503HG has been shown to play an important role in cancer development. The aim of the present study was to investigate the potential roles of MIR503HG in the proliferation and apoptosis of non-small cell lung cancer cell (NSCLC). We used short hairpin RNA (shRNA) against MIR503HG to knock down and vector containing full length of MIR503HG to overexpress MIR503HG in NSCLC cells. The expression of MIR503HG in NSCLC tissues and cells was detected and the effects of MIR503HG on the cell proliferation and apoptosis were determined. Results showed that the expression of MIR503HG was significantly upregulated in NSCLC tissues compared with adjacent tissues. We found that downregulation of MIR503HG could clearly suppressed cell proliferation and cell cycle progression. Moreover, MIR503HG knockdown also promoted apoptosis of NSCLC cells. As expected, overexpression of MIR503HG significantly promoted cell proliferation and inhibited cell apoptosis in NSCLC NCI-H1975 cells. We predicted and verified miR-489-3p and miR-625-5p as the direct targets of MIR503HG by bioinformatics analysis and luciferase reporter assay. Mechanically, MIR503HG negatively regulated miR-489-3p and miR-625-5p expressions in NSCLC cells. Moreover, downregulation of miR-489-3p and miR-625-5p weaken the decreased cell proliferation and increased apoptosis of A549 cells after MIR503HG knocking down. In conclusion, knockdown of MIR503HG suppressed proliferation and promoted apoptosis of NSCLC cells through regulating miR-489-3p and miR-625-5p. Our findings of this study suggested that MIR503HG could be a potential therapeutic target for NSCLC development.
Collapse
Affiliation(s)
- Runa Dao
- Department of Pathology, College of Basic Medical Sciences and The First Affiliated Hospital, China Medical University, Shenyang 110001, People's Republic of China.
| | - Muli Wudu
- Department of Pathology, College of Basic Medical Sciences and The First Affiliated Hospital, China Medical University, Shenyang 110001, People's Republic of China.
| | - Linping Hui
- Department of Pathology, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, People's Republic of China.
| | - Jun Jiang
- Department of Pathology, College of Basic Medical Sciences and The First Affiliated Hospital, China Medical University, Shenyang 110001, People's Republic of China.
| | - Yitong Xu
- Department of Pathology, College of Basic Medical Sciences and The First Affiliated Hospital, China Medical University, Shenyang 110001, People's Republic of China.
| | - Hongjiu Ren
- Department of Pathology, College of Basic Medical Sciences and The First Affiliated Hospital, China Medical University, Shenyang 110001, People's Republic of China.
| | - Xueshan Qiu
- Department of Pathology, College of Basic Medical Sciences and The First Affiliated Hospital, China Medical University, Shenyang 110001, People's Republic of China.
| |
Collapse
|
16
|
Afrang N, Honardoost M. Cell cycle regulatory markers in melanoma: New strategies in diagnosis and treatment. Med J Islam Repub Iran 2019; 33:96. [PMID: 31696090 PMCID: PMC6825388 DOI: 10.34171/mjiri.33.96] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Indexed: 12/14/2022] Open
Abstract
Background: Melanoma has been known as an aggressive type of skin cancer in recent years. Reports have distributed the spread rate of melanoma among white skin populations. Also, many studies have mentioned several causes of melanoma. Ultraviolet radiation was represented to be the most important reason for occurrence of melanoma. However, recent studies have found that a combination of factors, such as environmental and genetic factors, can contribute to occurrence of various cancers, specifically melanoma. Methods: Different studies have been conducted on the efficacy of genetic disorders in melanoma. These surveys marked the key role of specific biomarkers in molecular and cellular processes, and investigations have found the expression of several genes in these processes. In addition, aberrant expression of these genes due to mutation and methylation can affect the whole process. Results: The expression process of these genes is regulated by microRNAs. These new biomolecules have been considered as negative regulators because of managing molecular and cellular processes. MicroRNAs are small conserved regulators attached to their targets leading to rearrangement of gene expression. Adherence of these noncoding RNAs can cause mRNA degradation or inhibit its translation. Conclusion: Recently, the application of specific genes in melanoma has been studied. In this review, the way melanoma is regulated because of these biomarkers and their demand through cell cycle in diagnosis, prognosis, and therapeutic periods was considered. Keywords: Melanoma, Biomarkers, Cell cycle, Biomolecules
Collapse
Affiliation(s)
- Negin Afrang
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Honardoost
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
17
|
Tan X, Jiang L, Wu X, Feng W, Lin Q. MicroRNA-625 inhibits the progression of non‑small cell lung cancer by directly targeting HOXB5 and deactivating the Wnt/β-catenin pathway. Int J Mol Med 2019; 44:346-356. [PMID: 31115501 DOI: 10.3892/ijmm.2019.4203] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 05/09/2019] [Indexed: 11/06/2022] Open
Abstract
Numerous microRNAs (miRs) are dysregulated in non‑small cell lung cancer (NSCLC), serving pivotal roles in its formation and progression. miR‑625 is dysregulated in several types of human cancer, but its involvement in the formation and development of NSCLC remains poorly understood. In the present study, we aimed to investigate miR‑625 expression in NSCLC and its role in regulating NSCLC cell behavior. miR‑625 expression in NSCLC tissues and cell lines was detected using reverse transcription‑quantitative polymerase chain reaction. The effects of miR‑625 overexpression on NSCLC cell proliferation, apoptosis, migration and invasion in vitro were assessed using an MTT assay, flow cytometry, and cell migration and invasion assays, respectively. The effects of miR‑625 upregulation on NSCLC growth were evaluated in an in vivo xenograft model. The molecular mechanisms underlying the tumor‑suppressing roles of miR‑625 in NSCLC were explored in detail. miR‑625 expression was determined to be downregulated in NSCLC tissues and cell lines. This decreased expression was associated with advanced clinical features and poor overall survival of patients with NSCLC. Exogenous miR‑625 expression suppressed NSCLC cell proliferation, migration and invasion, and induced apoptosis in vitro. miR‑625 upregulation hindered NSCLC tumor growth in vivo. Homeobox B5 (HOXB5) was proposed to be the direct target gene of miR‑625 in NSCLC cells. The tumor‑suppressing effects of HOXB5 silencing were similar to those of miR‑625 overexpression in NSCLC cells. In rescue experiments, HOXB5 overexpression partially reversed the inhibitory effects of miR‑625 in NSCLC cells. miR‑625 upregulation directly targeted HOXB5 to deactivate the Wnt/β‑catenin signaling pathway in NSCLC cells in vitro and in vivo. miR‑625 was determined to be associated with HOXB5 suppression and Wnt/β‑catenin pathway deactivation, which in turn inhibited the aggressive behavior of NSCLC cells in vitro and in vivo.
Collapse
Affiliation(s)
- Xiaoxia Tan
- Department of Respiratory Disease, The Third People's Hospital of Linyi, Linyi, Shandong 276023, P.R. China
| | - Lihua Jiang
- Department of Oncology, The Third People's Hospital of Linyi, Linyi, Shandong 276023, P.R. China
| | - Xia Wu
- Department of Oncology, The Third People's Hospital of Linyi, Linyi, Shandong 276023, P.R. China
| | - Wen Feng
- Department of Oncology, The Third People's Hospital of Linyi, Linyi, Shandong 276023, P.R. China
| | - Qingfang Lin
- Department of Pediatrics, The Third People's Hospital of Linyi, Linyi, Shandong 276023, P.R. China
| |
Collapse
|
18
|
Darbeheshti F, Rezaei N, Amoli MM, Mansoori Y, Tavakkoly Bazzaz J. Integrative analyses of triple negative dysregulated transcripts compared with non-triple negative tumors and their functional and molecular interactions. J Cell Physiol 2019; 234:22386-22399. [PMID: 31081218 DOI: 10.1002/jcp.28804] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 04/24/2019] [Indexed: 12/13/2022]
Abstract
Triple-negative (TN) tumors are a subtype of breast cancer with aggressive behaviors and limited targeted therapies. Microarray studies were not concerned with interactions and functional relations of dysregulated transcripts. Here, we aimed to conduct integrative strategy to analyze gene and miRNA available microarray data as well as bioinformatic analyses to catch a more inclusive picture of pivotal dysregulated transcripts and their interactions in TN tumors. Several online datasets and offline bioinformatic tools were used to detect differentially expressed (DE) transcripts, both protein and nonprotein coding, in TN compared with non-TN tumors and their functional and molecular interactions. Sixteen upregulated and 58 downregulated genes with a log fold change higher or equal to | 2 | were identified, including nine transcription factors. Coexpression network revealed EN1 as a hub gene, moreover Kaplan-Meier plotter survival analysis indicated that it was an appropriate prognostic marker for TN patients with breast cancer. Functional annotation analysis of protein-protein interaction network showed FOXM1 as an upexpressed and ESR1 as a downexpressed hub genes are suitable targets as far as antitumor protein therapy is concerned in TN breast cancers. The consensus analysis of two microRNA datasets revealed seven DE miRNAs. The gene-transcriptional factor (TF)-miRNA network revealed mir-135b and mir-29b are the hub nodes and involved in feedback loops with GATA3. This study suggests that dysregulated TFs and miRNAs have pivotal roles in regulation of TN oncotranscriptomic profile and might become both biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Farzaneh Darbeheshti
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Breast Cancer Association (BrCA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Mahsa M Amoli
- Metabolic Disorders Research Center, Endocrinology and Metabolism Molecular -Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Yaser Mansoori
- Noncommunicable Disease Research Center, Fasa University of Medical Sciences, Fasa, Iran.,Department of Medical Genetics, Fasa University of Medical Sciences, Fasa, Iran
| | - Javad Tavakkoly Bazzaz
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
19
|
Su H, Zou D, Sun Y, Dai Y. Hypoxia-associated circDENND2A promotes glioma aggressiveness by sponging miR-625-5p. Cell Mol Biol Lett 2019; 24:24. [PMID: 30988674 PMCID: PMC6446274 DOI: 10.1186/s11658-019-0149-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Accepted: 03/15/2019] [Indexed: 02/06/2023] Open
Abstract
Background As a newfound type of non-coding RNA, circular RNAs (circRNAs) are involved in various physiological and pathological processes via regulation of gene expression. Increasing evidence shows that aberrantly expressed circRNAs play a crucial role in the initiation and progression of many tumors. However, the functions of different circRNAs in gliomas remain elusive. Methods The levels of circRNAs, miRNAs, and mRNAs were quantified by qPCR. The interaction between circDENND2A and miR-625-5p was determined by luciferase reporter and pull-down assays. The migratory and invasive capabilities of glioma cells were examined by wound healing and Transwell assays. Immunohistochemistry was performed to analyze the HIF1α level in glioma tissues. Results We predicted circDENND2A (has_circ_0002142) to be a hypoxia-responsive circRNA in glioma via a bioinformatic analysis. We found that hypoxia induced the expression of circDENND2A, which promoted migration and invasion of glioma cells. To understand the behaviors of circDENND2A in glioma, we studied the putative miRNAs targeted by circDENND2A and identified circDENND2A as an efficient sponge of miR-625-5p in glioma cells. Phenotype experiments verified that circDENND2A was required for the hypoxia-induced migration and invasion of glioma cells and that this occurred by sponging of miR-625-5p. Notably, glioma tissues overexpressing HIF1α exhibited a high expression of circDENND2A as well as a low expression of miR-625-5p. circDENND2A was negatively correlated with miR-625-5p. Conclusion circDENND2A is required for the hypoxia-induced malignancy of glioma cells and functions by sponging miR-625-5p. Electronic supplementary material The online version of this article (10.1186/s11658-019-0149-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hui Su
- 1Department of Neurosurgery, Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing, People's Republic of China.,2Department of Neurosurgery, Bayi Brain Hospital, PLA Army General Hospital, Beijing, People's Republic of China
| | - Defei Zou
- 1Department of Neurosurgery, Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing, People's Republic of China.,2Department of Neurosurgery, Bayi Brain Hospital, PLA Army General Hospital, Beijing, People's Republic of China
| | - Yikun Sun
- 3Department of Neurosurgery, The 306th Hospital of PLA, Beijing, People's Republic of China
| | - Yiwu Dai
- 1Department of Neurosurgery, Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing, People's Republic of China.,2Department of Neurosurgery, Bayi Brain Hospital, PLA Army General Hospital, Beijing, People's Republic of China
| |
Collapse
|
20
|
Zhang H, Feng C, Zhang M, Zeng A, Si L, Yu N, Bai M. miR-625-5p/PKM2 negatively regulates melanoma glycolysis state. J Cell Biochem 2019; 120:2964-2972. [PMID: 30500994 DOI: 10.1002/jcb.26917] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 04/04/2018] [Indexed: 12/16/2022]
Abstract
PKM2 plays an important role in cancer glycolysis, however, the link of PKM2 and microRNAs (miRNAs) in melanoma is still unclear. The study will investigate the role of miRNAs in regulating PKM2 mediated melanoma cell glycolysis. We found that high PKM2 expression in melanoma tissues and cell lines was positively associated with glycolysis. Further study indicated that miR-625-5p regulated PKM2 expression on mRNA and protein levels in melanoma cells. There was a negative relationship between miR-625-5p and PKM2 expression in the clinical melanoma samples. These findings provide an evidence that miR-625-5p/PKM2 plays a role in melanoma cell glucose metabolism.
Collapse
Affiliation(s)
- Hailin Zhang
- Department of Plastic Surgery, Peking Union Medical College Hospital, Beijing, China
| | - Cheng Feng
- Department of Plastic Surgery, Peking Union Medical College Hospital, Beijing, China
| | - Mingzi Zhang
- Department of Plastic Surgery, Peking Union Medical College Hospital, Beijing, China
| | - Ang Zeng
- Department of Plastic Surgery, Peking Union Medical College Hospital, Beijing, China
| | - Loubin Si
- Department of Plastic Surgery, Peking Union Medical College Hospital, Beijing, China
| | - Nanze Yu
- Department of Plastic Surgery, Peking Union Medical College Hospital, Beijing, China
| | - Ming Bai
- Department of Plastic Surgery, Peking Union Medical College Hospital, Beijing, China
| |
Collapse
|
21
|
MicroRNA-625 inhibits cell invasion and epithelial-mesenchymal transition by targeting SOX4 in laryngeal squamous cell carcinoma. Biosci Rep 2019; 39:BSR20181882. [PMID: 30563928 PMCID: PMC6340973 DOI: 10.1042/bsr20181882] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 11/26/2018] [Accepted: 11/27/2018] [Indexed: 02/07/2023] Open
Abstract
INTRODUCTION Laryngeal squamous cell carcinoma (LSCC) is a highly aggressive malignant cancer, but the molecular mechanisms underlying its development and progression remain largely elusive. The purpose of the present study is to investigate the expression profile and functional role of microRNA-625 (miR-625) in LSCC. MATERIALS AND METHODS LSCC tissues and adjacent normal tissues were collected from 86 LSCC patients. The expression levels of miR-625 and SOX4 mRNA in tissues and cells were detected by RT-qPCR analysis. The expression levels of SOX4 and EMT-related proteins were detected by western blot analysis. In vitro cell proliferation, migration, and invasion were detected by MTT assay, colony formation assay, wound healing assay, and transwell invasion assay, respectively. Dual-luciferase reporter assay was performed to verify the binding relationship between miR-625 and the 3'-UTR of SOX4. RESULTS The results demonstrated that miR-625 is significantly down-regulated in clinical LSCC tissues, and its low expression may be closely associated with unfavorable clinicopathological characteristics of LSCC patients. Overexpression of miR-625 significantly suppressed the proliferation, migration, invasion, and EMT of LSCC cells. Furthermore, SOX4 was validated as a direct target of miR-625 in LSCC cells, and rescue experiments suggested that restoration of SOX4 blocked the tumor suppressive role of miR-625 in LSCC cells. CONCLUSIONS Taken together, these findings highlighted a critical role of miR-625 in the pathogenesis of LSCC, and restoration of miR-625 could be considered as a potential therapeutic strategy against this fatal disease.
Collapse
|
22
|
Riefolo M, Porcellini E, Dika E, Broseghini E, Ferracin M. Interplay between small and long non-coding RNAs in cutaneous melanoma: a complex jigsaw puzzle with missing pieces. Mol Oncol 2019; 13:74-98. [PMID: 30499222 PMCID: PMC6322194 DOI: 10.1002/1878-0261.12412] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 10/20/2018] [Accepted: 10/23/2018] [Indexed: 12/12/2022] Open
Abstract
The incidence of cutaneous melanoma (CM) has increased in the past few decades. The biology of melanoma is characterized by a complex interaction between genetic, environmental and phenotypic factors. A greater understanding of the molecular mechanisms that promote melanoma cell growth and dissemination is crucial to improve diagnosis, prognostication, and treatment of CM. Both small and long non-coding RNAs (lncRNAs) have been identified to play a role in melanoma biology; microRNA and lncRNA expression is altered in transformed melanocytes and this in turn has functional effects on cell proliferation, apoptosis, invasion, metastasis, and immune response. Moreover, specific dysregulated ncRNAs were shown to have a diagnostic or prognostic role in melanoma and to drive the establishment of drug resistance. Here, we review the current literature on small and lncRNAs with a role in melanoma, with the aim of putting into some order this complex jigsaw puzzle.
Collapse
Affiliation(s)
- Mattia Riefolo
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES)University of BolognaItaly
| | - Elisa Porcellini
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES)University of BolognaItaly
| | - Emi Dika
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES)University of BolognaItaly
| | - Elisabetta Broseghini
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES)University of BolognaItaly
| | - Manuela Ferracin
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES)University of BolognaItaly
| |
Collapse
|
23
|
Hao L, Rong W, Bai L, Cui H, Zhang S, Li Y, Chen D, Meng X. Upregulated circular RNA circ_0007534 indicates an unfavorable prognosis in pancreatic ductal adenocarcinoma and regulates cell proliferation, apoptosis, and invasion by sponging miR-625 and miR-892b. J Cell Biochem 2018; 120:3780-3789. [PMID: 30382592 DOI: 10.1002/jcb.27658] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 08/20/2018] [Indexed: 01/18/2023]
Abstract
Circular RNAs (circRNAs) have been regarded as critical regulators of human diseases and biological markers in some types of malignancies, including pancreatic ductal adenocarcinoma (PDAC). Recently, circ_0007534 has been identified as a novel cancer-related circRNA. Nevertheless, its clinical relevance, functional roles, and mechanism have not been studied in PDAC. In the current study, real-time quantitative polymerase chain reaction (RT-qPCR) was used to detect the expression of circ_0007534 in 60-paired PDAC tissue samples and different cell lines. Loss-of-function and gain-of-function assays were performed to detect cell proliferation, apoptosis, and metastatic properties affected by circ_0007534. An animal study was also carried out. The luciferase reporter assay was performed to uncover the underlying mechanism of circ_0007534. As a result, circ_0007534 was overexpressed not only in PDAC tissues but also in a panel of PDAC cell lines, and this overexpression is closely associated with advanced tumor stage and positive lymph node invasion. In addition, circ_0007534 may be regarded as an independent prognostic factor for patients with PDAC. For the part of functional assays, circ_0007534 significantly increased cell proliferation, migratory, and invasive potential of PDAC cells. Circ_0007534 could inhibit cell apoptosis partly via a Bcl-2/caspase-3 pathway. The xenograft study further confirmed the cell growth promoting the role of circ_0007534. Mechanistically, miR-625 and miR-892b were sponged by circ_0007534. The oncogenic functions of circ_0007534 is partly dependent on its regulation of miR-625 and miR-892b. In conclusion, our study illuminates a novel circRNA that confers an oncogenic function in PDAC.
Collapse
Affiliation(s)
- Liguo Hao
- Department of Imaging Equipment and Technology, Medical Technology Academy, Qiqihar Medical University, Heilongjiang, China
| | - Wei Rong
- Micromorphology Research Center, Medical Pathology Academy, Qiqihar Medical University, Heilongjiang, China
| | - Lianjie Bai
- Department of Ultrasound, The Second Affiliated Hospital of Qiqihar Medical University, Heilongjiang, China
| | - Hongsheng Cui
- Department of Magnetic Resonance, The Third Affiliated Hospital of Qiqihar Medical University, Heilongjiang, China
| | - Shuli Zhang
- Department of Imaging Equipment and Technology, Medical Technology Academy, Qiqihar Medical University, Heilongjiang, China
| | - Yuanchun Li
- Department of Ultrasound, The Second Affiliated Hospital of Qiqihar Medical University, Heilongjiang, China
| | - Datong Chen
- Department of Imaging Equipment and Technology, Medical Technology Academy, Qiqihar Medical University, Heilongjiang, China
| | - Xin Meng
- Department of Magnetic Resonance, The Third Affiliated Hospital of Qiqihar Medical University, Heilongjiang, China
| |
Collapse
|
24
|
Panza E, Ercolano G, De Cicco P, Armogida C, Scognamiglio G, Botti G, Cirino G, Ianaro A. MicroRNA-143-3p inhibits growth and invasiveness of melanoma cells by targeting cyclooxygenase-2 and inversely correlates with malignant melanoma progression. Biochem Pharmacol 2018; 156:52-59. [PMID: 30098313 DOI: 10.1016/j.bcp.2018.08.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 08/06/2018] [Indexed: 01/08/2023]
Abstract
Malignant melanoma is one of the most leading form of skin cancer associated with a low patient survival rate. Increasing evidence revealed that microRNAs (miRNAs) play a crucial role in the occurrence and development of several form of cancer including melanoma. In this study, we aimed at investigating the expression and role of miR-143-3p in human malignant melanoma. Our results showed that the expression of miR-143-3p was lower in human melanoma cells, as well as human biopsy specimens, when compared to normal human melanocytes. Ectopic expression of miR-143-3p in human melanoma cells inhibited proliferation, migration, invasion and promoted apoptosis acting through a molecular mechanism that, at least in part, is dependent on inhibition of cyclooxygenase-2 (COX-2) gene. Collectively, these results demonstrate that miR-143-3p could represent at the same time, a new early diagnostic marker and therapeutic target acting as tumor suppressor in melanoma cancer.
Collapse
Affiliation(s)
- Elisabetta Panza
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Giuseppe Ercolano
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Paola De Cicco
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Chiara Armogida
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Giosuè Scognamiglio
- Department of Experimental Oncology, National Cancer Institute, G. Pascale, Naples, Italy
| | - Gerardo Botti
- Department of Experimental Oncology, National Cancer Institute, G. Pascale, Naples, Italy
| | - Giuseppe Cirino
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Angela Ianaro
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy.
| |
Collapse
|
25
|
Pu W, Shang Y, Shao Q, Yuan X. miR-146a promotes cell migration and invasion in melanoma by directly targeting SMAD4. Oncol Lett 2018; 15:7111-7117. [PMID: 29731876 PMCID: PMC5921230 DOI: 10.3892/ol.2018.8172] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 01/23/2018] [Indexed: 01/27/2023] Open
Abstract
Previous studies have explored the functions of microRNA (miR)-146a in different types of cancer through mediating different targets. However, the roles of miR-146a in malignant melanoma (MM) cell migration and invasion remain largely elusive. In the present study, the potential molecular function of miR-146a in MM was investigated. Reverse transcription-quantitative polymerase chain reaction was utilized to detect miR-146a expression in MM tissues and cell lines. A Transwell assay was performed to confirm the ability of migration and invasion. A luciferase assay and biological analysis were used to predict and determine the targets of miR-146a. The expression of miR-146a was upregulated in melanoma tissues and cell lines. Clinicopathological analysis indicated that the miR-146a level was negatively correlated with the progression of melanoma. Abnormal expression of miR-146a promoted cell migration and invasion in MM cells. Additionally, it was also observed that Mothers against decapentaplegic homolog 4 (SMAD4) was a novel target of miR-146a in MM. SMAD4 was negatively associated with miR-146a in MM and abnormal expression of SMAD4 attenuated miR-146a-mediated promotion of cell migration and invasion. In conclusion, miR-146a functioned as an oncogene by directly targeting SMAD4 and it may be a novel diagnostic and therapeutic marker of MM.
Collapse
Affiliation(s)
- Wei Pu
- Department of Dermatology, The Central Hospital of Zibo, Zibo, Shandong 255000, P.R. China
| | - Yongming Shang
- Department of Dermatology, Zibo Traditional Chinese Medicine Hospital, Zibo, Shandong 255300, P.R. China
| | - Qiang Shao
- Department of Dermatology, The Central Hospital of Zibo, Zibo, Shandong 255000, P.R. China
| | - Xinpeng Yuan
- Department of Dermatology, The Central Hospital of Zibo, Zibo, Shandong 255000, P.R. China
| |
Collapse
|
26
|
Zhang K, Guo L. MiR-767 promoted cell proliferation in human melanoma by suppressing CYLD expression. Gene 2018; 641:272-278. [DOI: 10.1016/j.gene.2017.10.055] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Revised: 09/21/2017] [Accepted: 10/16/2017] [Indexed: 12/27/2022]
|
27
|
Liu K, Jin J, Rong K, Zhuo L, Li P. MicroRNA‑675 inhibits cell proliferation and invasion in melanoma by directly targeting metadherin. Mol Med Rep 2017; 17:3372-3379. [PMID: 29257296 DOI: 10.3892/mmr.2017.8264] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 11/21/2017] [Indexed: 11/06/2022] Open
Abstract
Melanoma is derived from melanocytes and accounts for ~80% of skin cancer-associated fatalities worldwide. The dysregulation of microRNAs (miRNAs/miRs) is involved in the development and progression of melanoma. Therefore, miRNAs may be novel diagnostic or prognostic biomarkers and promising therapeutic targets in the treatment of patients with melanoma. miR‑675 is differentially expressed in several types of human cancer and has important roles in the pathogenesis of several diseases. However, the expression levels and the biological roles of miR‑675 in melanoma remain unclear. Therefore, the present study aimed to assess the expression of miR‑675 in melanoma, explore the effects of miR‑675 on melanoma cells and investigate the underlying molecular mechanisms that may be involved in the actions of miR‑675. The present study indicated that miR‑675 expression was downregulated in melanoma tissues and cell lines. Functional assays demonstrated that the upregulation of miR‑675 impaired cell proliferation and invasion in melanoma. Bioinformatics analysis, luciferase reporter assay, reverse transcription‑quantitative polymerase chain reaction and western blot analysis demonstrated that metadherin (MTDH) was a direct target of miR‑675 in melanoma. The MTDH levels were upregulated in melanoma tissues and inversely correlated with the miR‑675 expression. Furthermore, restored MTDH expression rescued the inhibition effects in melanoma cells caused by miR‑675 overexpression. Thus, miR‑675 may be a potential therapeutic target for melanoma.
Collapse
Affiliation(s)
- Ke Liu
- Department of Plastic Surgery, Subei People's Hospital of Jiangsu Province, Yangzhou, Jiangsu 225001, P.R. China
| | - Junjun Jin
- Department of Plastic Surgery, Subei People's Hospital of Jiangsu Province, Yangzhou, Jiangsu 225001, P.R. China
| | - Kunjie Rong
- Department of Plastic Surgery, Subei People's Hospital of Jiangsu Province, Yangzhou, Jiangsu 225001, P.R. China
| | - Lukai Zhuo
- Department of Plastic Surgery, Subei People's Hospital of Jiangsu Province, Yangzhou, Jiangsu 225001, P.R. China
| | - Pingsong Li
- Department of Plastic Surgery, Subei People's Hospital of Jiangsu Province, Yangzhou, Jiangsu 225001, P.R. China
| |
Collapse
|
28
|
Ji ZH, Chen J, Gao W, Zhang JY, Quan FS, Hu JP, Yuan B, Ren WZ. Cutaneous transcriptome analysis in NIH hairless mice. PLoS One 2017; 12:e0182463. [PMID: 28787439 PMCID: PMC5546695 DOI: 10.1371/journal.pone.0182463] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 07/19/2017] [Indexed: 12/16/2022] Open
Abstract
Mice with spontaneous coat mutations are ideal animal models for studying skin development and tumorigenesis. In this study, skin hair growth cycle abnormalities were examined in NIH hairless mice 42 days after birth (P42) by using hematoxylin-eosin (H&E) staining. To examine the gene expression patterns in the skin of mutant mice, the dorsal skin of P42 female NIH mice and NIH hairless mice was sequenced by RNA-Seq, and 5,068 differentially expressed genes (DEGs) were identified (false discovery rate [FDR] ≥ 2, P < 0.05). A pathway analysis showed that basal cell carcinoma, the cell cycle and the Hippo, Hedgehog and Wnt signaling pathways were up-regulated in NIH hairless mice. Previous studies have shown that these pathways are closely associated with cell proliferation, cell cycle, organ size and cancer development. In contrast, signal transduction, bacterial and parasitic infection, and receptor-mediated pathways, including calcium signaling, were down-regulated in NIH hairless mice. A gene interaction network analysis was performed to identify genes related to hair follicle development. To verify the reliability of the RNA-Seq results, we used q-PCR to analyze 12 key genes identified from the gene interaction network analysis, including eight down-regulated and four up-regulated genes, and the results confirmed the reliability of the RNA-Seq results. Finally, we constructed the differential gene expression profiles of mutant mice by RNA-Seq. NIH hairless mice exhibited abnormalities in hair development and immune-related pathways. Pik3r1 and Pik3r3 were identified as key genes, laying the foundation for additional in-depth studies of hairless mice.
Collapse
Affiliation(s)
- Zhong-Hao Ji
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, Jilin, China
| | - Jian Chen
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, Jilin, China
| | - Wei Gao
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, Jilin, China
| | - Jin-Yu Zhang
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, Jilin, China
| | - Fu-Shi Quan
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, Jilin, China
| | - Jin-Ping Hu
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, Jilin, China
| | - Bao Yuan
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, Jilin, China
| | - Wen-Zhi Ren
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, Jilin, China
| |
Collapse
|
29
|
Hu J, Wu C, Zhao X, Liu C. The prognostic value of decreased miR-101 in various cancers: a meta-analysis of 12 studies. Onco Targets Ther 2017; 10:3709-3718. [PMID: 28769574 PMCID: PMC5533486 DOI: 10.2147/ott.s141652] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND A consensus regarding the prognostic value of decreased miR-101 in human cancers has not been reached. This study aimed to comprehensively investigate the internal associations between loss of miR-101 expression and prognostic implications in patients with cancer. MATERIALS AND METHODS All relevant literature in electronic databases, including PubMed, ISI Web of Science, and Embase, up to March 1, 2017 were searched. Correlations between decreased miR-101 and clinicopathological parameters were defined by odds ratios (ORs). The degree of association between reduced miR-101 and survival outcome was evaluated by pooled hazard ratios (HRs) and relevant 95% CIs. RESULTS Twelve eligible studies with 2,088 patients were included in this meta-analysis. Decreased miR-101 expression was closely connected with poor overall survival, with a pooled HR of 2.15 (95% CI 1.71-2.7, P<0.001). This correlation was also revealed when stratified analysis was conducted with respect to ethnicity, cancer type, sample size, specimen source, and analysis model. However, decreased miR-101 was not associated with disease-free survival, recurrence-free survival, or progression-free survival, with a pooled HR of 1.59 (95% CI 0.83-3.03, P=0.128), despite a positive trend. In addition, reduced miR-101 was intimately related to poorer tumor differentiation (OR 2.17, 95% CI 1.14-4.13; P=0.019), advanced tumor classification (OR 5.25, 95% CI 3.39-8.12; P<0.001), and higher TNM stage (OR 6.18, 95% CI 3.79-10.09; P<0.001). CONCLUSION Our findings suggest that loss of miR-101 expression is correlated with worse overall survival in a variety of cancers, and could serve as a predictive indicator for clinicopathological features. Furthermore, miR-101 may become a feasible therapeutic target in most human cancers.
Collapse
Affiliation(s)
- Jianpei Hu
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Chunyu Wu
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xueying Zhao
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Chaodong Liu
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
30
|
Zhao L, Zhao Y, He Y, Mao Y. miR-19b promotes breast cancer metastasis through targeting MYLIP and its related cell adhesion molecules. Oncotarget 2017; 8:64330-64343. [PMID: 28969074 PMCID: PMC5610006 DOI: 10.18632/oncotarget.19278] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 06/19/2017] [Indexed: 01/28/2023] Open
Abstract
miR-19b is a key molecule for cancer development, however its crucial roles in breast cancer metastasis are rarely studied right now. In this study, using several bioinformatics databases to predict the downstream targets for miR-19b, we verified that a novel target gene, myosin regulatory light chain interacting protein (MYLIP), could be directly down-regulated by miR-19b through its 3′-UTR region. MYLIP belongs to the cytoskeletal protein clusters and is involved in the regulation of cell movement and migration. We further explored that miR-19b was highly expressed and negatively correlated with MYLIP expression in breast cancer patient samples from the TCGA database. And the over-expression of miR-19b or inhibition of MYLIP facilitated the migration and metastasis of breast cancer cells, through conducting the wound healing assay and transwell invasion assay. Additionally, miR-19b could obviously promote breast tumor growth in mouse models and affect the expressions of cell adhesion molecules (including E-Cadherin, ICAM-1 and Integrin β1) by down-regulating E-Cadherin expression and up-regulating ICAM-1 and Integrin β1 expressions in vitro and in vivo. Meanwhile, miR-19b effectively activated the Integrin β downstream signaling pathways (such as the Ras-MAPK pathway and the PI3K-AKT pathway) and elevated the expression levels of essential genes in these two pathways. Taken together, these findings comprehensively illustrate the regulatory mechanisms ofmiR-19b in breast cancer metastasis, and provide us new insights for exploring MYLIP and its related cell adhesion molecules as promising therapeutic targets to interfere breast cancer development.
Collapse
Affiliation(s)
- Luqing Zhao
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China.,Department of Pathology, School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China
| | - Yuelong Zhao
- School of Computer Science and Engineering, South China University of Technology, Guangzhou, Guangdong 510640, China
| | - Yanong He
- School of Computer Science and Engineering, South China University of Technology, Guangzhou, Guangdong 510640, China
| | - Yitao Mao
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| |
Collapse
|