1
|
Lim C, Seo D. Assessment of the carcinogenic potential of particulate matter generated from 3D printing devices in Balb/c 3T3-1-1 cells. Sci Rep 2024; 14:23981. [PMID: 39402095 PMCID: PMC11473660 DOI: 10.1038/s41598-024-75491-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 10/07/2024] [Indexed: 10/17/2024] Open
Abstract
Recently, there have been reports of sarcoma occurring in a Korean science teachers who used a 3D printer with acrylonitrile butadiene styrene (ABS) and polylactic acid (PLA) filaments for educational purposes. However, limited toxicological research data on 3D printing make it challenging to confirm a causal relationship between 3D printing and cancer. Therefore, occupational accidents involving teachers who have developed sarcoma have not been officially recognized. To address this gap, we aimed to evaluate the carcinogenic potential of particulate matter produced from ABS and PLA filaments commonly used in 3D printing. We created a generator mimicking 3D printing to generate particulate matter, which was used as an experimental material. The collected particulate matter was exposed to an in vitro system to investigate genetic damage, effects on cell transformation, and changes in carcinogenesis-related genes. Various assays, such as the comet assay, cell transformation assays, microarray analysis, and glucose consumption measurement, were employed. Cytotoxicity tests performed to determine the exposure concentration for the comet assay showed that cell viability was 83.6, 62.6, 42.0, and 10.2% for ABS at exposure concentrations of 50, 100, 200, and 400 µg/mL, respectively. PLA showed 91.7, 80.3, 65.1, and 60.8% viability at exposure concentrations of 50, 100, 200, and 400 µg/mL, respectively. Therefore, 50 µg/mL was set as the highest concentration for both ABS and PLA, and 25 and 12.5 µg/mL were set as the medium and low concentrations, respectively. The comet assay showed no changes in genetic damage caused by the particulate matter. Cytotoxicity results performed to establish exposure concentrations in the transformation assay showed that ABS showed cell viability of 88.0, 77.4, 84.7, and 85.5% at concentrations of 1.25, 2.5, 5, and 10 µg/mL, respectively, but few cells survived at concentrations above 20 µg/mL. PLA showed minimal cytotoxicity up to a concentration of 20 µg/ml. Therefore, in the cell transformation assay, a concentration of 10 µg/mL for ABS and 20 µg/mL for PLA was set as the highest exposure concentration, followed by medium and low exposure concentrations with a common ratio of 2. In cell transformation assays, only one transformed focus each was observed for both ABS and PLA particulate matter-exposed cells. The microarray assay revealed changes in gene expression, with a 41.7% change at 10 µg/mL for ABS and an 18.6% change at 20 µg/mL for PLA compared to the positive control group. Analysis of carcinogenesis-related gene expression changes on days 1, 7, and 25 of the promotion phase revealed that in cells exposed to 5 µg/mL of ABS, RBM3 gene expression increased by 3.66, 3.26, and 3.74 times, respectively, while MPP6 gene expression decreased by 0.33, 0.28, and 0.38 times, respectively, compared to the negative control group. Additionally, the measurement of glucose consumption showed that it increased in cells exposed to ABS and PLA particulate matter. Our findings suggest that the carcinogenic potential of ABS- and PLA-derived particulate matter in 3D printing cannot be completely ruled out. Therefore, further research in other test systems and analysis of additional parameters related to carcinogenesis, are deemed necessary to evaluate the carcinogenic risk of 3D printers using these materials.
Collapse
Affiliation(s)
- CheolHong Lim
- Inhalation Toxicity Research Center, Occupational Safety and Health Research Institute, Korea Occupational Safety and Health Agency, 30, Expro-ro 339 beon-gil, Yuseong-gu, Daejeon, Republic of Korea
| | - DongSeok Seo
- Inhalation Toxicity Research Center, Occupational Safety and Health Research Institute, Korea Occupational Safety and Health Agency, 30, Expro-ro 339 beon-gil, Yuseong-gu, Daejeon, Republic of Korea.
| |
Collapse
|
2
|
Absmeier E, Heyd F. Temperature-controlled molecular switches in mammalian cells. J Biol Chem 2024; 300:107865. [PMID: 39374780 DOI: 10.1016/j.jbc.2024.107865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 09/27/2024] [Accepted: 09/30/2024] [Indexed: 10/09/2024] Open
Abstract
Temperature is an omnipresent factor impacting on many aspects of life. In bacteria and ectothermic eukaryotes, various thermosensors and temperature-controlled switches have been described, ranging from RNA thermometers controlling the heat shock response in prokaryotes to temperature-dependent sex determination in reptiles, likely controlled through protein phosphorylation. However, the impact of subtle changes of human core body temperature are only beginning to be acknowledged. In this review, we will discuss thermosensing mechanisms and their functional implications with a focus on mammalian cells, also in the context of disease conditions. We will point out open questions and possible future directions for this emerging research field, which, in addition to molecular-mechanistic insights, holds the potential for the development of new therapeutic approaches.
Collapse
Affiliation(s)
- Eva Absmeier
- Laboratory of mRNA translation and turnover, Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany.
| | - Florian Heyd
- Laboratory of RNA Biochemistry, Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany.
| |
Collapse
|
3
|
O'Neill JR, Yébenes Mayordomo M, Mitulović G, Al Shboul S, Bedran G, Faktor J, Hernychova L, Uhrik L, Gómez-Herranz M, Kocikowski M, Save V, Vojtěšek B, Arends MJ, Hupp T, Alfaro JA. Multi-Omic Analysis of Esophageal Adenocarcinoma Uncovers Candidate Therapeutic Targets and Cancer-Selective Posttranscriptional Regulation. Mol Cell Proteomics 2024; 23:100764. [PMID: 38604503 PMCID: PMC11245951 DOI: 10.1016/j.mcpro.2024.100764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 03/08/2024] [Accepted: 04/08/2024] [Indexed: 04/13/2024] Open
Abstract
Efforts to address the poor prognosis associated with esophageal adenocarcinoma (EAC) have been hampered by a lack of biomarkers to identify early disease and therapeutic targets. Despite extensive efforts to understand the somatic mutations associated with EAC over the past decade, a gap remains in understanding how the atlas of genomic aberrations in this cancer impacts the proteome and which somatic variants are of importance for the disease phenotype. We performed a quantitative proteomic analysis of 23 EACs and matched adjacent normal esophageal and gastric tissues. We explored the correlation of transcript and protein abundance using tissue-matched RNA-seq and proteomic data from seven patients and further integrated these data with a cohort of EAC RNA-seq data (n = 264 patients), EAC whole-genome sequencing (n = 454 patients), and external published datasets. We quantified protein expression from 5879 genes in EAC and patient-matched normal tissues. Several biomarker candidates with EAC-selective expression were identified, including the transmembrane protein GPA33. We further verified the EAC-enriched expression of GPA33 in an external cohort of 115 patients and confirm this as an attractive diagnostic and therapeutic target. To further extend the insights gained from our proteomic data, an integrated analysis of protein and RNA expression in EAC and normal tissues revealed several genes with poorly correlated protein and RNA abundance, suggesting posttranscriptional regulation of protein expression. These outlier genes, including SLC25A30, TAOK2, and AGMAT, only rarely demonstrated somatic mutation, suggesting post-transcriptional drivers for this EAC-specific phenotype. AGMAT was demonstrated to be overexpressed at the protein level in EAC compared to adjacent normal tissues with an EAC-selective, post-transcriptional mechanism of regulation of protein abundance proposed. Integrated analysis of proteome, transcriptome, and genome in EAC has revealed several genes with tumor-selective, posttranscriptional regulation of protein expression, which may be an exploitable vulnerability.
Collapse
Affiliation(s)
- J Robert O'Neill
- Cambridge Oesophagogastric Centre, Addenbrooke's Hospital, Cambridge, United Kingdom; Institute of Genetics and Cancer (IGC), University of Edinburgh, Edinburgh, Scotland.
| | - Marcos Yébenes Mayordomo
- Institute of Genetics and Cancer (IGC), University of Edinburgh, Edinburgh, Scotland; International Center for Cancer Vaccine Science (ICCVS), University of Gdansk, Gdansk, Poland.
| | - Goran Mitulović
- Clinical Department of Laboratory Medicine Proteomics Core Facility, Medical University Vienna, Vienna, Austria; Bruker Austria, Wien, Austria
| | - Sofian Al Shboul
- Department of Pharmacology and Public Health, Faculty of Medicine, The Hashemite University, Zarqa, Jordan
| | - Georges Bedran
- International Center for Cancer Vaccine Science (ICCVS), University of Gdansk, Gdansk, Poland
| | - Jakub Faktor
- International Center for Cancer Vaccine Science (ICCVS), University of Gdansk, Gdansk, Poland
| | - Lenka Hernychova
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Lukas Uhrik
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Maria Gómez-Herranz
- International Center for Cancer Vaccine Science (ICCVS), University of Gdansk, Gdansk, Poland
| | - Mikołaj Kocikowski
- International Center for Cancer Vaccine Science (ICCVS), University of Gdansk, Gdansk, Poland
| | - Vicki Save
- Department of Pathology, Royal Infirmary of Edinburgh, Edinburgh, United Kingdom
| | - Bořivoj Vojtěšek
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Mark J Arends
- Edinburgh Pathology, Institute of Genetics and Cancer (IGC), University of Edinburgh, Edinburgh, Scotland
| | - Ted Hupp
- Institute of Genetics and Cancer (IGC), University of Edinburgh, Edinburgh, Scotland; International Center for Cancer Vaccine Science (ICCVS), University of Gdansk, Gdansk, Poland
| | - Javier Antonio Alfaro
- International Center for Cancer Vaccine Science (ICCVS), University of Gdansk, Gdansk, Poland; Institute for Adaptive and Neural Computation, School of Informatics, University of Edinburgh, Edinburgh, UK; International Centre for Cancer Vaccine Science, University of Gdańsk, Gdańsk, Poland; Department of Biochemistry and Microbiology, University of Victoria, Victoria, Canada; The Canadian Association for Responsible AI in Medicine, Victoria, BC, Canada.
| |
Collapse
|
4
|
Dey P, Rajalaxmi S, Saha P, Thakur PS, Hashmi MA, Lal H, Saini N, Singh N, Ramanathan A. Cold-shock proteome of myoblasts reveals role of RBM3 in promotion of mitochondrial metabolism and myoblast differentiation. Commun Biol 2024; 7:515. [PMID: 38688991 PMCID: PMC11061143 DOI: 10.1038/s42003-024-06196-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 04/15/2024] [Indexed: 05/02/2024] Open
Abstract
Adaptation to hypothermia is important for skeletal muscle cells under physiological stress and is used for therapeutic hypothermia (mild hypothermia at 32 °C). We show that hypothermic preconditioning at 32 °C for 72 hours improves the differentiation of skeletal muscle myoblasts using both C2C12 and primary myoblasts isolated from 3 month and 18-month-old mice. We analyzed the cold-shock proteome of myoblasts exposed to hypothermia (32 °C for 6 and 48 h) and identified significant changes in pathways related to RNA processing and central carbon, fatty acid, and redox metabolism. The analysis revealed that levels of the cold-shock protein RBM3, an RNA-binding protein, increases with both acute and chronic exposure to hypothermic stress, and is necessary for the enhanced differentiation and maintenance of mitochondrial metabolism. We also show that overexpression of RBM3 at 37 °C is sufficient to promote mitochondrial metabolism, cellular proliferation, and differentiation of C2C12 and primary myoblasts. Proteomic analysis of C2C12 myoblasts overexpressing RBM3 show significant enrichment of pathways involved in fatty acid metabolism, RNA metabolism and the electron transport chain. Overall, we show that the cold-shock protein RBM3 is a critical factor that can be used for controlling the metabolic network of myoblasts.
Collapse
Affiliation(s)
- Paulami Dey
- Institute for Stem Cell Science and Regenerative Medicine (inStem), GKVK-Post, Bellary Rd, Bengaluru, 560065, Karnataka, India
- SASTRA Deemed University, Tirumalaisamudram, Thanjavur, 613401, Tamil Nadu, India
| | - Srujanika Rajalaxmi
- Institute for Stem Cell Science and Regenerative Medicine (inStem), GKVK-Post, Bellary Rd, Bengaluru, 560065, Karnataka, India
| | - Pushpita Saha
- Institute for Stem Cell Science and Regenerative Medicine (inStem), GKVK-Post, Bellary Rd, Bengaluru, 560065, Karnataka, India
| | - Purvi Singh Thakur
- Institute for Stem Cell Science and Regenerative Medicine (inStem), GKVK-Post, Bellary Rd, Bengaluru, 560065, Karnataka, India
| | - Maroof Athar Hashmi
- Institute for Stem Cell Science and Regenerative Medicine (inStem), GKVK-Post, Bellary Rd, Bengaluru, 560065, Karnataka, India
- Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Heera Lal
- Institute for Stem Cell Science and Regenerative Medicine (inStem), GKVK-Post, Bellary Rd, Bengaluru, 560065, Karnataka, India
- Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Nistha Saini
- Institute for Stem Cell Science and Regenerative Medicine (inStem), GKVK-Post, Bellary Rd, Bengaluru, 560065, Karnataka, India
| | - Nirpendra Singh
- Institute for Stem Cell Science and Regenerative Medicine (inStem), GKVK-Post, Bellary Rd, Bengaluru, 560065, Karnataka, India
| | - Arvind Ramanathan
- Institute for Stem Cell Science and Regenerative Medicine (inStem), GKVK-Post, Bellary Rd, Bengaluru, 560065, Karnataka, India.
| |
Collapse
|
5
|
Madsen HB, Pease LI, Scanlan RL, Akbari M, Rasmussen LJ, Shanley DP, Bohr VA. The DNA repair enzyme, aprataxin, plays a role in innate immune signaling. Front Aging Neurosci 2023; 15:1290681. [PMID: 38161589 PMCID: PMC10754971 DOI: 10.3389/fnagi.2023.1290681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 11/20/2023] [Indexed: 01/03/2024] Open
Abstract
Ataxia with oculomotor apraxia type 1 (AOA1) is a progressive neurodegenerative disorder characterized by a gradual loss of coordination of hand movements, speech, and eye movements. AOA1 is caused by an inactivation mutation in the APTX gene. APTX resolves abortive DNA ligation intermediates. APTX deficiency may lead to the accumulation of 5'-AMP termini, especially in the mitochondrial genome. The consequences of APTX deficiency includes impaired mitochondrial function, increased DNA single-strand breaks, elevated reactive oxygen species production, and altered mitochondrial morphology. All of these processes can cause misplacement of nuclear and mitochondrial DNA, which can activate innate immune sensors to elicit an inflammatory response. This study explores the impact of APTX knockout in microglial cells, the immune cells of the brain. RNA-seq analysis revealed significant differences in the transcriptomes of wild-type and APTX knockout cells, especially in response to viral infections and innate immune pathways. Specifically, genes and proteins involved in the cGAS-STING and RIG-I/MAVS pathways were downregulated in APTX knockout cells, which suggests an impaired immune response to cytosolic DNA and RNA. The clinical relevance of these findings was supported by analyzing publicly available RNA-seq data from AOA1 patient cell lines. Comparisons between APTX-deficient patient cells and healthy control cells also revealed altered immune responses and dysregulated DNA- and RNA-sensing pathways in the patient cells. Overall, this study highlights the critical role of APTX in regulating innate immunity, particularly in DNA- and RNA-sensing pathways. Our findings contribute to a better understanding of the underlying molecular mechanisms of AOA1 pathology and highlights potential therapeutic targets for this disease.
Collapse
Affiliation(s)
- Helena B. Madsen
- Center for Healthy Aging, Institute of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Louise I. Pease
- CAMPUS for Ageing and Vitality, Newcastle University, Newcastle, United Kingdom
| | | | - Mansour Akbari
- Center for Healthy Aging, Institute of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Lene J. Rasmussen
- Center for Healthy Aging, Institute of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Daryl P. Shanley
- CAMPUS for Ageing and Vitality, Newcastle University, Newcastle, United Kingdom
| | - Vilhelm A. Bohr
- Center for Healthy Aging, Institute of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
6
|
Preußner M, Smith HL, Hughes D, Zhang M, Emmerichs A, Scalzitti S, Peretti D, Swinden D, Neumann A, Haltenhof T, Mallucci GR, Heyd F. ASO targeting RBM3 temperature-controlled poison exon splicing prevents neurodegeneration in vivo. EMBO Mol Med 2023; 15:e17157. [PMID: 36946385 PMCID: PMC10165353 DOI: 10.15252/emmm.202217157] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 02/16/2023] [Accepted: 02/18/2023] [Indexed: 03/23/2023] Open
Abstract
Neurodegenerative diseases are increasingly prevalent in the aging population, yet no disease-modifying treatments are currently available. Increasing the expression of the cold-shock protein RBM3 through therapeutic hypothermia is remarkably neuroprotective. However, systemic cooling poses a health risk, strongly limiting its clinical application. Selective upregulation of RBM3 at normothermia thus holds immense therapeutic potential. Here we identify a poison exon within the RBM3 gene that is solely responsible for its cold-induced expression. Genetic removal or antisense oligonucleotide (ASO)-mediated manipulation of this exon yields high RBM3 levels independent of cooling. Notably, a single administration of ASO to exclude the poison exon, using FDA-approved chemistry, results in long-lasting increased RBM3 expression in mouse brains. In prion-diseased mice, this treatment leads to remarkable neuroprotection, with prevention of neuronal loss and spongiosis despite high levels of disease-associated prion protein. Our promising results in mice support the possibility that RBM3-inducing ASOs might also deliver neuroprotection in humans in conditions ranging from acute brain injury to Alzheimer's disease.
Collapse
Affiliation(s)
- Marco Preußner
- Institut für Chemie und Biochemie, RNA BiochemieFreie Universität BerlinBerlinGermany
| | - Heather L Smith
- UK Dementia Research Institute and Department of Clinical NeurosciencesUniversity of CambridgeCambridgeUK
- Altos LabsCambridge Institute of ScienceCambridgeUK
| | - Daniel Hughes
- UK Dementia Research Institute and Department of Clinical NeurosciencesUniversity of CambridgeCambridgeUK
| | - Min Zhang
- Institut für Chemie und Biochemie, RNA BiochemieFreie Universität BerlinBerlinGermany
| | - Ann‐Kathrin Emmerichs
- Institut für Chemie und Biochemie, RNA BiochemieFreie Universität BerlinBerlinGermany
| | - Silvia Scalzitti
- Institut für Chemie und Biochemie, RNA BiochemieFreie Universität BerlinBerlinGermany
| | - Diego Peretti
- UK Dementia Research Institute and Department of Clinical NeurosciencesUniversity of CambridgeCambridgeUK
| | - Dean Swinden
- UK Dementia Research Institute and Department of Clinical NeurosciencesUniversity of CambridgeCambridgeUK
- Altos LabsCambridge Institute of ScienceCambridgeUK
| | - Alexander Neumann
- Institut für Chemie und Biochemie, RNA BiochemieFreie Universität BerlinBerlinGermany
- Omiqa BioinformaticsBerlinGermany
| | - Tom Haltenhof
- Institut für Chemie und Biochemie, RNA BiochemieFreie Universität BerlinBerlinGermany
- Omiqa BioinformaticsBerlinGermany
| | - Giovanna R Mallucci
- UK Dementia Research Institute and Department of Clinical NeurosciencesUniversity of CambridgeCambridgeUK
- Altos LabsCambridge Institute of ScienceCambridgeUK
| | - Florian Heyd
- Institut für Chemie und Biochemie, RNA BiochemieFreie Universität BerlinBerlinGermany
| |
Collapse
|
7
|
Matas-Nadal C, Bech-Serra JJ, Gatius S, Gomez X, Ribes-Santolaria M, Guasch-Vallés M, Pedraza N, Casanova JM, Gómez CDLT, Garí E, Aguayo-Ortiz RS. Biomarkers found in the tumor interstitial fluid may help explain the differential behavior among keratinocyte carcinomas. Mol Cell Proteomics 2023; 22:100547. [PMID: 37059366 DOI: 10.1016/j.mcpro.2023.100547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 04/01/2023] [Accepted: 04/10/2023] [Indexed: 04/16/2023] Open
Abstract
Basal Cell Carcinomas (BCC) and cutaneous Squamous Cell Carcinomas (SCC) are the most frequent types of cancer, and both originate from the keratinocyte transformation, giving rise to the group of tumors called keratinocyte carcinomas (KC). The invasive behavior is different in each group of KC and may be influenced by their tumor microenvironment. The principal aim of the study is to characterize the protein profile of the Tumor Interstitial Fluid (TIF) of KC to evaluate changes in the microenvironment that could be associated with their different invasive and metastatic capabilities. We obtained TIF from 27 skin biopsies and conducted a label-free quantitative proteomic analysis comparing 7 BCCs, 16 SCCs, and 4 Normal Skins. A total of 2945 proteins were identified, 511 of them quantified in more than half of the samples of each tumoral type. The proteomic analysis revealed differentially expressed TIF-proteins that could explain the different metastatic behavior in both KC. In detail, the SCC samples disclosed an enrichment of proteins related to cytoskeleton, such as Stratafin and Ladinin1. Previous studies found their up-regulation positively correlated with tumor progression. Furthermore, the TIF of SCC samples was enriched with the cytokines S100A8/S100A9. These cytokines influence the metastatic output in other tumors through the activation of NF-kB signaling. According to this, we observed a significant increase in nuclear NF-kB subunit p65 in SCCs but not in BCCs. In addition, the TIF of both tumors was enriched with proteins involved in the immune response, highlighting the relevance of this process in the composition of the tumor environment. Thus, the comparison of the TIF composition of both KC provides the discovery of a new set of differential biomarkers. Among them, secreted cytokines such as S100A9 may help explain the higher aggressiveness of SCCs, while Cornulin is a specific biomarker for BCCs. Finally, the proteomic landscape of TIF provides key information on tumor growth and metastasis, which can contribute to the identification of clinically applicable biomarkers that may be used in the diagnosis of KC, as well as therapeutic targets.
Collapse
Affiliation(s)
- Clara Matas-Nadal
- Cell cycle lab. Institut de Recerca Biomèdica de Lleida (IRB Lleida); Dermatology department. Hospital Santa Caterina, Salt, Girona.
| | - Joan J Bech-Serra
- Proteomics Unit, Josep Carreras Leukaemia Research Institute, Badalona, Spain
| | - Sònia Gatius
- Cell cycle lab. Institut de Recerca Biomèdica de Lleida (IRB Lleida); Servei d'anatomia patològica, Hospital Universitari Arnau de Vilanova, Lleida
| | - Xavier Gomez
- Dept. Ciències Mèdiques Bàsiques. Facultat de Medicina. Universitat de Lleida
| | - Marina Ribes-Santolaria
- Cell cycle lab. Institut de Recerca Biomèdica de Lleida (IRB Lleida); Dept. Ciències Mèdiques Bàsiques. Facultat de Medicina. Universitat de Lleida
| | - Marta Guasch-Vallés
- Cell cycle lab. Institut de Recerca Biomèdica de Lleida (IRB Lleida); Dept. Ciències Mèdiques Bàsiques. Facultat de Medicina. Universitat de Lleida
| | - Neus Pedraza
- Cell cycle lab. Institut de Recerca Biomèdica de Lleida (IRB Lleida); Dept. Ciències Mèdiques Bàsiques. Facultat de Medicina. Universitat de Lleida
| | - Josep M Casanova
- Cell cycle lab. Institut de Recerca Biomèdica de Lleida (IRB Lleida); Dept. Ciències Mèdiques Bàsiques. Facultat de Medicina. Universitat de Lleida; Servei de Dermatologia, Hospital Universitari Arnau de Vilanova, Lleida
| | | | - Eloi Garí
- Cell cycle lab. Institut de Recerca Biomèdica de Lleida (IRB Lleida); Dept. Ciències Mèdiques Bàsiques. Facultat de Medicina. Universitat de Lleida
| | - Rafael S Aguayo-Ortiz
- Cell cycle lab. Institut de Recerca Biomèdica de Lleida (IRB Lleida); Dept. Ciències Mèdiques Bàsiques. Facultat de Medicina. Universitat de Lleida; Servei de Dermatologia, Hospital Universitari Arnau de Vilanova, Lleida; Cell cycle lab. Institut de Recerca Biomèdica de Lleida (IRB Lleida)
| |
Collapse
|
8
|
Gao Y, Cao H, Huang D, Zheng L, Nie Z, Zhang S. RNA-Binding Proteins in Bladder Cancer. Cancers (Basel) 2023; 15:cancers15041150. [PMID: 36831493 PMCID: PMC9953953 DOI: 10.3390/cancers15041150] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/09/2023] [Accepted: 02/09/2023] [Indexed: 02/15/2023] Open
Abstract
RNA-binding proteins (RBPs) are key regulators of transcription and translation, with highly dynamic spatio-temporal regulation. They are usually involved in the regulation of RNA splicing, polyadenylation, and mRNA stability and mediate processes such as mRNA localization and translation, thereby affecting the RNA life cycle and causing the production of abnormal protein phenotypes that lead to tumorigenesis and development. Accumulating evidence supports that RBPs play critical roles in vital life processes, such as bladder cancer initiation, progression, metastasis, and drug resistance. Uncovering the regulatory mechanisms of RBPs in bladder cancer is aimed at addressing the occurrence and progression of bladder cancer and finding new therapies for cancer treatment. This article reviews the effects and mechanisms of several RBPs on bladder cancer and summarizes the different types of RBPs involved in the progression of bladder cancer and the potential molecular mechanisms by which they are regulated, with a view to providing information for basic and clinical researchers.
Collapse
|
9
|
Mehta M, Raguraman R, Ramesh R, Munshi A. RNA binding proteins (RBPs) and their role in DNA damage and radiation response in cancer. Adv Drug Deliv Rev 2022; 191:114569. [PMID: 36252617 PMCID: PMC10411638 DOI: 10.1016/j.addr.2022.114569] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 09/27/2022] [Accepted: 09/29/2022] [Indexed: 01/24/2023]
Abstract
Traditionally majority of eukaryotic gene expression is influenced by transcriptional and post-transcriptional events. Alterations in the expression of proteins that act post-transcriptionally can affect cellular signaling and homeostasis. RNA binding proteins (RBPs) are a family of proteins that specifically bind to RNAs and are involved in post-transcriptional regulation of gene expression and important cellular processes such as cell differentiation and metabolism. Deregulation of RNA-RBP interactions and any changes in RBP expression or function can lead to various diseases including cancer. In cancer cells, RBPs play an important role in regulating the expression of tumor suppressors and oncoproteins involved in various cell-signaling pathways. Several RBPs such as HuR, AUF1, RBM38, LIN28, RBM24, tristetrapolin family and Musashi play critical roles in various types of cancers and their aberrant expression in cancer cells makes them an attractive therapeutic target for cancer treatment. In this review we provide an overview of i). RBPs involved in cancer progression and their mechanism of action ii). the role of RBPs, including HuR, in breast cancer progression and DNA damage response and iii). explore RBPs with emphasis on HuR as therapeutic target for breast cancer therapy.
Collapse
Affiliation(s)
- Meghna Mehta
- Department of Radiation Oncology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73013, USA; Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73013, USA
| | - Rajeswari Raguraman
- Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73013, USA; Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73013, USA
| | - Rajagopal Ramesh
- Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73013, USA; Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73013, USA
| | - Anupama Munshi
- Department of Radiation Oncology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73013, USA; Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73013, USA.
| |
Collapse
|
10
|
Hu Y, Liu Y, Quan X, Fan W, Xu B, Li S. RBM3 is an outstanding cold shock protein with multiple physiological functions beyond hypothermia. J Cell Physiol 2022; 237:3788-3802. [PMID: 35926117 DOI: 10.1002/jcp.30852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 07/19/2022] [Accepted: 07/25/2022] [Indexed: 11/09/2022]
Abstract
RNA-binding motif protein 3 (RBM3), an outstanding cold shock protein, is rapidly upregulated to ensure homeostasis and survival in a cold environment, which is an important physiological mechanism in response to cold stress. Meanwhile, RBM3 has multiple physiological functions and participates in the regulation of various cellular physiological processes, such as antiapoptosis, circadian rhythm, cell cycle, reproduction, and tumogenesis. The structure, conservation, and tissue distribution of RBM3 in human are demonstrated in this review. Herein, the multiple physiological functions of RBM3 were summarized based on recent research advances. Meanwhile, the cytoprotective mechanism of RBM3 during stress under various adverse conditions and its regulation of transcription were discussed. In addition, the neuroprotection of RBM3 and its oncogenic role and controversy in various cancers were investigated in our review.
Collapse
Affiliation(s)
- Yajie Hu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, National Experimental Teaching Demonstration Center of Animal Medicine Foundation, Daqing, China
| | - Yang Liu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, National Experimental Teaching Demonstration Center of Animal Medicine Foundation, Daqing, China
| | - Xin Quan
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, National Experimental Teaching Demonstration Center of Animal Medicine Foundation, Daqing, China
| | - Wenxuan Fan
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, National Experimental Teaching Demonstration Center of Animal Medicine Foundation, Daqing, China
| | - Bin Xu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, National Experimental Teaching Demonstration Center of Animal Medicine Foundation, Daqing, China
| | - Shize Li
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, National Experimental Teaching Demonstration Center of Animal Medicine Foundation, Daqing, China
| |
Collapse
|
11
|
Fan L, Li Y, Zhang X, Wu Y, Song Y, Zhang F, Zhang J, Sun H. Time-resolved proteome and transcriptome of paraquat-induced pulmonary fibrosis. Pulm Pharmacol Ther 2022; 75:102145. [PMID: 35817254 DOI: 10.1016/j.pupt.2022.102145] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 05/31/2022] [Accepted: 07/05/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUNDS Pulmonary fibrosis (PF) is a pathological state presenting at the progressive stage of heterogeneous interstitial lung disease (ILD). The current understanding of the molecular mechanisms involved is incomplete. This clinical toxicology study focused on the pulmonary fibrosis induced by paraquat (PQ), a widely-used herbicide. Using proteo-transcriptome analysis, we identified differentially expressed proteins (DEPs) derived from the initial development of fibrosis to the dissolved stage and provided further functional analysis. METHODS We established a mouse model of progressive lung fibrosis via intratracheal instillation of paraquat. To acquire a comprehensive and unbiased understanding of the onset of pulmonary fibrosis, we performed time-series proteomics profiling (iTRAQ) and RNA sequencing (RNA-Seq) on lung samples from paraquat-treated mice and saline control. The biological functions and pathways involved were evaluated through Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) Pathway analysis. Correlation tests were conducted on comparable groups 7 days and 28 days post-exposure. Differentially expressed proteins and genes following the same trend on the protein and mRNA levels were selected for validation. The functions of the selected molecules were identified in vitro. The protein level was overexpressed by transfecting gene-containing plasmid or suppressed by transfecting specific siRNA in A549 cells. The levels of endothlial-mesenchymal transition (EMT) markers, including E-cadherin, vimentin, FN1, and α-SMA, were determined via western blot to evaluate the fibrotic process. RESULTS We quantified 1358 DEPs on day 7 and 426 DEPs on day 28 post exposure (Fold change >1.2; Q value < 0.05). The top 5 pathways - drug metabolism-cytochrome P450, metabolism of xenobiotics by cytochrome P450, complement and coagulation cascades, chemical carcinogenesis, protein digestion and absorption - were involved on both day 7 and day 28. Several pathways, including tight junction, focal adhesion, platelet activation, and ECM-receptor interaction, were more enriched on day 28 than on day 7. Integrative analysis of the proteome and transcriptome revealed a moderate correlation of quantitative protein abundance ratios with RNA abundance ratios (Spearman R = 0.3950 and 0.2477 on days 7 and 28, respectively), indicating that post-transcriptional regulation plays an important role in lung injury and repair. Western blot identified that the protein expressions of FN1, S100A4, and RBM3 were significantly upregulated while that of CYP1A1, FMO3, and PGDH were significantly downregulated on day 7. All proteins generally recovered to baseline on day 28. qPCR showed the mRNA levels of Fn1, S100a4, Rbm3, Cyp1a1, Fmo3, and Hpgd changed following the same trend as the levels of their respective proteins. Further, in vitro experiments showed that RBM3 was upregulated while PGDH was downregulated in an EMT model established in human lung epithelial A549 cells. RBM3 overexpression and PGDH knockout could both induce EMT in A549 cells. RBM3 knockout or PGDH overexpression had no reverse effect on EMT in A549 cells. CONCLUSIONS Our proteo-transcriptomic study determined the proteins responsible for fibrogenesis and uncovers their dynamic regulation from lung injury to repair, providing new insights for the development of biomarkers for diagnosis and treatment of fibrotic diseases.
Collapse
Affiliation(s)
- Lu Fan
- Department of Emergency, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Nanjing, PR China; Department of Emergency, Clinical Medical College, Yangzhou University, Yangzhou, PR China.
| | - Yuan Li
- Department of Emergency, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Nanjing, PR China.
| | - Xiaomin Zhang
- Department of Emergency, The Second People's Hospital of Wuxi, Affiliated to Nanjing Medical University, Wuxi, PR China.
| | - Yuxuan Wu
- Department of Emergency, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Nanjing, PR China.
| | - Yang Song
- Department of Emergency, Nanjing Jiangbei Hospital, Affiliated to Southeast University, Nanjing, PR China.
| | - Feng Zhang
- Department of Emergency, Jiangsu Province Hospital of Chinese Medicine, Affiliated to Nanjing University of Chinese Medicine, Nanjing, PR China.
| | - Jinsong Zhang
- Department of Emergency, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Nanjing, PR China.
| | - Hao Sun
- Department of Emergency, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Nanjing, PR China.
| |
Collapse
|
12
|
Zhang L, Zhang Y, Shen D, Chen Y, Feng J, Wang X, Ma L, Liao Y, Tang L. RNA Binding Motif Protein 3 Promotes Cell Metastasis and Epithelial–Mesenchymal Transition Through STAT3 Signaling Pathway in Hepatocellular Carcinoma. J Hepatocell Carcinoma 2022; 9:405-422. [PMID: 35592242 PMCID: PMC9112182 DOI: 10.2147/jhc.s351886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 04/21/2022] [Indexed: 11/25/2022] Open
Abstract
Purpose RNA binding motif protein 3 (RBM3) has been reported to be dysregulated in various cancers and associated with tumor aggressiveness. Epithelial–mesenchymal transition (EMT) is an important biological process by which tumor cells acquire metastatic abilities. This study aimed to explore the regulatory and molecular mechanisms of RBM3 in EMT process. Methods Western blotting, IHC, and qRT-PCR were performed to evaluate the expression of target genes. Transwell assay was used to investigate the migration and invasion. RNA immunoprecipitation and luciferase reporter assay were performed to explore the correlation of RBM3 with STAT3 or microRNA-383. Animal HCC models were used to explore the role of RBM3 in metastasis in vivo. Results RBM3 was highly expressed in HCC tissues compared to healthy tissues, and its level was negatively correlated with the prognosis of HCC patients. RBM3 overexpression accelerated migration and invasion, promoted EMT process, and activated STAT3 signaling. EMT induced by RBM3 was not only attenuated by inhibiting pSTAT3 via S3I-201 but also abolished by suppressing STAT3 expression via siRNAs. Mechanistically, RBM3 increased STAT3 expression by stabilizing STAT3 mRNA via binding to its mRNA. As an upstream target of RBM3, microRNA-383 inhibited RBM3 expression by binding to its 3ʹUTR and resulted in the inhibition of the EMT process. Inhibition of RBM3 in HCC animal models prolonged survival and ameliorated malignant phenotypes in mice. Conclusion Our findings support that RBM3 promotes HCC metastasis by activating STAT3 signaling.
Collapse
Affiliation(s)
- Lu Zhang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, People’s Republic of China
| | - Yi Zhang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, People’s Republic of China
| | - Dongliang Shen
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, People’s Republic of China
| | - Ying Chen
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, People’s Republic of China
| | - Jianguo Feng
- Southwest Medical University, Department Anesthesiology, Affiliated Hospital, Luzhou, 646000, People’s Republic of China
| | - Xing Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, People’s Republic of China
| | - Lunkun Ma
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, People’s Republic of China
| | - Yi Liao
- The Central Laboratory, Shenzhen Second People’s Hospital/First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, Guangdong, 518035, People’s Republic of China
- Department of Thoracic Surgery, Southwest Hospital, Army Medical University, Chongqing, 400038, People’s Republic of China
| | - Liling Tang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, People’s Republic of China
- Correspondence: Liling Tang; Yi Liao, Tel +86 139 9605 1730; +86 139 9656 6993, Fax +86-23-65111901; +86-23-68763333, Email ;
| |
Collapse
|
13
|
Pre-clinical and clinical studies on the role of RBM3 in muscle-invasive bladder cancer: longitudinal expression, transcriptome-level effects and modulation of chemosensitivity. BMC Cancer 2022; 22:131. [PMID: 35109796 PMCID: PMC8811987 DOI: 10.1186/s12885-021-09168-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 12/24/2021] [Indexed: 11/29/2022] Open
Abstract
Background The response to neoadjuvant cisplatin-based chemotherapy (NAC) in muscle-invasive bladder cancer (MIBC) is impaired in up to 50% of patients due to chemoresistance, with no predictive biomarkers in clinical use. The proto-oncogene RNA-binding motif protein 3 (RBM3) has emerged as a putative modulator of chemotherapy response in several solid tumours but has a hitherto unrecognized role in MIBC. Methods RBM3 protein expression level in tumour cells was assessed via immunohistochemistry in paired transurethral resection of the bladder (TURB) specimens, cystectomy specimens and lymph node metastases from a consecutive cohort of 145 patients, 65 of whom were treated with NAC. Kaplan-Meier and Cox regression analyses were applied to estimate the impact of RBM3 expression on time to recurrence (TTR), cancer-specific survival (CSS), and overall survival (OS) in strata according to NAC treatment. The effect of siRNA-mediated silencing of RBM3 on chemosensitivity was examined in RT4 and T24 human bladder carcinoma cells in vitro. Cellular functions of RBM3 were assessed using RNA-sequencing and gene ontology analysis, followed by investigation of cell cycle distribution using flow cytometry. Results RBM3 protein expression was significantly higher in TURB compared to cystectomy specimens but showed consistency between primary tumours and lymph node metastases. Patients with high-tumour specific RBM3 expression treated with NAC had a significantly reduced risk of recurrence and a prolonged CSS and OS compared to NAC-untreated patients. In high-grade T24 carcinoma cells, which expressed higher RBM3 mRNA levels compared to RT4 cells, RBM3 silencing conferred a decreased sensitivity to cisplatin and gemcitabine. Transcriptomic analysis revealed potential involvement of RBM3 in facilitating cell cycle progression, in particular G1/S-phase transition, and initiation of DNA replication. Furthermore, siRBM3-transfected T24 cells displayed an accumulation of cells residing in the G1-phase as well as altered levels of recognised regulators of G1-phase progression, including Cyclin D1/CDK4 and CDK2. Conclusions The presented data highlight the potential value of RBM3 as a predictive biomarker of chemotherapy response in MIBC, which could, if prospectively validated, improve treatment stratification of patients with this aggressive disease. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-021-09168-7.
Collapse
|
14
|
Hafez AM, Seleem MM, Alattar AZ, Elshorbagy S, Elsayed WS. RNA-binding proteins RBM-HuR, RBM3 and PODXL expression in urothelial carcinoma of the urinary bladder. Prognostic and clinical implications. Contemp Oncol (Pozn) 2022; 25:279-290. [PMID: 35079236 PMCID: PMC8768053 DOI: 10.5114/wo.2021.112371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 11/23/2021] [Indexed: 11/17/2022] Open
Abstract
AIM OF THE STUDY The clinical significance and predictive and prognostic value of HuR, RBM3, and PODXL expression in patients with urothelial bladder cancer (UBC) are not clear yet. The aim of this study was to assess HuR, RBM3 and PODXL expression in muscle invasive and non-muscle invasive UBC tissues, and to investigate the clinicopathological correlations and their predictive and prognostic impact in patients with such type of cancer. MATERIAL AND METHODS RBM-HuR, RBM3 and PODXL expression levels were evaluated in 70 patients with urothelial carcinoma by immunohistochemistry. The relationships between their expression, clinicopathological findings and prognostic data were analyzed. RESULTS High RBM-HuR expression was related to muscle invasion (p = 0.008), metastasis to lymph nodes (p = 0.007), and presence of blood spread (p = 0.049). High RBM3 expression was associated with lower grade (p = 0.044), absence of distant metastasis (p = 0.025), and absence of lymph node metastasis (p = 0.018). High PODXL expression was significantly associated with advanced tumor stage (p < 0.001), larger tumor size (p = 0.050), lymphovascular invasion (p = 0.006), lymph node metastasis (p = 0.008), higher grade (p = 0.043) and distant metastasis (p = 0.002).Three-year overall survival rate was negatively associated with high expression of both RBM-HuR and PODXL while it was directly correlated with high expression of RBM3 (p = 0.008, 0.009 and 0.015 respectively). High RBM-HuR and PODXL expression and low expression of RBM3 were related to tumor recurrence (p = 0.022, 0.011 and 0.015). CONCLUSIONS RBM-HuR and PODXL expressions are markers of poor prognosis while RBM3 is a good prognostic marker for urothelial carcinoma of the bladder.
Collapse
Affiliation(s)
- Abeer M. Hafez
- Pathology Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | | | - Ahmed Z. Alattar
- Pathology Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | | | | |
Collapse
|
15
|
Jafarzadeh A, Noori M, Sarrafzadeh S, Tamehri Zadeh SS, Nemati M, Chatrabnous N, Jafarzadeh S, Hamblin MR, Jafari Najaf Abadi MH, Mirzaei H. MicroRNA-383: A tumor suppressor miRNA in human cancer. Front Cell Dev Biol 2022; 10:955486. [PMID: 36313570 PMCID: PMC9608775 DOI: 10.3389/fcell.2022.955486] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 08/23/2022] [Indexed: 02/05/2023] Open
Abstract
Downregulated expression of anti-tumor miR-383 has been found in many kinds of cancer. MiR-383 family members can directly target the 3'-untranslated region (3'-UTR) of the mRNA of some pro-tumor genes to attenuate several cancer-related processes, including cell proliferation, invasion, migration, angiogenesis, immunosuppression, epithelial-mesenchymal transition, glycolysis, chemoresistance, and the development of cancer stem cells, whilst promoting apoptosis. Functionally, miR-383 operates as a tumor inhibitor miRNA in many types of cancer, including breast cancer, hepatocellular carcinoma, gastric cancer, pancreatic cancer, colorectal cancer, esophageal cancer, lung cancer, head and neck cancer, glioma, medulloblastoma, melanoma, prostate cancer, cervical cancer, oral squamous cell carcinoma, thyroid cancer, and B-cell lymphoma. Both pro-tumor and anti-tumor effects have been attributed to miR-383 in ovarian cancer. However, only the pro-tumor effects of miR-383 were reported in cholangiocarcinoma. The restoration of miR-383 expression could be considered a possible treatment for cancer. This review discusses the anti-tumor effects of miR-383 in human cancers, emphasizing their downstream target genes and potential treatment approaches.
Collapse
Affiliation(s)
- Abdollah Jafarzadeh
- Department of Immunology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
- *Correspondence: Abdollah Jafarzadeh, ; Mohammad Hassan Jafari Najaf Abadi, ; Hamed Mirzaei,
| | - Majid Noori
- Golestan Hospital Research Center, AJA University of Medical Sciences, Tehran, Iran
| | - Shaghayegh Sarrafzadeh
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Maryam Nemati
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
- Department of Hematology and Laboratory Sciences, School of Para-Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Nazanin Chatrabnous
- Endocrinology and Metabolism Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sara Jafarzadeh
- Student Research Committee, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Johannesburg, South Africa
| | - Mohammad Hassan Jafari Najaf Abadi
- Department of Medical Biotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- *Correspondence: Abdollah Jafarzadeh, ; Mohammad Hassan Jafari Najaf Abadi, ; Hamed Mirzaei,
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- *Correspondence: Abdollah Jafarzadeh, ; Mohammad Hassan Jafari Najaf Abadi, ; Hamed Mirzaei,
| |
Collapse
|
16
|
Kinoshita C, Kubota N, Aoyama K. Interplay of RNA-Binding Proteins and microRNAs in Neurodegenerative Diseases. Int J Mol Sci 2021; 22:ijms22105292. [PMID: 34069857 PMCID: PMC8157344 DOI: 10.3390/ijms22105292] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/14/2021] [Accepted: 05/15/2021] [Indexed: 02/07/2023] Open
Abstract
The number of patients with neurodegenerative diseases (NDs) is increasing, along with the growing number of older adults. This escalation threatens to create a medical and social crisis. NDs include a large spectrum of heterogeneous and multifactorial pathologies, such as amyotrophic lateral sclerosis, frontotemporal dementia, Alzheimer’s disease, Parkinson’s disease, Huntington’s disease and multiple system atrophy, and the formation of inclusion bodies resulting from protein misfolding and aggregation is a hallmark of these disorders. The proteinaceous components of the pathological inclusions include several RNA-binding proteins (RBPs), which play important roles in splicing, stability, transcription and translation. In addition, RBPs were shown to play a critical role in regulating miRNA biogenesis and metabolism. The dysfunction of both RBPs and miRNAs is often observed in several NDs. Thus, the data about the interplay among RBPs and miRNAs and their cooperation in brain functions would be important to know for better understanding NDs and the development of effective therapeutics. In this review, we focused on the connection between miRNAs, RBPs and neurodegenerative diseases.
Collapse
Affiliation(s)
- Chisato Kinoshita
- Department of Pharmacology, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi, Tokyo 173-8605, Japan;
- Correspondence: (C.K.); (K.A.); Tel.: +81-3-3964-3794 (C.K.); +81-3-3964-3793 (K.A.)
| | - Noriko Kubota
- Department of Pharmacology, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi, Tokyo 173-8605, Japan;
- Teikyo University Support Center for Women Physicians and Researchers, 2-11-1 Kaga, Itabashi, Tokyo 173-8605, Japan
| | - Koji Aoyama
- Department of Pharmacology, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi, Tokyo 173-8605, Japan;
- Correspondence: (C.K.); (K.A.); Tel.: +81-3-3964-3794 (C.K.); +81-3-3964-3793 (K.A.)
| |
Collapse
|
17
|
Feng J, Pan W, Yang X, Long F, Zhou J, Liao Y, Wang M. RBM3 Increases Cell Survival but Disrupts Tight Junction of Microvascular Endothelial Cells in Acute Lung Injury. J Surg Res 2021; 261:226-235. [PMID: 33460967 DOI: 10.1016/j.jss.2020.12.041] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 12/10/2020] [Accepted: 12/16/2020] [Indexed: 11/17/2022]
Abstract
BACKGROUND RNA-binding motif protein 3 (RBM3) is an important cold shock protein, which also responds to hypothermia or hypoxia. RBM3 is involved into multiple physiologic processes, such as promoting cell survival. However, its expression and function in acute lung injury (ALI) have not been reported. METHODS A mouse ALI model was established by lipopolysaccharides (LPS) treatment. The RBM3 and cold inducible RNA-binding protein mRNA levels were examined by RT-qPCR, and MMP9 mRNA stability was determined by actinomycin D assay. RBM3 and MMP9 mRNA was tested by RNA immunoprecipitation (RIP assay). RBM3 overexpression or silent stable cell lines were established using recombinant lentivirus and subsequently used for cell survival and tight junction measurements. RESULTS In this study, we found that RBM3, rather than cold inducible RNA-binding protein, was upregulated in lung tissue of ALI mice. RBM3 was increased in human pulmonary microvascular endothelial cells (HPMVECs) in response to LPS treatment, which is modulated by the NF-κB signaling pathway. Furthermore, RBM3 could reduce cell apoptosis induced by LPS, probably through suppressing p53 expression. Because increased permeability of HPMVECs leads to pulmonary edema in ALI, we subsequently examined the effect of RBM3 on cell tight junctions. Unexpectedly, RBM3 decreased the expression of tight junction protein zonula occludens-1 and increased cell permeability, and RBM3 overexpression increased MMP9 mRNA stability. Furthermore, RIP assay confirmed the interaction between RBM3 and MMP9 mRNA, possibly explaining the contribution of RBM3 to increase cell permeability. CONCLUSIONS RBM3 seems to act as a "double-edged sword" in ALI, that RBM3 alleviates cell apoptosis but increases HPMVEC permeability in ALI.
Collapse
Affiliation(s)
- Jianguo Feng
- Laboratory of Anesthesiology, Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, China
| | - Wei Pan
- Department of Nephrology, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Xiaoli Yang
- Laboratory of Anesthesiology, Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, China
| | - Feiyu Long
- Laboratory of Anesthesiology, Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, China
| | - Jun Zhou
- Laboratory of Anesthesiology, Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, China
| | - Yi Liao
- Department of Thoracic Surgery, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China.
| | - Maohua Wang
- Laboratory of Anesthesiology, Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, China.
| |
Collapse
|
18
|
Bisphenol A Exposure Changes the Transcriptomic and Proteomic Dynamics of Human Retinoblastoma Y79 Cells. Genes (Basel) 2021; 12:genes12020264. [PMID: 33670352 PMCID: PMC7918513 DOI: 10.3390/genes12020264] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 02/05/2021] [Accepted: 02/06/2021] [Indexed: 12/14/2022] Open
Abstract
Bisphenol A (BPA) is a xenoestrogen chemical commonly used to manufacture polycarbonate plastics and epoxy resin and might affect various human organs. However, the cellular effects of BPA on the eyes have not been widely investigated. This study aimed to investigate the cellular cytotoxicity by BPA exposure on human retinoblastoma cells. BPA did not show cytotoxic effects, such as apoptosis, alterations to cell viability and cell cycle regulation. Comparative analysis of the transcriptome and proteome profiles were investigated after long-term exposure of Y79 cells to low doses of BPA. Transcriptome analysis using RNA-seq revealed that mRNA expression of the post-transcriptional regulation-associated gene sets was significantly upregulated in the BPA-treated group. Cell cycle regulation-associated gene sets were significantly downregulated by exposure to BPA. Interestingly, RNA-seq analysis at the transcript level indicated that alternative splicing events, particularly retained introns, were noticeably altered by low-dose BPA treatment. Additionally, proteome profiling using MALDI-TOF-MS identified a total of nine differentially expressed proteins. These results suggest that alternative splicing events and altered gene/protein expression patterns are critical phenomena affected by long-term low-dose BPA exposure. This represents a novel marker for the detection of various diseases associated with environmental pollutants such as BPA.
Collapse
|
19
|
Bronisz A, Rooj AK, Krawczyński K, Peruzzi P, Salińska E, Nakano I, Purow B, Chiocca EA, Godlewski J. The nuclear DICER-circular RNA complex drives the deregulation of the glioblastoma cell microRNAome. SCIENCE ADVANCES 2020; 6:eabc0221. [PMID: 33328224 PMCID: PMC7744081 DOI: 10.1126/sciadv.abc0221] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 11/02/2020] [Indexed: 05/16/2023]
Abstract
The assortment of cellular microRNAs ("microRNAome") is a vital readout of cellular homeostasis, but the mechanisms that regulate the microRNAome are poorly understood. The microRNAome of glioblastoma is substantially down-regulated in comparison to the normal brain. Here, we find malfunction of the posttranscriptional maturation of the glioblastoma microRNAome and link it to aberrant nuclear localization of DICER, the major enzymatic complex responsible for microRNA maturation. Analysis of DICER's nuclear interactome reveals the presence of an RNA binding protein, RBM3, and of a circular RNA, circ2082, within the complex. Targeting of this complex by knockdown of circ2082 results in the restoration of cytosolic localization of DICER and widespread derepression of the microRNAome, leading to transcriptome-wide rearrangements that mitigate the tumorigenicity of glioblastoma cells in vitro and in vivo with correlation to favorable outcomes in patients with glioblastoma. These findings uncover the mechanistic foundation of microRNAome deregulation in malignant cells.
Collapse
Affiliation(s)
- A Bronisz
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
- Department of Neurochemistry, Mossakowski Medical Research Centre of Polish Academy of Sciences, Warsaw, Poland
| | - A K Rooj
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - K Krawczyński
- Department of Neurochemistry, Mossakowski Medical Research Centre of Polish Academy of Sciences, Warsaw, Poland
| | - P Peruzzi
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - E Salińska
- Department of Neurochemistry, Mossakowski Medical Research Centre of Polish Academy of Sciences, Warsaw, Poland
| | - I Nakano
- Department of Neurosurgery, University of Alabama, Birmingham, AL, USA
| | - B Purow
- Department of Neurology, University of Virginia, Charlottesville, VA, USA
| | - E A Chiocca
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - J Godlewski
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
- Department of Neurochemistry, Mossakowski Medical Research Centre of Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
20
|
Miao X, Zhang N. Role of RBM3 in the regulation of cell proliferation in hepatocellular carcinoma. Exp Mol Pathol 2020; 117:104546. [PMID: 32976820 DOI: 10.1016/j.yexmp.2020.104546] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/04/2020] [Accepted: 09/19/2020] [Indexed: 12/20/2022]
Abstract
RNA binding motif protein 3 (RBM3) has been shown to be upregulated in several types of human tumors. Using tissue microarrays and immunohistochemistry, we showed here that both nuclear and cytoplasmic RBM3 expression levels were higher in hepatocellular carcinoma (HCC) tissues than in adjacent non-tumorous tissues. High nuclear RBM3 was found to be correlated with larger tumor size (P = 0.030), high serum AFP levels (P = 0.011), and advanced Edmonson grading (P = 0.006). Cytoplasmic RBM3 was associated with advanced Edmonson grading (P = 0.003). Kaplan-Meier survival analysis revealed that, although not statistically significant, there was a trend toward shortened overall survival in the subset of HCC patients with high RBM3 expression (both nuclear and cytoplasmic). In addition, we found that RBM3 could promote YAP1 expression in HCC cells. Moreover, we found that YAP1 played an essential part in RBM3-induced proliferation of HCC cells. Furthermore, we demonstrated that Verteporfin, a YAP1 inhibitor, could repress RBM3-induced proliferation of HCC cells. Our findings provide a new experimental basis for further understanding of the possible role of RBM3-YAP1 in the regulation of HCC proliferation.
Collapse
Affiliation(s)
- Xiaobing Miao
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China; Department of Pathology, Affiliated Tumor Hospital of Nantong University, Nantong 226361, Jiangsu, China
| | - Nong Zhang
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China.
| |
Collapse
|
21
|
Salomonsson A, Micke P, Mattsson JSM, La Fleur L, Isaksson J, Jönsson M, Nodin B, Botling J, Uhlén M, Jirström K, Staaf J, Planck M, Brunnström H. Comprehensive analysis of RNA binding motif protein 3 (RBM3) in non-small cell lung cancer. Cancer Med 2020; 9:5609-5619. [PMID: 32491279 PMCID: PMC7402820 DOI: 10.1002/cam4.3149] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 04/11/2020] [Accepted: 05/05/2020] [Indexed: 01/05/2023] Open
Abstract
AIMS High expression of the RNA-binding motif protein 3 (RBM3) correlates with improved prognosis in several major types of cancer. The aim of the present study was to examine the prognostic value of RBM3 protein and mRNA expression in non-small cell lung cancer (NSCLC). METHODS AND RESULTS Immunohistochemical expression of RBM3 was evaluated in surgically treated NSCLC from two independent patient populations (n = 213 and n = 306). Staining patterns were correlated with clinicopathological parameters, overall survival (OS), and recurrence-free interval (RFI). Cases with high nuclear RBM3 protein expression had a prolonged 5-year OS in both cohorts when analyzing adenocarcinomas separately (P = .02 and P = .01). RBM3 remained an independent prognostic factor for OS in multivariable analysis of cohort I (HR 0.44, 95% CI 0.21-0.90) and for RFI in cohort II (HR 0.38, 95% CI 0.22-0.74). In squamous cell carcinoma, there was instead an insignificant association to poor prognosis. Also, the expression levels of RBM3 mRNA were investigated in 2087 lung adenocarcinomas and 899 squamous cell carcinomas assembled from 13 and 8 public gene expression microarray datasets, respectively. The RBM3 mRNA levels were not clearly associated with patient outcome in either adenocarcinomas or squamous cell carcinomas. CONCLUSIONS The results from this study support that high protein expression of RBM3 is linked to improved outcome in lung adenocarcinoma.
Collapse
Affiliation(s)
- Annette Salomonsson
- Department of Clinical Sciences, Division of Oncology and Pathology, Lund University, Lund, Sweden
| | - Patrick Micke
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala University Hospital, Uppsala, Sweden
| | - Johanna S M Mattsson
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala University Hospital, Uppsala, Sweden
| | - Linnea La Fleur
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala University Hospital, Uppsala, Sweden
| | - Johan Isaksson
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala University Hospital, Uppsala, Sweden.,Department of Respiratory Medicine, Gävle Hospital, Gävle, Sweden.,Centre for Research and Development, Uppsala university/County Council of Gävleborg, Gävle, Sweden
| | - Mats Jönsson
- Department of Clinical Sciences, Division of Oncology and Pathology, Lund University, Lund, Sweden
| | - Björn Nodin
- Department of Clinical Sciences, Division of Oncology and Pathology, Lund University, Lund, Sweden
| | - Johan Botling
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala University Hospital, Uppsala, Sweden
| | - Mathias Uhlén
- Science for Life Laboratory, Royal Institute of Technology, Stockholm, Sweden.,School of Biotechnology, AlbaNova University Center, Royal Institute of Technology, Stockholm, Sweden
| | - Karin Jirström
- Department of Clinical Sciences, Division of Oncology and Pathology, Lund University, Lund, Sweden.,Department of Genetics and Pathology, Laboratory Medicine Region Skåne, Lund, Sweden
| | - Johan Staaf
- Department of Clinical Sciences, Division of Oncology and Pathology, Lund University, Lund, Sweden
| | - Maria Planck
- Department of Clinical Sciences, Division of Oncology and Pathology, Lund University, Lund, Sweden.,Department of Respiratory medicine and Allergology, Skåne University Hospital, Lund, Sweden
| | - Hans Brunnström
- Department of Clinical Sciences, Division of Oncology and Pathology, Lund University, Lund, Sweden.,Department of Genetics and Pathology, Laboratory Medicine Region Skåne, Lund, Sweden
| |
Collapse
|
22
|
Gao G, Shi X, Long Y, Yao Z, Shen J, Shen L. The prognostic and clinicopathological significance of RBM3 in the survival of patients with tumor: A Prisma-compliant meta-analysis. Medicine (Baltimore) 2020; 99:e20002. [PMID: 32384455 PMCID: PMC7220349 DOI: 10.1097/md.0000000000020002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND RNA-binding motif protein 3 (RBM3) plays an important role in carcinogenesis and tumor progression. However, the prognostic role of RBM3 in human carcinomas remains controversial. Therefore, we took a meta-analysis to research the association between the overall survival of patients with cancer and the expression of RBM3. METHODS Systematic literature research identified 17 potentially eligible studies comprising 4976 patients in ten different cancer types. Two researchers independently screened the content and quality of studies and extracted data. Correlations of RBM3 expression and survival were analyzed and the hazard ratios (HRs) with 95% confidence intervals (95% CIs) were calculated. RESULTS In the pooled analysis, overexpression of RBM3 was related to improved overall survival (OS), recurrence-free survival (RFS), and disease-free survival (DFS) in patients with cancer having a pooled HR of 0.61 (HR = 0.61; 95% CI: 0.47-0.69), 0.57 (HR = 0.60; 95% CI: 0.50-0.71) and 0.54 (HR 0.54; 95% CI: 0.38-0.78). Besides, subgroup analysis proved that overexpression of RBM3 was related to improved OS in colorectal cancer (HR = 0.61, 95% CI: 0.43-0.86), melanoma (HR = 0.32, 95% CI: 0.20-0.52), and gastric cancer (HR = 0.51, 95% CI: 0.35-0.73). However, subgroup analysis according to tumor type revealed that overexpression of RBM3 was not related to better OS in breast carcinoma (HR = 0.52, 95% CI: 0.17-0.61). CONCLUSIONS Our results indicated that RBM3 overexpression was significantly predictive of better prognosis in various human cancers. For certain tumors, overexpression RBM3 might be a marker of improved survival in humans with cancer, except for breast cancer.
Collapse
|
23
|
Yang H, Zhuang R, Li Y, Li T, Yuan X, Lei B, Xie Y, Wang M. Cold-inducible protein RBM3 mediates hypothermic neuroprotection against neurotoxin rotenone via inhibition on MAPK signalling. J Cell Mol Med 2019; 23:7010-7020. [PMID: 31436914 PMCID: PMC6787511 DOI: 10.1111/jcmm.14588] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 06/11/2019] [Accepted: 07/24/2019] [Indexed: 12/14/2022] Open
Abstract
Mild hypothermia and its key product, cold-inducible protein RBM3, possess robust neuroprotective effects against various neurotoxins. However, we previously showed that mild hypothermia fails to attenuate the neurotoxicity from MPP+ , one of typical neurotoxins related to the increasing risk of Parkinson disease (PD). To better understand the role of mild hypothermia and RBM3 in PD progression, another known PD-related neurotoxin, rotenone (ROT) was utilized in this study. Using immunoblotting, cell viability assays and TUNEL staining, we revealed that mild hypothermia (32°C) significantly reduced the apoptosis induced by ROT in human neuroblastoma SH-SY5Y cells, when compared to normothermia (37°C). Meanwhile, the overexpression of RBM3 in SH-SY5Y cells mimicked the neuroprotective effects of mild hypothermia on ROT-induced cytotoxicity. Upon ROT stimulation, MAPK signalling like p38, JNK and ERK, and AMPK and GSK-3β signalling were activated. When RBM3 was overexpressed, only the activation of p38, JNK and ERK signalling was inhibited, leaving AMPK and GSK-3β signalling unaffected. Similarly, mild hypothermia also inhibited the activation of MAPKs induced by ROT. Lastly, it was demonstrated that the MAPK (especially p38 and ERK) inhibition by their individual inhibitors significantly decreased the neurotoxicity of ROT in SH-SY5Y cells. In conclusion, these data demonstrate that RBM3 mediates mild hypothermia-related neuroprotection against ROT by inhibiting the MAPK signalling of p38, JNK and ERK.
Collapse
Affiliation(s)
- Hai‐Jie Yang
- School of Life Science and TechnologyXinxiang Medical UniversityXinxiangChina
- Henan Key Lab of Biological PsychiatrySecond Affiliated Hospital of Xinxiang Medical UniversityXinxiangChina
| | - Rui‐Juan Zhuang
- School of Pharmaceutical SciencesXiamen UniversityXiamenChina
| | - Yuan‐Bo Li
- School of Life Science and TechnologyXinxiang Medical UniversityXinxiangChina
| | - Tian Li
- School of Life Science and TechnologyXinxiang Medical UniversityXinxiangChina
| | - Xin Yuan
- School of Life Science and TechnologyXinxiang Medical UniversityXinxiangChina
| | - Bing‐Bing Lei
- School of Life Science and TechnologyXinxiang Medical UniversityXinxiangChina
| | - Yun‐Fei Xie
- School of Life Science and TechnologyXinxiang Medical UniversityXinxiangChina
| | - Mian Wang
- School of Life Science and TechnologyXinxiang Medical UniversityXinxiangChina
| |
Collapse
|
24
|
The RNA-binding protein RBM3 promotes cell proliferation in hepatocellular carcinoma by regulating circular RNA SCD-circRNA 2 production. EBioMedicine 2019; 45:155-167. [PMID: 31235426 PMCID: PMC6642271 DOI: 10.1016/j.ebiom.2019.06.030] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 06/16/2019] [Accepted: 06/17/2019] [Indexed: 01/27/2023] Open
Abstract
Background With the development of RNA-seq technology, tens of thousands of circular RNAs (circRNAs), a novel class of RNAs, have been identified. However, little is known about circRNA formation and biogenesis in hepatocellular carcinoma (HCC). Methods We performed ribosomal-depleted RNA-seq profiling of HCC and para-carcinoma tissues and analyzed the expression of a hotspot circRNA derived from the 3’UTR of the stearoyl-CoA desaturase (SCD) gene, termed SCD-circRNA 2. Findings It was significantly upregulated in HCC and correlated with poor patient prognosis. Moreover, we observed that the production of SCD-circRNA 2 was dynamically regulated by RNA-binding protein 3 (RBM3). RBM3 overexpression was indicative of a short recurrence-free survival and poor overall survival for HCC patients. Furthermore, by modulating the RBM3 or SCD-circRNA 2 levels, we found that RBM3 promoted the HCC cell proliferation in a SCD-circRNA 2 dependent manner. Interpretation Herein, we report that RBM3 is crucial for the SCD-circRNA 2 formation in HCC cells, which not only provides mechanistic insights into cancer-related circRNA dysregulation but also establishes RBM3 as an oncogene with both therapeutic potential and prognostic value. Fund This work was supported by the National Key Research and Development Program of China (2016YFC1302303), the National Natural Science Foundation of China (Grant No. 81672345 and 81,402,269). The funders did not have any roles in study design, data collection, data analysis, interpretation, writing of the report.
Collapse
|
25
|
Sun YJ, Zhang ZY, Fan B, Li GY. Neuroprotection by Therapeutic Hypothermia. Front Neurosci 2019; 13:586. [PMID: 31244597 PMCID: PMC6579927 DOI: 10.3389/fnins.2019.00586] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Accepted: 05/23/2019] [Indexed: 12/14/2022] Open
Abstract
Hypothermia therapy is an old and important method of neuroprotection. Until now, many neurological diseases such as stroke, traumatic brain injury, intracranial pressure elevation, subarachnoid hemorrhage, spinal cord injury, hepatic encephalopathy, and neonatal peripartum encephalopathy have proven to be suppressed by therapeutic hypothermia. Beneficial effects of therapeutic hypothermia have also been discovered, and progress has been made toward improving the benefits of therapeutic hypothermia further through combination with other neuroprotective treatments and by probing the mechanism of hypothermia neuroprotection. In this review, we compare different hypothermia induction methods and provide a summarized account of the synergistic effect of hypothermia therapy with other neuroprotective treatments, along with an overview of hypothermia neuroprotection mechanisms and cold/hypothermia-induced proteins.
Collapse
Affiliation(s)
- Ying-Jian Sun
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, China
| | - Zi-Yuan Zhang
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, China
| | - Bin Fan
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, China
| | - Guang-Yu Li
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
26
|
Legrand N, Dixon DA, Sobolewski C. AU-rich element-binding proteins in colorectal cancer. World J Gastrointest Oncol 2019; 11:71-90. [PMID: 30788036 PMCID: PMC6379757 DOI: 10.4251/wjgo.v11.i2.71] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 12/11/2018] [Accepted: 01/01/2019] [Indexed: 02/05/2023] Open
Abstract
Trans-acting factors controlling mRNA fate are critical for the post-transcriptional regulation of inflammation-related genes, as well as for oncogene and tumor suppressor expression in human cancers. Among them, a group of RNA-binding proteins called “Adenylate-Uridylate-rich elements binding proteins” (AUBPs) control mRNA stability or translation through their binding to AU-rich elements enriched in the 3’UTRs of inflammation- and cancer-associated mRNA transcripts. AUBPs play a central role in the recruitment of target mRNAs into small cytoplasmic foci called Processing-bodies and stress granules (also known as P-body/SG). Alterations in the expression and activities of AUBPs and P-body/SG assembly have been observed to occur with colorectal cancer (CRC) progression, indicating the significant role AUBP-dependent post-transcriptional regulation plays in controlling gene expression during CRC tumorigenesis. Accordingly, these alterations contribute to the pathological expression of many early-response genes involved in prostaglandin biosynthesis and inflammation, along with key oncogenic pathways. In this review, we summarize the current role of these proteins in CRC development. CRC remains a major cause of cancer mortality worldwide and, therefore, targeting these AUBPs to restore efficient post-transcriptional regulation of gene expression may represent an appealing therapeutic strategy.
Collapse
Affiliation(s)
- Noémie Legrand
- Department of Microbiology, Faculty of Medicine, University of Geneva, Geneva CH-1211, Switzerland
| | - Dan A Dixon
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, and University of Kansas Cancer Center, Kansas City, KS 66045, United States
| | - Cyril Sobolewski
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva CH-1211, Switzerland
| |
Collapse
|
27
|
Melling N, Bachmann K, Hofmann B, El Gammal AT, Reeh M, Mann O, Moebius C, Blessmann M, Izbicki JR, Grupp K. Prevalence and clinical significance of RBM3 immunostaining in non-small cell lung cancers. J Cancer Res Clin Oncol 2019; 145:873-879. [PMID: 30758670 DOI: 10.1007/s00432-019-02850-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 01/23/2019] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Aberrant expression of RNA-binding motif protein 3 (RBM3) has been suggested as a prognostic biomarker in several malignancies. MATERIALS AND METHODS This study was performed to analyse the prevalence and clinical significance of RBM3 immunostaining in non-small cell lung cancers (NSCLCs). Therefore, we took advantage of our tissue microarray (TMA) containing more than 600 NSCLC specimens. RESULTS While nuclear RBM3 staining was always high in normal lung tissue, high RBM3 staining was only seen in 77.1% of 467 interpretable non-metastatic NSCLCs. Reduced RBM3 staining was significantly associated with advanced pathological tumor stage (pT) in NSCLCs (p = 0.0031). Subset analysis revealed that the association between reduced RBM3 staining and advanced pT stage was largely driven by the histological subgroup of lung adenocarcinoma (LUACs) (p = 0.0036). In addition, reduced RBM3 expression predicted shortened survival in LUAC patients (p = 0.0225). CONCLUSIONS In summary, our study shows that loss of RBM3 expression predicts worse clinical outcome in LUAC patients.
Collapse
Affiliation(s)
- Nathaniel Melling
- General-, Visceral and Thoracic Surgery Department and Clinic, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Kai Bachmann
- General-, Visceral and Thoracic Surgery Department and Clinic, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Bianca Hofmann
- General-, Visceral and Thoracic Surgery Department and Clinic, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Alexander Tarek El Gammal
- General-, Visceral and Thoracic Surgery Department and Clinic, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Matthias Reeh
- General-, Visceral and Thoracic Surgery Department and Clinic, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Oliver Mann
- General-, Visceral and Thoracic Surgery Department and Clinic, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christoph Moebius
- Department of Plastic-, Reconstructive and Aesthetic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Marco Blessmann
- Department of Plastic-, Reconstructive and Aesthetic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jakob Robert Izbicki
- General-, Visceral and Thoracic Surgery Department and Clinic, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Katharina Grupp
- General-, Visceral and Thoracic Surgery Department and Clinic, University Medical Center Hamburg-Eppendorf, Hamburg, Germany. .,Department of Plastic-, Reconstructive and Aesthetic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
28
|
Morphoregulatory functions of the RNA-binding motif protein 3 in cell spreading, polarity and migration. Sci Rep 2018; 8:7367. [PMID: 29743635 PMCID: PMC5943363 DOI: 10.1038/s41598-018-25668-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 03/27/2018] [Indexed: 02/01/2023] Open
Abstract
RNA-binding proteins are emerging as key regulators of transitions in cell morphology. The RNA-binding motif protein 3 (RBM3) is a cold-inducible RNA-binding protein with broadly relevant roles in cellular protection, and putative functions in cancer and development. Several findings suggest that RBM3 has morphoregulatory functions germane to its roles in these contexts. For example, RBM3 helps maintain the morphological integrity of cell protrusions during cell stress and disease. Moreover, it is highly expressed in migrating neurons of the developing brain and in cancer invadopodia, suggesting roles in migration. We here show that RBM3 regulates cell polarity, spreading and migration. RBM3 was present in spreading initiation centers, filopodia and blebs that formed during cell spreading in cell lines and primary myoblasts. Reducing RBM3 triggered exaggerated spreading, increased RhoA expression, and a loss of polarity that was rescued by Rho kinase inhibition and overexpression of CRMP2. High RBM3 expression enhanced the motility of cells migrating by a mesenchymal mode involving extension of long protrusions, whereas RBM3 knockdown slowed migration, greatly reducing the ability of cells to extend protrusions and impairing multiple processes that require directional migration. These data establish novel functions of RBM3 of potential significance to tissue repair, metastasis and development.
Collapse
|
29
|
Yang HJ, Shi X, Ju F, Hao BN, Ma SP, Wang L, Cheng BF, Wang M. Cold Shock Induced Protein RBM3 but Not Mild Hypothermia Protects Human SH-SY5Y Neuroblastoma Cells From MPP +-Induced Neurotoxicity. Front Neurosci 2018; 12:298. [PMID: 29773975 PMCID: PMC5943555 DOI: 10.3389/fnins.2018.00298] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 04/17/2018] [Indexed: 01/12/2023] Open
Abstract
The cold shock protein RBM3 can mediate mild hypothermia-related protection in neurodegeneration such as Alzheimer's disease. However, it remains unclear whether RBM3 and mild hypothermia provide same protection in model of Parkinson's disease (PD), the second most common neurodegenerative disorder. In this study, human SH-SY5Y neuroblastoma cells subjected to insult by 1-methyl-4-phenylpyridinium (MPP+) served as an in-vitro model of PD. Mild hypothermia (32°C) aggravated MPP+-induced apoptosis, which was boosted when RBM3 was silenced by siRNA. In contrast, overexpression of RBM3 significantly reduced this apoptosis. MPP+ treatment downregulated the expression of RBM3 both endogenously and exogenously and suppressed its induction by mild hypothermia (32°C). In conclusion, our data suggest that cold shock protein RBM3 provides neuroprotection in a cell model of PD, suggesting that RBM3 induction may be a suitable strategy for PD therapy. However, mild hypothermia exacerbates MPP+-induced apoptosis even that RBM3 could be synthesized during mild hypothermia.
Collapse
Affiliation(s)
- Hai-Jie Yang
- School of Life Science and Technology, Xinxiang Medical University, Xinxiang, China
- Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Xiang Shi
- School of Life Science and Technology, Xinxiang Medical University, Xinxiang, China
| | - Fei Ju
- School of Life Science and Technology, Xinxiang Medical University, Xinxiang, China
| | | | - Shuang-Ping Ma
- School of Life Science and Technology, Xinxiang Medical University, Xinxiang, China
| | - Lei Wang
- School of Life Science and Technology, Xinxiang Medical University, Xinxiang, China
| | - Bin-Feng Cheng
- School of Life Science and Technology, Xinxiang Medical University, Xinxiang, China
| | - Mian Wang
- School of Life Science and Technology, Xinxiang Medical University, Xinxiang, China
| |
Collapse
|
30
|
Zhou RB, Lu XL, Dong C, Ahmad F, Zhang CY, Yin DC. Application of protein crystallization methodologies to enhance the solubility, stability and monodispersity of proteins. CrystEngComm 2018. [DOI: 10.1039/c7ce02189e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Application of protein crystallization methodologies to screen optimal solution formulations for proteins prone to aggregation.
Collapse
Affiliation(s)
- Ren-Bin Zhou
- Key Laboratory for Space Bioscience & Biotechnology
- School of Life Sciences
- Northwestern Polytechnical University
- PR China
| | - Xiao-Li Lu
- Key Laboratory for Space Bioscience & Biotechnology
- School of Life Sciences
- Northwestern Polytechnical University
- PR China
| | - Chen Dong
- Key Laboratory for Space Bioscience & Biotechnology
- School of Life Sciences
- Northwestern Polytechnical University
- PR China
| | - Fiaz Ahmad
- Key Laboratory for Space Bioscience & Biotechnology
- School of Life Sciences
- Northwestern Polytechnical University
- PR China
| | - Chen-Yan Zhang
- Key Laboratory for Space Bioscience & Biotechnology
- School of Life Sciences
- Northwestern Polytechnical University
- PR China
| | - Da-Chuan Yin
- Key Laboratory for Space Bioscience & Biotechnology
- School of Life Sciences
- Northwestern Polytechnical University
- PR China
| |
Collapse
|