1
|
Nong J, Yang K, Li T, Lan C, Zhou X, Liu J, Xie H, Luo J, Liao X, Zhu G, Peng T. SART3, regulated by p53, is a biomarker for diagnosis, prognosis and immune infiltration in hepatocellular carcinoma. Aging (Albany NY) 2023; 15:8408-8432. [PMID: 37632835 PMCID: PMC10496991 DOI: 10.18632/aging.204978] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 07/20/2023] [Indexed: 08/28/2023]
Abstract
OBJECTIVE This study aimed to investigate the role of squamous cell carcinoma antigen recognized by T cells 3 (SART3) in hepatocellular carcinoma (HCC). METHODS SART3 expression and prognostic value were analyzed in TCGA and GEO datasets. The diagnostic value and prognostic significance of SART3 were determined using immunohistochemistry in the Guangxi cohort. The whole-exome mutation spectrum of SART3 was analyzed in high and low expression groups in both TCGA and Guangxi cohorts. The biological functions of the SART3 gene were validated through in vitro experiments using small interfering RNA technology to downregulate SART3 expression in HCC cell lines. RESULTS SART3 expression was significantly higher in HCC tissues than in adjacent noncancerous liver tissues in TCGA, GEO and Guangxi cohorts. High expression of SART3 was significantly associated with poor prognosis in HCC patients. In TCGA and Guangxi cohorts, the expression of SART3 in the TP53 mutation group was significantly higher than that in the non-mutation group. Downregulation of SART3 expression significantly inhibited the migration and proliferation of HCC cells. SART3 may be involved mainly in immune infiltration of Th2 cells and macrophages in HCC. Additionally, SART3 can upregulate the expression of immune checkpoints (PD-L1 and TIM-3) and predict potential therapeutic agents for HCC. CONCLUSION The findings of this study demonstrate the diagnostic and prognostic value of SART3 in HCC. SART3 may be associated with immune infiltration of Th2 cells and macrophages in HCC, highlighting its potential role in the development and progression of HCC.
Collapse
Affiliation(s)
- Jusen Nong
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, People’s Republic of China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Guangxi Medical University, Ministry of Education, Nanning 530021, People’s Republic of China
| | - Kejian Yang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, People’s Republic of China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Guangxi Medical University, Ministry of Education, Nanning 530021, People’s Republic of China
| | - Tianman Li
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, People’s Republic of China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Guangxi Medical University, Ministry of Education, Nanning 530021, People’s Republic of China
- Department of Hepatobiliary Surgery, The Sixth Affiliated Hospital of Guangxi Medical University, Yulin 537000, People’s Republic of China
| | - Chenlu Lan
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, People’s Republic of China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Guangxi Medical University, Ministry of Education, Nanning 530021, People’s Republic of China
| | - Xin Zhou
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, People’s Republic of China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Guangxi Medical University, Ministry of Education, Nanning 530021, People’s Republic of China
| | - Junqi Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, People’s Republic of China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Guangxi Medical University, Ministry of Education, Nanning 530021, People’s Republic of China
| | - Haixiang Xie
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, People’s Republic of China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Guangxi Medical University, Ministry of Education, Nanning 530021, People’s Republic of China
| | - Jianzhu Luo
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, People’s Republic of China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Guangxi Medical University, Ministry of Education, Nanning 530021, People’s Republic of China
| | - Xiwen Liao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, People’s Republic of China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Guangxi Medical University, Ministry of Education, Nanning 530021, People’s Republic of China
| | - Guangzhi Zhu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, People’s Republic of China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Guangxi Medical University, Ministry of Education, Nanning 530021, People’s Republic of China
| | - Tao Peng
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, People’s Republic of China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Guangxi Medical University, Ministry of Education, Nanning 530021, People’s Republic of China
| |
Collapse
|
2
|
Huang SW, Luo JY, Qin LT, Huang SN, Huang ZG, Dang YW, He J, Zeng JH, Wei ZX, Lu W, Chen G. Up-regulation of ITGAV and the underlying mechanisms in nasopharyngeal carcinoma. ELECTRON J BIOTECHN 2022. [DOI: 10.1016/j.ejbt.2022.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
3
|
Abdel Ghafar MT, Soliman NA. Metadherin (AEG-1/MTDH/LYRIC) expression: Significance in malignancy and crucial role in colorectal cancer. Adv Clin Chem 2022; 106:235-280. [PMID: 35152973 DOI: 10.1016/bs.acc.2021.09.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Metadherin (AEG-1/MTDH/LYRIC) is a 582-amino acid transmembrane protein, encoded by a gene located at chromosome 8q22, and distributed throughout the cytoplasm, peri-nuclear region, nucleus, and nucleolus as well as the endoplasmic reticulum (ER). It contains several structural and interacting domains through which it interacts with transcription factors such as nuclear factor-κB (NF-κB), promyelocytic leukemia zinc finger (PLZF), staphylococcal nuclease domain containing 1 (SND1) and lung homing domain (LHD). It is regulated by miRNAs and mediates its oncogenic function via activation of cell proliferation, survival, migration and metastasis, as well as, angiogenesis and chemoresistance via phosphatidylinositol-3-kinase/AKT (PI3K/AKT), NF-κB, mitogen-activated protein kinase (MAPK) and Wnt signaling pathways. In this chapter, metadherin is reviewed highlighting its role in mediating growth, metastasis and chemoresistance in colorectal cancer (CRC). Metadherin, as well as its variants, and antibodies are associated with CRC progression, poorer prognosis, decreased survival and advanced clinico-pathology. The potential of AEG-1/MTDH/LYRIC as a diagnostic and prognostic marker as well as a therapeutic target in CRC is explored.
Collapse
Affiliation(s)
| | - Nema A Soliman
- Department of Medical Biochemistry, Faculty of Medicine, Tanta University, Tanta, Egypt
| |
Collapse
|
4
|
Zhang Y, Wang X, Cheng XK, Zong YY, He RQ, Chen G, Qin YJ. Clinical significance and effect of lncRNA BBOX1-AS1 on the proliferation and migration of lung squamous cell carcinoma. Oncol Lett 2021; 23:17. [PMID: 34820016 PMCID: PMC8607367 DOI: 10.3892/ol.2021.13135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 10/19/2021] [Indexed: 12/25/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) have a role in the occurrence and development of lung squamous cell carcinoma (LUSC). lncRNA γ-butyrobetaine hydroxylase 1 (BBOX1)-antisense 1 (AS1) may contribute to disease development. However, there are no studies on the role of BBOX1-AS1 in LUSC to date. In the present study, an in-house gene microarray analysis was performed to detect the differentially expressed lncRNAs and mRNAs between three pairs of LUSC and normal lung tissues. Only one lncRNA, BBOX1-AS1, was differentially expressed in the in-house microarray and The Cancer Genome Atlas (TCGA), Gene Expression Omnibus (GEO) and ArrayExpress databases. Reverse transcription-quantitative PCR (RT-qPCR) was then performed and the original RNA-sequencing data from the TCGA, GEO and ArrayExpress datasets were used to determine the expression and clinical value of BBOX1-AS1 in LUSC. In addition, a Cell Counting Kit-8 assay, cell cycle analysis and scratch assay were performed to explore whether BBOX1-AS1 expression affected the proliferation and migration of LUSC cells in vitro. The results of the RT-qPCR analysis and data obtained from the TCGA database, GEO datasets, in-house gene microarray and standard mean deviation analysis all supported the upregulated expression level of BBOX1-AS1 in LUSC. Furthermore, silencing of BBOX1-AS1 inhibited the proliferation and migration of LUSC cells according to in vitro assays. In addition, the cells were arrested in S-phase after knockdown of BBOX1-AS1. In conclusion, the expression level of BBOX1-AS1 was upregulated in LUSC tissues. BBOX1-AS1 may exert an oncogenic effect on LUSC by regulating various biological functions. However, additional functional experiments should be performed to verify the exact mechanism.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Pathology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250000, P.R. China
| | - Xiao Wang
- Department of Orthopedics, Shandong Second Provincial General Hospital, Shandong Provincial ENT Hospital, Jinan, Shandong 250000, P.R. China
| | - Xian-Kui Cheng
- Department of Pathology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250000, P.R. China
| | - Yuan-Yuan Zong
- Department of Pathology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250000, P.R. China
| | - Rong-Quan He
- Department of Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Gang Chen
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Ye-Jun Qin
- Department of Pathology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250000, P.R. China
| |
Collapse
|
5
|
Khan M, Sarkar D. The Scope of Astrocyte Elevated Gene-1/Metadherin (AEG-1/MTDH) in Cancer Clinicopathology: A Review. Genes (Basel) 2021; 12:genes12020308. [PMID: 33671513 PMCID: PMC7927008 DOI: 10.3390/genes12020308] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/19/2021] [Accepted: 01/24/2021] [Indexed: 12/24/2022] Open
Abstract
Since its initial cloning in 2002, a plethora of studies in a vast number of cancer indications, has strongly established AEG-1 as a bona fide oncogene. In all types of cancer cells, overexpression and knockdown studies have demonstrated that AEG-1 performs a seminal role in regulating proliferation, invasion, angiogenesis, metastasis and chemoresistance, the defining cancer hallmarks, by a variety of mechanisms, including protein-protein interactions activating diverse oncogenic pathways, RNA-binding promoting translation and regulation of inflammation, lipid metabolism and tumor microenvironment. These findings have been strongly buttressed by demonstration of increased tumorigenesis in tissue-specific AEG-1 transgenic mouse models, and profound resistance of multiple types of cancer development and progression in total and conditional AEG-1 knockout mouse models. Additionally, clinicopathologic correlations of AEG-1 expression in a diverse array of cancers establishing AEG-1 as an independent biomarker for highly aggressive, chemoresistance metastatic disease with poor prognosis have provided a solid foundation to the mechanistic and mouse model studies. In this review a comprehensive analysis of the current and up-to-date literature is provided to delineate the clinical significance of AEG-1 in cancer highlighting the commonality of the findings and the discrepancies and discussing the implications of these observations.
Collapse
Affiliation(s)
- Maheen Khan
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA 23298, USA;
| | - Devanand Sarkar
- Department of Human and Molecular Genetics, Massey Cancer Center, VCU Institute of Molecular Medicine (VIMM), Virginia Commonwealth University, Richmond, VA 23298, USA
- Correspondence: ; Tel.: +1-804-827-2339
| |
Collapse
|
6
|
Xie Z, Dang Y, Wu H, He R, Ma J, Peng Z, Rong M, Li Z, Yang J, Jiang Y, Chen G, Yang L. Effect of CELSR3 on the Cell Cycle and Apoptosis of Hepatocellular Carcinoma Cells. J Cancer 2020; 11:2830-2844. [PMID: 32226501 PMCID: PMC7086248 DOI: 10.7150/jca.39328] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 02/06/2020] [Indexed: 02/07/2023] Open
Abstract
Cadherin EGF LAG seven-pass G-type receptor 3 (CELSR3) has been reported in cancers but its role and potential molecular mechanism in hepatocellular carcinoma (HCC) is unclear. Therefore, we aimed to investigate the clinical value and molecular mechanism of CELSR3 in HCC using an in vitro experiment, a meta-analysis and bioinformatics. The in vitro experiment determined the promoting effect of CELSR3 in the proliferation, invasion, and migration of HCC cells. CELSR3 knockout causes S-phage arrest in HCC cells. CELSR3 can also inhibit the apoptosis of HCC cells. The expression of the CELSR3 gene and protein was significantly elevated in HCC. Elevated CELSR3 was correlated to the bigger tumor size, higher pathological stage, and the worse overall survival of HCC. Methylation analysis revealed that the hypomethylation of CELSR3 regulated by DNMT1, DNMT3A, and DNMT3B may be the underlying mechanism of upregulated CELSR3. Biological enrichment analysis uncovered that the cell cycle, DNA replication, and PI3K-Akt signaling pathways were important pathways regulated by CELSR3 and its co-expressed genes in HCC. Taken together, upregulated CELSR3 is an important regulator in the progression and prognosis of HCC. The hypomethylation of CELSR3 and its regulation in the cell cycle may be the potential molecular mechanism in HCC.
Collapse
Affiliation(s)
- Zucheng Xie
- Department of Medical Oncology, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning 530021, Guangxi Zhuang Autonomous Region, P. R. China
| | - Yiwu Dang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning 530021, Guangxi Zhuang Autonomous Region, P. R. China
| | - Huayu Wu
- Department of Cell Biology and Genetics, School of Pre-clinical Medicine, Guangxi Medical University, 22 Shuangyong Road, Nanning 530021, Guangxi Zhuang Autonomous Region, P. R. China
| | - Rongquan He
- Department of Medical Oncology, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning 530021, Guangxi Zhuang Autonomous Region, P. R. China
| | - Jie Ma
- Department of Medical Oncology, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning 530021, Guangxi Zhuang Autonomous Region, P. R. China
| | - Zhigang Peng
- Department of Medical Oncology, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning 530021, Guangxi Zhuang Autonomous Region, P. R. China
| | - Minhua Rong
- Research Department, Affiliated Cancer Hospital, Guangxi Medical University, 71 Hedi Road, Nanning, Guangxi Zhuang Autonomous Region 530021, P. R. China
| | - Zhekun Li
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning 530021, Guangxi Zhuang Autonomous Region, P. R. China
| | - Jiapeng Yang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning 530021, Guangxi Zhuang Autonomous Region, P. R. China
| | - Yizhao Jiang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning 530021, Guangxi Zhuang Autonomous Region, P. R. China
| | - Gang Chen
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning 530021, Guangxi Zhuang Autonomous Region, P. R. China
| | - Lihua Yang
- Department of Medical Oncology, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning 530021, Guangxi Zhuang Autonomous Region, P. R. China
| |
Collapse
|
7
|
Rong C, Shi Y, Huang J, Wang X, Shimizu R, Mori Y, Murai A, Liang J. The Effect of Metadherin on NF-κB Activation and Downstream Genes in Ovarian Cancer. Cell Transplant 2020; 29:963689720905506. [PMID: 32207338 PMCID: PMC7444209 DOI: 10.1177/0963689720905506] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/07/2020] [Accepted: 01/14/2020] [Indexed: 12/19/2022] Open
Abstract
Ovarian cancer (OC) is the most aggressive gynecological cancer. Even with the advances in detection and therapeutics, it still remains clinically challenging and there is a pressing need to identify novel therapeutic strategies. In searching for rational molecular targets, we identified metadherin (MTDH), a multifunctional gene associated with several tumor types but previously unrecognized in OC. In this study, we found the MTDH is overexpressed in OC tissues. Through in vitro assays with overexpression cells, we characterized the role of MTDH. We confirmed MTDH stable overexpression significantly increased the expression of TNF-α, IL-6, IL-8, IL-10, and IL-1β. Interestingly, NF-kappa-B (NF-κB) and MTDH were found in a feed-forward loop motif. Thus, our findings support the notion that the MTDH and NF-κB signaling network contributes to OC traits. MTDH represents a new OC-associated gene that can contribute to insights of OC biology and suggests other treatment strategies.
Collapse
Affiliation(s)
- Chunhong Rong
- Departments of Gynecology and Obstetrics ,China–Japan
Friendship Hospital
| | - Yanfen Shi
- Department of Pathology, China–Japan Friendship Hospital,
Beijing, China
| | - Jun Huang
- Departments of Gynecology and Obstetrics ,China–Japan
Friendship Hospital
| | - Xinyue Wang
- Department of Gynecology and Obstetrics, Changping Hospital
of Chinese and Western Medicine, Beijing, China
| | - Risa Shimizu
- Department of Medicine and Molecular Science, Gunma
University, Maebeshi, Japan
| | - Yuki Mori
- Department of Medicine and Molecular Science, Gunma
University, Maebeshi, Japan
| | - Akiko Murai
- Department of Gynecology Oncology, University of Chicago,
Chicago, IL, USA
| | - Jing Liang
- Department of Gynecology and Obstetrics, China–Japan
Friendship Hospital, Beijing, China
| |
Collapse
|
8
|
Shukla SD, Swaroop Vanka K, Chavelier A, Shastri MD, Tambuwala MM, Bakshi HA, Pabreja K, Mahmood MQ, O’Toole RF. Chronic respiratory diseases: An introduction and need for novel drug delivery approaches. TARGETING CHRONIC INFLAMMATORY LUNG DISEASES USING ADVANCED DRUG DELIVERY SYSTEMS 2020. [PMCID: PMC7499075 DOI: 10.1016/b978-0-12-820658-4.00001-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Globally, chronic respiratory diseases (CRDs), both communicable and noncommunicable, are among the leading causes of mortality, morbidity, economic and societal burden, and disability-adjusted life years (DALYs). CRDs affect multiple components of respiratory system, including the airways, parenchyma, and pulmonary vasculature. Although noncommunicable respiratory diseases, such as asthma, chronic obstructive pulmonary disease (COPD), interstitial lung disease (ILD), cystic fibrosis (CF), and lung cancer (LC), account for enormous disease burden, the currently available therapies only focus on alleviating the symptoms of diseases rather than providing optimal treatment and/or prevention. Similarly a major respiratory communicable disease, that is, tuberculosis (TB), is associated with the challenge of increasingly developing antibiotic resistance in the bacterial pathogen Mycobacterium tuberculosis. In light of these challenges, we aim to summarize the underlying molecular and cellular mechanisms that lead to hallmark pathophysiology of CRDs. Moreover, we will also highlight the limitations of current therapeutic strategies and explore novel drug delivery options that may be potentially more effective in the management of CRDs.
Collapse
|
9
|
Gao RZ, Que Q, Lin P, Pang YY, Wu HY, Li XJ, Chen G, He Y, Yang H. Clinical roles of miR-136-5p and its target metadherin in thyroid carcinoma. Am J Transl Res 2019; 11:6754-6774. [PMID: 31814886 PMCID: PMC6895511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 10/29/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Thyroid carcinoma (TC) is a common malignancy of the endocrine system. This research aimed to examine the expression levels of miR-136-5p and metadherin (MTDH) in TC and unveil their potential targeting relationship. METHODS TC microRNA (miRNA) microarray and miRNA-sequencing data were collected to evaluated miR-136-5p expression. We assessed the comprehensive expression of miR-136-5p by calculating the standard mean difference (SMD) and summary receiver operating characteristic curves (sROC). Subsequently, the miR-136-5p mimic and inhibitor were transfected into the TC B-CPAP cell, Thiazolyl Blue Tetrazolium Bromide (MTT) assay and cell apoptosis assay by FACS with Annexin V-/7-AAD double staining were performed to explore the biological role of miR-136-5p in the B-CPAP cell line. Prediction of target genes and potential biological function analysis of miR-136-5p were made using miRWalk2.0 and DAVID, respectively. Through target gene prediction, MTDH may be the candidate target gene of miR-136-5p. Subsequently, gene microarrays and RNA-sequencing data were also leveraged for MTDH expression. The meta-analysis method was conducted to evaluate the comprehensive expression level of MTDH. In addition, MTDH protein expression was identified using immunohistochemistry. The MTDH protein levels post-miR-136-5p transfection were verified by western blot, and the dual luciferase reporter assay was adapted to confirm the direct targeting relation between miR-136-5p and MTDH. RESULTS The miR-136-5p level was remarkably downregulated in TC, the pooled SMD was -0.47 (95% CI: -0.70 to -0.23, I2=36.6%, P=0.192) and the area under the curve (AUC) of the sROC was 0.67 based on 543 cases of TC. MTT indicated that the overexpression of miR-136-5p dramatically inhibited the proliferation of B-CPAP cells. The cell apoptosis increased in the miR-136-5p mimic group compared to the negative control group. In addition, both MTDH mRNA and protein levels were markedly overexpressed, with the pooled SMD being 0.94 (95% CI: -0.35 to 2.24, I2=98.8%, P<0.001), and the AUC of the sROC being 0.85 with 1054 cases of TC. The MTDH protein level was significantly up-regulated in TC than in the non-carcinomic tissues by immunohistochemistry (8.292±1.717 vs. 2.618±2.570, P<0.001). Western blot indicated that MTDH protein expression was suppressed by miR-136-5p mimic in the B-CPAP cell line, which was further supported by the dual luciferase reporter assay. CONCLUSION The miR-136-5p/MTDH axis may play a vital role in modulating TC tumorigenesis, providing new insight into possible molecular mechanisms of TC oncogenesis.
Collapse
Affiliation(s)
- Rui-Zhi Gao
- Department of Ultrasonography, First Affiliated Hospital of Guangxi Medical UniversityNanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Qiao Que
- Department of Ultrasonography, First Affiliated Hospital of Guangxi Medical UniversityNanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Peng Lin
- Department of Ultrasonography, First Affiliated Hospital of Guangxi Medical UniversityNanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Yu-Yan Pang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical UniversityNanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Hua-Yu Wu
- Department of Cell Biology and Genetics, School of Preclinical Medicine, Guangxi Medical UniversityNanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Xiao-Jiao Li
- Department of Positron Emission Tomography-Computed Tomography, The First Affiliated Hospital of Guangxi Medical UniversityNanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Gang Chen
- Department of Pathology, First Affiliated Hospital of Guangxi Medical UniversityNanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Yun He
- Department of Ultrasonography, First Affiliated Hospital of Guangxi Medical UniversityNanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Hong Yang
- Department of Ultrasonography, First Affiliated Hospital of Guangxi Medical UniversityNanning 530021, Guangxi Zhuang Autonomous Region, China
| |
Collapse
|
10
|
Rong MH, Cai KT, Lu HP, Guo YN, Huang XY, Zhu ZH, Tang W, Huang SN. Overexpression of MiR-452-5p in hepatocellular carcinoma tissues and its prospective signaling pathways. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2019; 12:4041-4056. [PMID: 31933800 PMCID: PMC6949781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 09/24/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND The implication of miR-452-5p and its prospective machinery in hepatocellular carcinoma (HCC) remains largely unknown. For this reason, this study aimed to inspect the clinical implication of miR-452-5p expression in HCC tissues with multiple detection approaches, to analyze its potential function via in silico methods, and to validate this using a dual-luciferase reporter assay. METHODS The assessment of the expression level of miR-452-5p in HCC was conducted via four methods: 1) in-house real-time quantitative PCR (RT-qPCR), 2) miRNA-sequencing (miRNA-seq) from The Cancer Genome Atlas (TCGA), 3) miRNA microarrays from the Gene Expression Omnibus (GEO), and 4) comprehensive meta-analyses calculating the standard mean difference (SMD) and summary of receiver operator characteristic (sROC). Following the target prediction, one of the potential targets of miR-452-5p was validated through a dual-luciferase reporter assay. RESULTS MiR-452-5p was consistently elevated in HCC tissues via various detection methods, including in-house RT-qPCR, miRNA-seq, and miRNA microarrays. The final SMD was 0.842 for 820 cases of HCC samples. Simultaneously, the area under curve (AUC) of the sROC was 0.80 (0.76-0.83). The 1,135 predicted targets of miR-452-5p were enriched in the pathways of cytokine-cytokine receptor interaction, carbon metabolism, and complement and coagulation cascades. Among these predicted targets, CDKN1B was verified to be a real target of miR-452-5p. CONCLUSION The overexpression of miR-452-5p may play a pivotal role in the carcinogenesis of HCC via targeting multiple signaling pathways and genes. The function and molecular machinery of miR-452-5p in HCC requires further in-depth exploration.
Collapse
Affiliation(s)
- Min-Hua Rong
- Research Department, Affiliated Cancer Hospital, Guangxi Medical University71 Hedi Road, Nanning 530021, Guangxi Zhuang Autonomous Region, P. R. China
| | - Kai-Teng Cai
- Research Department, Affiliated Cancer Hospital, Guangxi Medical University71 Hedi Road, Nanning 530021, Guangxi Zhuang Autonomous Region, P. R. China
| | - Hui-Ping Lu
- Department of Pathology, First Affiliated Hospital of Guangxi Medical UniversityNanning 530021, Guangxi Zhuang Autonomous Region, P. R. China
| | - Yi-Nan Guo
- Department of Pathology, First Affiliated Hospital of Guangxi Medical UniversityNanning 530021, Guangxi Zhuang Autonomous Region, P. R. China
| | - Xiong-Yan Huang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical UniversityNanning 530021, Guangxi Zhuang Autonomous Region, P. R. China
| | - Zhan-Hui Zhu
- Research Department, Affiliated Cancer Hospital, Guangxi Medical University71 Hedi Road, Nanning 530021, Guangxi Zhuang Autonomous Region, P. R. China
| | - Wei Tang
- Department of Breast Surgery, Affiliated Cancer Hospital, Guangxi Medical University71 Hedi Road, Nanning 530021, Guangxi Zhuang Autonomous Region, P. R. China
| | - Su-Ning Huang
- Department of Radiotherapy, Affiliated Cancer Hospital, Guangxi Medical University71 Hedi Road, Nanning 530021, Guangxi Zhuang Autonomous Region, P. R. China
| |
Collapse
|
11
|
Liang HW, Luo B, Du LH, He RQ, Chen G, Peng ZG, Ma J. Expression significance and potential mechanism of hypoxia-inducible factor 1 alpha in patients with myelodysplastic syndromes. Cancer Med 2019; 8:6021-6035. [PMID: 31411003 PMCID: PMC6792495 DOI: 10.1002/cam4.2447] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 06/21/2019] [Accepted: 07/11/2019] [Indexed: 12/22/2022] Open
Abstract
Objective To investigate the expression level and potential mechanism of hypoxia‐inducible factor 1 alpha (HIF‐1α) in patients with myelodysplastic syndromes (MDS). Methods Immunohistochemistry (IHC) techniques were used to examine the protein expression of HIF‐1α in paraffin‐embedded myeloid tissues from 82 patients with MDS and 33 controls (patients with lymphoma that is not invading myeloid tissues). In addition, the associations between the protein expression of HIF‐1α and clinical parameters were examined. To further investigate the significance of HIF‐1α expression in MDS patients, the researchers not only extracted the data about HIF‐1α expression from MDS‐related microarrays but also analyzed the correlation between the level of HIF‐1α expression and MDS. The microRNA (miRNA) targeting HIF‐1α was predicted and verified with a dual luciferase experiment. Results Immunohistochemistry revealed that the positive expression rate of HIF‐1α in the bone marrow of patients with MDS was 90.24%. This rate was remarkably higher than that of the controls (72.73%) and was statistically significant (P < .05), which indicated that HIF‐1α was upregulated in the myeloid tissues of MDS patients. For the GSE2779, GSE18366, GSE41130, and GSE61853 microarrays, the average expression of HIF‐1α in MDS patients was higher than in the controls. Particularly for the GSE18366 microarray, HIF‐1α expression was considerably higher in MDS patients than in the controls (P < .05). It was predicted that miR‐93‐5p had a site for binding with HIF‐1α, and a dual luciferase experiment confirmed that miR‐93‐5p could bind with HIF‐1α. Conclusion The upregulated expression of HIF‐1α was examined in the myeloid tissues of MDS patients. The presence of HIF‐1α (+) suggested an unsatisfactory prognosis for patients, which could assist in the diagnosis of MDS. In addition, miR‐93‐5p could bind to HIF‐1α by targeting, showing its potential to be the target of HIF‐1α in MDS.
Collapse
Affiliation(s)
- Hai-Wei Liang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Bin Luo
- Department of Medical Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Li-Hua Du
- Department of Medical Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Rong-Quan He
- Department of Medical Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Gang Chen
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Zhi-Gang Peng
- Department of Medical Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Jie Ma
- Department of Medical Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| |
Collapse
|
12
|
Zhang L, Singh A, Plaisier C, Pruett N, Ripley RT, Schrump DS, Hoang CD. Metadherin Is a Prognostic Apoptosis Modulator in Mesothelioma Induced via NF-κB-Mediated Signaling. Transl Oncol 2019; 12:859-870. [PMID: 31054476 PMCID: PMC6500914 DOI: 10.1016/j.tranon.2019.03.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 03/21/2019] [Accepted: 03/26/2019] [Indexed: 12/15/2022] Open
Abstract
Therapies against malignant pleural mesothelioma (MPM) have yielded disappointing results, in part, because pathologic mechanisms remain obscure. In searching for rational molecular targets, we identified metadherin (MTDH), a multifunctional gene associated with several tumor types but previously unrecognized in MPM. Cox proportional hazards regression analysis delineated associations between higher MTDH expression and lower patient survival from three independent MPM cohorts (n = 349 patients). Through in vitro assays with overexpression and downregulation constructs in MPM cells, we characterized the role of MTDH. We confirmed in vivo the phenotype of altered MTDH expression in a murine xenograft model. Transcriptional regulators of MTDH were identified by chromatin immunoprecipitation. Overexpression of both MTDH mRNA (12-fold increased) and protein levels was observed in tumor tissues. MTDH stable overexpression significantly augmented proliferation, invasiveness, colony formation, chemoresistance, and an antiapoptosis phenotype, while its suppression showed opposite effects in MPM cells. Interestingly, NF-κB and c-Myc (in a feed-forward loop motif) contributed to modulating MTDH expression. Knockdown of MTDH expression profoundly retarded xenograft tumor growth. Thus, our findings support the notion that MTDH integrates upstream signals from certain transcription factors and mediates pathogenic interactions contributing to MPM traits. MTDH represents a new MPM-associated gene that can contribute to insights of MPM biology and, as such, suggest other treatment strategies.
Collapse
Affiliation(s)
- Li Zhang
- Thoracic Surgery Branch, NCI, National Institutes of Health, Bethesda, MD, USA
| | - Anand Singh
- Thoracic Surgery Branch, NCI, National Institutes of Health, Bethesda, MD, USA
| | - Christopher Plaisier
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, USA
| | - Nathanael Pruett
- Thoracic Surgery Branch, NCI, National Institutes of Health, Bethesda, MD, USA
| | - R Taylor Ripley
- Dept. of Surgery, Baylor College of Medicine, Houston, TX, USA
| | - David S Schrump
- Thoracic Surgery Branch, NCI, National Institutes of Health, Bethesda, MD, USA
| | - Chuong D Hoang
- Thoracic Surgery Branch, NCI, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
13
|
Zhang Y, Zhang LJ, Dang YW, Li SH, Yan HB, Chen G. Clinical significance and effect of MTDH/AEG-1 in bladder urothelial cancer: a study based on immunohistochemistry, RNA-seq, and in vitro verification. Cancer Manag Res 2018; 10:6921-6936. [PMID: 30588098 PMCID: PMC6298393 DOI: 10.2147/cmar.s176887] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Background Overexpression of metadherin/astrocyte elevated gene-1 (MTDH/AEG-1) has been implicated in various cancers. However, the clinical significance and the potential biological functions of MTDH/AEG-1 in bladder urothelial carcinoma (BUC) are not established. Methods In this study, the expression of MTDH/AEG-1in BUC was measured using the Cancer Genome Atlas (TCGA) database and immunohistochemistry, together with a meta-analysis, to investigate the expression and diagnostic value of MTDH/AEG-1. The possible association between MTDH/AEG-1 expression and the viability, proliferation, and apoptosis in BUC cell lines (T24, HT1376, and RT4) was also assessed in vitro by viability, MTS, colony formation, and caspase-3/7 assays, as well as Hoechst 33342 and propidium iodide (PI) double staining. Results MTDH/AEG-1 expression was significantly higher in BUC tissues than in normal bladder tissues, according to the TCGA and immunohistochemistry results, and these findings were verified by the meta-analysis. Functional knockdown of MTDH/AEG-1 suppressed BUC cell growth and induced apoptosis. Bioinformatics analyses indicated an involvement of MTDH/AEG-1 in several processes, including RNA binding, protein transport, intracellular transport, and the insulin signaling pathway. Conclusion We hypothesize that MTDH/AEG-1 could play essential roles in BUC, especially in cell growth and apoptosis, via the insulin signaling pathway.”
Collapse
Affiliation(s)
- Yu Zhang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, China
| | - Li-Jie Zhang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, China
| | - Yi-Wu Dang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, China
| | - Sheng-Hua Li
- Urology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, China, ,
| | - Hai-Biao Yan
- Urology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, China, ,
| | - Gang Chen
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, China
| |
Collapse
|
14
|
Tian T, Sun J, Wang J, Liu Y, Liu H. Isoliquiritigenin inhibits cell proliferation and migration through the PI3K/AKT signaling pathway in A549 lung cancer cells. Oncol Lett 2018; 16:6133-6139. [PMID: 30344755 DOI: 10.3892/ol.2018.9344] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Accepted: 07/13/2018] [Indexed: 12/16/2022] Open
Abstract
The present study aimed to investigate the molecular mechanisms of inhibition of Isoliquiritigenin (ISL) on the proliferation and migration of A549 cells. A549 cells were cultured in vitro, and the effects of ISL inhibition were examined using cell counting kit-8, Transwell invasion and flow cytometric assays. Western blot analysis was also performed to detect cell apoptosis and the expression of phosphatidylinositol 3-kinase (PI3K)/AKT serine/threonine kinase (AKT) signaling pathway-associated proteins. The results demonstrated a significant inhibition of proliferation and migration of A549 cells when treated with ISL (P<0.05). Furthermore, ISL treatment significantly downregulated the expression of E-cadherin, and upregulated the expression of N-cadherin and vimentin. Flow cytometric analysis revealed a significant increase in cell apoptosis in the ISL group as well as the expression of pro-apoptotic proteins Bcl-2-associated X protein and active caspase-3. Conversely, the expression of anti-apoptotic protein B-cell lymphoma 2 was decreased. There was a significant decrease in the phosphorylation of AKT and mammalian target of rapamycin, and in the expression of cell proliferation proteins P70 and cyclin D1 in ISL-treated cells. In conclusion, ISL has significant inhibitory effects on the proliferation and migration of A549 cells by promoting cell apoptosis. The mechanism may involve of PI3K/AKT signaling pathways in A549 cells, which may a potential therapeutic target for the treatment of lung cancer.
Collapse
Affiliation(s)
- Tao Tian
- Department of Respiratory Medicine, Hebei Medical University Affiliated North China Petroleum Bureau General Hospital, Renqiu, Hebei 062552, P.R. China
| | - Jinpeng Sun
- Department of Surgical Oncology, Cangzhou Hospital of Integrated Traditional Chinese and Western of Hebei Province, Cangzhou, Hebei 061001, P.R. China
| | - Jianxin Wang
- Department of Respiratory Medicine, Hebei Medical University Affiliated North China Petroleum Bureau General Hospital, Renqiu, Hebei 062552, P.R. China
| | - Yanchun Liu
- Department of Respiratory Medicine, Hebei Medical University Affiliated North China Petroleum Bureau General Hospital, Renqiu, Hebei 062552, P.R. China
| | - Haitao Liu
- Department of Respiratory Medicine, Hebei Medical University Affiliated North China Petroleum Bureau General Hospital, Renqiu, Hebei 062552, P.R. China
| |
Collapse
|
15
|
Xu S, Liu R, Da Y. Comparison of tumor related signaling pathways with known compounds to determine potential agents for lung adenocarcinoma. Thorac Cancer 2018; 9:974-988. [PMID: 29870138 PMCID: PMC6068465 DOI: 10.1111/1759-7714.12773] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 05/02/2018] [Indexed: 12/14/2022] Open
Abstract
Background This study compared tumor‐related signaling pathways with known compounds to determine potential agents for lung adenocarcinoma (LUAD) treatment. Methods Kyoto Encyclopedia of Genes and Genomes signaling pathway analyses were performed based on LUAD differentially expressed genes from The Cancer Genome Atlas (TCGA) project and genotype‐tissue expression controls. These results were compared to various known compounds using the Connectivity Mapping dataset. The clinical significance of the hub genes identified by overlapping pathway enrichment analysis was further investigated using data mining from multiple sources. A drug‐pathway network for LUAD was constructed, and molecular docking was carried out. Results After the integration of 57 LUAD‐related pathways and 35 pathways affected by small molecules, five overlapping pathways were revealed. Among these five pathways, the p53 signaling pathway was the most significant, with CCNB1, CCNB2, CDK1, CDKN2A, and CHEK1 being identified as hub genes. The p53 signaling pathway is implicated as a risk factor for LUAD tumorigenesis and survival. A total of 88 molecules significantly inhibiting the five LUAD‐related oncogenic pathways were involved in the LUAD drug‐pathway network. Daunorubicin, mycophenolic acid, and pyrvinium could potentially target the hub gene CHEK1 directly. Conclusion Our study highlights the critical pathways that should be targeted in the search for potential LUAD treatments, most importantly, the p53 signaling pathway. Some compounds, such as ciclopirox and AG‐028671, may have potential roles for LUAD treatment but require further experimental verification.
Collapse
Affiliation(s)
- Song Xu
- Department of Lung Cancer Surgery, Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Renwang Liu
- Department of Lung Cancer Surgery, Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Yurong Da
- Key Laboratory of Cellular and Molecular Immunology in Tianjin, Key Laboratory of Immune Microenvironment and Disease of the Ministry of Education, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| |
Collapse
|
16
|
Li DY, Chen WJ, Shang J, Chen G, Li SK. Regulatory interactions between long noncoding RNA LINC00968 and miR-9-3p in non-small cell lung cancer: A bioinformatic analysis based on miRNA microarray, GEO and TCGA. Oncol Lett 2018; 15:9487-9497. [PMID: 29805671 DOI: 10.3892/ol.2018.8476] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 02/28/2018] [Indexed: 02/07/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) have been demonstrated to mediate carcinogenesis in various types of cancer. However, the regulatory role of lncRNA LINC00968 in lung adenocarcinoma remains unclear. The microRNA (miRNA) expression in LINC00968-overexpressing human lung adenocarcinoma A549 cells was detected using miRNA microarray analysis. miR-9-3p was selected for further analysis, and its expression was verified in the Gene Expression Omnibus (GEO) database. In addition, the regulatory axis of LINC00968 was validated using The Cancer Genome Atlas (TCGA) database. Results of the GEO database indicated miR-9-3p expression in lung adenocarcinoma was significantly higher compared with normal tissues. Functional enrichment analyses of the target genes of miR-9-3p indicated protein binding and the AMP-activated protein kinase pathway were the most enriched Gene Ontology and KEGG terms, respectively. Combining target genes with the correlated genes of LINC00968 and miR-9-3p, 120 objective genes were obtained, which were used to construct a protein-protein interaction (PPI) network. Cyclin A2 (CCNA2) was identified to have a vital role in the PPI network. Significant correlations were detected between LINC00968, miR-9-3p and CCNA2 in lung adenocarcinoma. The LINC00968/miR-9-3p/CCNA2 regulatory axis provides a new foundation for further evaluating the regulatory mechanisms of LINC00968 in lung adenocarcinoma.
Collapse
Affiliation(s)
- Dong-Yao Li
- Department of Thoracic and Cardiovascular Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Wen-Jie Chen
- Department of Thoracic and Cardiovascular Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Jun Shang
- Department of Thoracic and Cardiovascular Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Gang Chen
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Shi-Kang Li
- Department of Thoracic and Cardiovascular Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| |
Collapse
|
17
|
Yang Y, Jiang C, Yang Y, Guo L, Huang J, Liu X, Wu C, Zou J. Silencing of LncRNA-HOTAIR decreases drug resistance of Non-Small Cell Lung Cancer cells by inactivating autophagy via suppressing the phosphorylation of ULK1. Biochem Biophys Res Commun 2018; 497:1003-1010. [DOI: 10.1016/j.bbrc.2018.02.141] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 02/15/2018] [Indexed: 02/01/2023]
|
18
|
Yan J, Zhang J, Zhang X, Li X, Li L, Li Z, Chen R, Zhang L, Wu J, Wang X, Sun Z, Fu X, Chang Y, Nan F, Yu H, Wu X, Feng X, Li W, Zhang M. SPARC is down-regulated by DNA methylation and functions as a tumor suppressor in T-cell lymphoma. Exp Cell Res 2017; 364:125-132. [PMID: 29277504 DOI: 10.1016/j.yexcr.2017.12.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 12/18/2017] [Accepted: 12/21/2017] [Indexed: 12/14/2022]
Abstract
The aim of this study was to assess the functional role of SPARC in T-cell non-Hodgkin's lymphoma (T-NHL), as well as the underlying molecular mechanisms. Here, we first identified SPARC expression in T-NHL tissues and cell lines through western blot and real-time PCR (RT-PCR). Overall survival of T-NHL patients with different levels of SPARC was assessed by Kaplan-Meier survival curves. Then cell proliferation, apoptosis, migration and invasion of T-NHL cells with either knockdown or overexpression of SPARC were determined by MTT, flow cytometry, transwell migration and invasion assay, respectively. Finally, the molecular mechanism by which SPARC modulated T-NHL cell progression was assessed. We confirmed that SPARC was significantly down-regulated in T-NHL tissues and cell lines. T-NHL patients with high levels of SPARC demonstrated a favorable clinical outcome. SPARC significantly suppressed cell proliferation, migration and invasion, and EMT process, but facilitated cell apoptosis in T-NHL cells. Further, we found that loss of SPARC expression in T-NHL tissues and cell lines, both in mRNA and protein levels, was associated with the aberrant DNA methylation in SPRAC gene, and the disrupted SPARC expression could be rescued after treatment with the demethylating agent 5-Aza-2'-deoxycitydine (5-Aza-Cdr). Additionally, 5-Aza-Cdr reversed SPARC hypermethylation to restore its biological role as a tumor suppressor in T-NHL cells, including inhibiting cell proliferation, invasion and migration, while promoting cell apoptosis. Our data provided evidence that DNA methylation in SPARC gene may play a role in the progression of T-NHL.
Collapse
Affiliation(s)
- Jiaqin Yan
- Department of Oncology, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, Henan 450052, PR China
| | - Junhui Zhang
- Department of Otorhinolaryngology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, PR China
| | - Xudong Zhang
- Department of Oncology, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, Henan 450052, PR China
| | - Xin Li
- Department of Oncology, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, Henan 450052, PR China
| | - Ling Li
- Department of Oncology, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, Henan 450052, PR China
| | - Zhaoming Li
- Department of Oncology, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, Henan 450052, PR China
| | - Renyin Chen
- Department of Pathology, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, Henan 450052, PR China
| | - Lei Zhang
- Department of Oncology, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, Henan 450052, PR China
| | - Jingjing Wu
- Department of Oncology, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, Henan 450052, PR China
| | - Xinhua Wang
- Department of Oncology, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, Henan 450052, PR China
| | - Zhenchang Sun
- Department of Oncology, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, Henan 450052, PR China
| | - Xiaorui Fu
- Department of Oncology, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, Henan 450052, PR China
| | - Yu Chang
- Department of Oncology, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, Henan 450052, PR China
| | - Feifei Nan
- Department of Oncology, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, Henan 450052, PR China
| | - Hui Yu
- Department of Oncology, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, Henan 450052, PR China
| | - Xiaolong Wu
- Department of Oncology, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, Henan 450052, PR China
| | - Xiaoyan Feng
- Department of Oncology, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, Henan 450052, PR China
| | - Wencai Li
- Department of Pathology, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, Henan 450052, PR China
| | - Mingzhi Zhang
- Department of Oncology, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, Henan 450052, PR China.
| |
Collapse
|
19
|
Ding Q, Chen Y, Dong S, Xu X, Liu J, Song P, Yu C, Ma Z. Astrocyte elevated gene-1 is overexpressed in non-small-cell lung cancer and associated with increased tumour angiogenesis. Interact Cardiovasc Thorac Surg 2017; 26:395-401. [PMID: 29049797 DOI: 10.1093/icvts/ivx340] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 09/17/2017] [Indexed: 12/17/2022] Open
Affiliation(s)
- Qiuping Ding
- Department of Surgery, Huzhou Central Hospital, Huzhou, Zhejiang, China
| | - Yingrong Chen
- Huzhou Key Laboratory of Molecular Medicine, Huzhou Central Hospital, Huzhou, Zhejiang, China
| | - Shunli Dong
- Huzhou Key Laboratory of Molecular Medicine, Huzhou Central Hospital, Huzhou, Zhejiang, China
| | - Xuting Xu
- Huzhou Key Laboratory of Molecular Medicine, Huzhou Central Hospital, Huzhou, Zhejiang, China
| | - Jin Liu
- Department of Pathology, Huzhou Central Hospital, Huzhou, Zhejiang, China
| | - Pengtao Song
- Department of Pathology, Huzhou Central Hospital, Huzhou, Zhejiang, China
| | - Caihua Yu
- Department of Surgery, Huzhou Central Hospital, Huzhou, Zhejiang, China
| | - Zhihong Ma
- Huzhou Key Laboratory of Molecular Medicine, Huzhou Central Hospital, Huzhou, Zhejiang, China
| |
Collapse
|
20
|
MicroRNA-384 represses the growth and invasion of non-small-cell lung cancer by targeting astrocyte elevated gene-1/Wnt signaling. Biomed Pharmacother 2017; 95:1331-1337. [PMID: 28938524 DOI: 10.1016/j.biopha.2017.08.143] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 08/14/2017] [Accepted: 08/23/2017] [Indexed: 02/07/2023] Open
Abstract
Dysregulation of microRNA (miRNA) expression is a critical event in the development and progression of non-small-cell lung cancer (NSCLC). miR-384 has been identified as a novel cancer-related miRNA in numerous cancers, but little is known about its role and functional mechanism in NSCLC. In this study, we found that miR-384 was significantly downregulated in NSCLC tissues and cell lines. The overexpression of miR-384 repressed the growth and invasion of NSCLC cells, whereas its suppression showed the opposite effect. Moreover, astrocyte elevated gene-1 (AEG-1) was identified as a target gene of miR-384. The overexpression of miR-384 significantly decreased AEG-1 expression and Wnt signaling, whereas its suppression promoted this pathway. Furthermore, miR-384 was inversely correlated with AEG-1 expression in NSCLC tissues. Additionally, restoration of AEG-1 expression in miR-384-overexpressing cells significantly reversed the antitumor effects of miR-384. Taken together, these results reveal that miR-384 represses the growth and invasion of NSCLC cells by targeting AEG-1. Our study suggest that miR-384 and AEG-1 may serve as potential targets for the diagnosis and treatment of NSCLC.
Collapse
|
21
|
Inamura K. Lung Cancer: Understanding Its Molecular Pathology and the 2015 WHO Classification. Front Oncol 2017; 7:193. [PMID: 28894699 PMCID: PMC5581350 DOI: 10.3389/fonc.2017.00193] [Citation(s) in RCA: 299] [Impact Index Per Article: 42.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 08/11/2017] [Indexed: 12/12/2022] Open
Abstract
Lung cancer is the leading cause of cancer-related death worldwide due to late diagnoses and limited treatment interventions. Recently, comprehensive molecular profiles of lung cancer have been identified. These novel characteristics have enhanced the understanding of the molecular pathology of lung cancer. The identification of driver genetic alterations and potential molecular targets has resulted in molecular-targeted therapies for an increasing number of lung cancer patients. Thus, the histopathological classification of lung cancer was modified in accordance with the increased understanding of molecular profiles. This review focuses on recent developments in the molecular profiling of lung cancer and provides perspectives on updated diagnostic concepts in the new 2015 WHO classification. The WHO classification will require additional revisions to allow for reliable, clinically meaningful tumor diagnoses as we gain a better understanding of the molecular characteristics of lung cancer.
Collapse
Affiliation(s)
- Kentaro Inamura
- Division of Pathology, The Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| |
Collapse
|
22
|
Zhao Z, Li J, Jiang Y, Xu W, Li X, Jing W. CLDN1 Increases Drug Resistance of Non-Small Cell Lung Cancer by Activating Autophagy via Up-Regulation of ULK1 Phosphorylation. Med Sci Monit 2017; 23:2906-2916. [PMID: 28614291 PMCID: PMC5479443 DOI: 10.12659/msm.904177] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 05/08/2017] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND The aim of this study was to investigate the expression of CLDN1 in non-small cell lung cancer (NSCLC) and its mechanism of action in cisplatin resistance. MATERIAL AND METHODS A total of 55 patients with NSCLC admitted to our hospital between October 2013 and October 2015 were included. NSCLC tissues and tumor-adjacent tissues (≥5 cm from tumor edge) were collected. Among the 55 patients, 37 had adenocarcinoma and 18 had squamous cell carcinoma. Quantitative real-time polymerase chain reaction was used to determine mRNA expression, and protein expression was examined using Western blotting. CCK-8 assay was used to determine cell proliferation and Transwell assay was used to detect migration and invasion of the cells. Confocal microscopy was used to observe autophagosomes. RESULTS Increased CLDN1 expression promoted the development and metastasis of NSCLC. CLDN1 expression in A549/CDDP cells was up-regulated at both transcriptional and translational levels. Reduced CLDN1 expression decreased the drug resistance, proliferation, migration, and invasion abilities of A549/CDDP cells. Decreased CLDN1 expression promoted the apoptosis of A549/CDDP cells. CLDN1 enhanced CDDP drug resistance of A549 cells by activating autophagy. CLDN1 promoted the autophagy of A549 cells by up-regulating the phosphorylation level of ULK1. CONCLUSIONS The present study demonstrates that expression of CLDN1 in NSCLC is up-regulated and it is correlated with clinicopathological features. CLDN1 activates autophagy through up-regulation of ULK1 phosphorylation and promotes drug resistance of NSCLC cells to CDDP.
Collapse
Affiliation(s)
- Zhenhuan Zhao
- Department of Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, P.R. China
| | - Jing Li
- Department of Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, P.R. China
| | - Yan Jiang
- Intensive Care Unit, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, P.R. China
| | - Wen Xu
- Department of Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, P.R. China
| | - Xin Li
- Department of Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, P.R. China
| | - Weili Jing
- Intensive Care Unit, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, P.R. China
| |
Collapse
|
23
|
Inamura K. Major Tumor Suppressor and Oncogenic Non-Coding RNAs: Clinical Relevance in Lung Cancer. Cells 2017; 6:cells6020012. [PMID: 28486418 PMCID: PMC5492016 DOI: 10.3390/cells6020012] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 05/01/2017] [Accepted: 05/05/2017] [Indexed: 12/21/2022] Open
Abstract
Lung cancer is the leading cause of cancer deaths worldwide, yet there remains a lack of specific and sensitive tools for early diagnosis and targeted therapies. High-throughput sequencing techniques revealed that non-coding RNAs (ncRNAs), e.g., microRNAs and long ncRNAs (lncRNAs), represent more than 80% of the transcribed human genome. Emerging evidence suggests that microRNAs and lncRNAs regulate target genes and play an important role in biological processes and signaling pathways in malignancies, including lung cancer. In lung cancer, several tumor suppressor/oncogenic microRNAs and lncRNAs function as biomarkers for metastasis and prognosis, and thus may serve as therapeutic tools. In this review, recent work on microRNAs and lncRNAs is introduced and briefly summarized with a focus on potential biological and therapeutic applications.
Collapse
Affiliation(s)
- Kentaro Inamura
- Division of Pathology, The Cancer Institute, Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo 135-8550, Japan.
| |
Collapse
|