1
|
Xu M, Deng C, Man Z, Zhu H. TRIM47 is a prognostic biomarker for gallbladder cancer and promotes tumor progression through regulating K63-linked ubiquitination of PARP1. Transl Oncol 2024; 51:102164. [PMID: 39489093 DOI: 10.1016/j.tranon.2024.102164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 09/08/2024] [Accepted: 10/27/2024] [Indexed: 11/05/2024] Open
Abstract
BACKGROUND Gallbladder cancer (GBC) is one of the most lethal malignancies worldwide with an extremely poor prognosis. Previous studies have suggested that tripartite motif containing 47 (TRIM47) is involved in the progression of numerous cancers. However, the molecular mechanism and function of TRIM47 in GBC remain unclear. METHODS The clinical significance of TRIM47 was evaluated using immunohistochemistry. Functional assays were performed in vitro and in vivo to determine the role of TRIM47 in GBC. Mass spectrometric analysis, western blotting, and immunoprecipitation assays were performed to investigate the molecular mechanisms involved. RESULTS In this study, TRIM47 was upregulated in GBC tissues and associated with shorter overall survival rates and TRIM47 was involved in GBC cell proliferation, migration, and apoptosis. Mechanistically, TRIM47 interacts with PARP1 and mediates the K63-linked polyubiquitination of PARP1, thereby stabilizing its expression. Furthermore, TRIM47 activated the AKT signaling pathway via PARP1. CONCLUSION The present study revealed that TRIM47 contributes to the progression of GBC and is therefore an important biomarker for predicting the prognosis of GBC and for therapeutic intervention.
Collapse
Affiliation(s)
- Ming Xu
- Department of Hepatic-Biliary-Pancreatic Surgery, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China
| | - Chuanmin Deng
- Department of Hepatic-Biliary-Pancreatic Surgery, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China
| | - Zhongran Man
- Department of Hepatic-Biliary-Pancreatic Surgery, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China
| | - Hongyi Zhu
- Department of Hepatic-Biliary-Pancreatic Surgery, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China; Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
2
|
Liu X, Peng Y, Chen R, Zhou Y, Zou X, Xia M, Wu X, Yu M. Transcriptomic analysis reveals transcription factors implicated in radon-induced lung carcinogenesis. Toxicol Res (Camb) 2024; 13:tfae161. [PMID: 39371682 PMCID: PMC11447380 DOI: 10.1093/toxres/tfae161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 09/04/2024] [Accepted: 09/24/2024] [Indexed: 10/08/2024] Open
Abstract
Background Radon, a potent carcinogen, is a significant catalyst for lung cancer development. However, the molecular mechanisms triggering radon-induced lung cancer remain elusive. Methods Utilizing a radon exposure concentration of 20,000 Bq/m3 for 20 min/session, malignant transformation was induced in human bronchial epithelial cells (BEAS-2B). Results Radon-exposed cells derived from passage 25 (BEAS-2B-Rn) exhibited enhanced proliferation and increased colony formation. Analysis of differential gene expression (DEG) through transcription factors revealed 663 up-regulated and 894 down-regulated genes in radon-exposed cells. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses revealed significant alterations in the malignant transformation pathway of cells, including those related to cancer and the PI3K/AKT signaling pathway. A PPI network analysis indicated a significant association of oncogenes, such as CCND1, KIT, and GATA3, with lung cancer among differentially expressed genes. In addition, the stability of the housekeeping gene was determined through RT-qPCR analysis, which also confirmed the results of transcriptome analysis. Conclusions The results suggest that transcription factors may play a pivotal role in conferring a survival advantage to radon-exposed cells. This is achieved by malignant transformation of human bronchial epithelial cells into lung carcinogenesis cell phenotypes.
Collapse
Affiliation(s)
- Xing Liu
- School of public health, Yangzhou University, No. 136, Jiangyang Middle Road, Hanjiang District, Yangzhou 225009, China
| | - Yuting Peng
- School of public health, Yangzhou University, No. 136, Jiangyang Middle Road, Hanjiang District, Yangzhou 225009, China
| | - Ruobing Chen
- School of public health, Yangzhou University, No. 136, Jiangyang Middle Road, Hanjiang District, Yangzhou 225009, China
| | - Yueyue Zhou
- School of public health, Yangzhou University, No. 136, Jiangyang Middle Road, Hanjiang District, Yangzhou 225009, China
| | - Xihuan Zou
- School of public health, Yangzhou University, No. 136, Jiangyang Middle Road, Hanjiang District, Yangzhou 225009, China
| | - Mingzhu Xia
- School of public health, Yangzhou University, No. 136, Jiangyang Middle Road, Hanjiang District, Yangzhou 225009, China
| | - Xinyi Wu
- School of public health, Yangzhou University, No. 136, Jiangyang Middle Road, Hanjiang District, Yangzhou 225009, China
| | - Meng Yu
- Department of Otorhinolaryngology-Head and Neck Surgery, The Affiliated Hospital of Yangzhou University, No. 368, hanjiang Middle Road, Hanjiang District, Yangzhou 225009, China
| |
Collapse
|
3
|
Zhao J, Zhang J, Tong X, Zhao L, Cao R. TRIM47 inhibits cisplatin chemosensitivity and endoplasmic reticulum stress-induced apoptosis of ovarian cancer cells. Mol Cell Probes 2024; 77:101978. [PMID: 39096978 DOI: 10.1016/j.mcp.2024.101978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/22/2024] [Accepted: 08/01/2024] [Indexed: 08/05/2024]
Abstract
Ovarian cancer (OC) is the fifth most common cause of death in women worldwide. Chemoresistance is a key reason for treatment failure, causing high mortality. As a member of the tripartite motif-containing (TRIM) protein family, tripartite motif 47 (TRIM47) plays a vital role in the carcinogenesis and drug resistance of various cancers. This study investigated the impact and mechanisms of TRIM47 on cisplatin (DDP) chemosensitivity and apoptosis in OC. OC cell viability was assessed with a cell counting kit-8 assay and OC cell apoptosis was assessed using flow cytometry, caspase-3 and caspase-9 activity, and Bax and Bcl-2 expression assays while gene and protein expression were assessed using qRT-PCR and Western blot assays. The expression of TRIM47 was significantly increased in both DDP-resistant tissues from patients with OC tissues and in cancer cell lines compared with that in normal tissue or parental cell lines. The increased level of TRIM47 correlated with poor prognosis in patients with OC. Functional assays demonstrated that TRIM47 promoted DDP resistance both in vitro and in vivo. The increased viability and reduced apoptosis of OC cells induced by TRIM47 can be rescued by the endoplasmic reticulum (ER) stress-inducer tunicamycin, suggesting that TRIM47 inhibits OC cell apoptosis by suppressing ER stress. Therefore, TRIM47 may be targeted as a therapeutic strategy for DDP resistance in OC.
Collapse
Affiliation(s)
- Jiao Zhao
- Department of Gynecology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Cancer Hospital of Dalian University of Technology, Shenyang, 110042, China.
| | - Jingru Zhang
- Department of Gynecology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Cancer Hospital of Dalian University of Technology, Shenyang, 110042, China
| | - Xiaojing Tong
- Department of Gynecology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Cancer Hospital of Dalian University of Technology, Shenyang, 110042, China
| | - Lili Zhao
- Department of Gynecology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Cancer Hospital of Dalian University of Technology, Shenyang, 110042, China
| | - Rong Cao
- Department of Gynecology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Cancer Hospital of Dalian University of Technology, Shenyang, 110042, China
| |
Collapse
|
4
|
Gu J, Chen J, Xiang S, Zhou X, Li J. Intricate confrontation: Research progress and application potential of TRIM family proteins in tumor immune escape. J Adv Res 2023; 54:147-179. [PMID: 36736694 DOI: 10.1016/j.jare.2023.01.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 01/06/2023] [Accepted: 01/12/2023] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Tripartite motif (TRIM) family proteins have more than 80 members and are widely found in various eukaryotic cells. Most TRIM family proteins participate in the ubiquitin-proteasome degradation system as E3-ubiquitin ligases; therefore, they play pivotal regulatory roles in the occurrence and development of tumors, including tumor immune escape. Due to the diversity of functional domains of TRIM family proteins, they can extensively participate in multiple signaling pathways of tumor immune escape through different substrates. In current research and clinical contexts, immune escape has become an urgent problem. The extensive participation of TRIM family proteins in curing tumors or preventing postoperative recurrence and metastasis makes them promising targets. AIM OF REVIEW The aim of the review is to make up for the gap in the current research on TRIM family proteins and tumor immune escape and propose future development directions according to the current progress and problems. KEY SCIENTIFIC CONCEPTS OF REVIEW This up-to-date review summarizes the characteristics and biological functions of TRIM family proteins, discusses the mechanisms of TRIM family proteins involved in tumor immune escape, and highlights the specific mechanism from the level of structure-function-molecule-pathway-phenotype, including mechanisms at the level of protein domains and functions, at the level of molecules and signaling pathways, and at the level of cells and microenvironments. We also discuss the application potential of TRIM family proteins in tumor immunotherapy, such as possible treatment strategies for combination targeting TRIM family protein drugs and checkpoint inhibitors for improving cancer treatment.
Collapse
Affiliation(s)
- Junjie Gu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Jingyi Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Shuaixi Xiang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xikun Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China.
| | - Jing Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China.
| |
Collapse
|
5
|
Liu F, Xie B, Ye R, Xie Y, Zhong B, Zhu J, Tang Y, Lin Z, Tang H, Wu Z, Li H. Overexpression of tripartite motif-containing 47 (TRIM47) confers sensitivity to PARP inhibition via ubiquitylation of BRCA1 in triple negative breast cancer cells. Oncogenesis 2023; 12:13. [PMID: 36906594 PMCID: PMC10008536 DOI: 10.1038/s41389-023-00453-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 01/30/2023] [Accepted: 02/03/2023] [Indexed: 03/13/2023] Open
Abstract
Triple-negative breast cancers (TNBC) frequently harbor defects in DNA double-strand break repair through homologous recombination (HR), such as BRCA1 dysfunction. However, less than 15% of TNBC patients were found to carry BRCA1 mutation, indicating that there are other mechanisms regulating BRCA1-deficient in TNBC. In the current study, we shown that overexpression of TRIM47 correlates with progression and poor prognosis in triple-negative breast cancer. Moreover, we demonstrated that TRIM47 directly interacts with BRCA1 and induces ubiquitin-ligase-mediated proteasome turnover of BRCA1, subsequently leads to a decrease of BRCA1 protein levels in TNBC. Moreover, the downstream gene expression of BRCA1, such as p53, p27, p21 was significantly reduced in the overexpression of TRIM47 cell lines but increased in TRIM47-deleted cells. Functionally, we found that overexpression of TRIM47 in TNBC cells confers an exquisite sensitivity to olaparib, an inhibitor of poly-(ADP-ribose)-polymerase (PARP), but TRIM47 inhibition significantly confers TNBC cells resistance to olaparib both in vitro and in vivo. Furthermore, we showed that overexpression of BRCA1 significant increase the olaparib resistance in TRIM47-overexpression-induced PARP inhibitions sensitivity. Taken together, our results uncover a novel mechanism for BRCA1-deficient in TNBC and targeting TRIM47/BRCA1 axis may be a promising prognostic factor and a valuable therapeutic target for TNBC.
Collapse
Affiliation(s)
- Fengen Liu
- Department of General Surgery III, the First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, P. R. China
| | - Binhui Xie
- Department of General Surgery I, the First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, P. R. China.,Ganzhou Key Laboratory of Hepatocellular carcinoma, the First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, China
| | - Rong Ye
- Department of General Surgery III, the First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, P. R. China
| | - Yuankang Xie
- Department of General Surgery I, the First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, P. R. China
| | - Baiyin Zhong
- Department of General Surgery I, the First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, P. R. China
| | - Jinrong Zhu
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yao Tang
- Department of Pathology, Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, 510310, China
| | - Zelong Lin
- Department of Pathology, Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, 510310, China
| | - Huiru Tang
- Cheerland Watson Precision Medicine Co. Ltd, Shenzhen, 518036, P. R. China.
| | - Ziqing Wu
- Department of Pathology, Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, 510310, China. .,Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, 510515, China. .,Department of Pathology, School of Basic Medical Science, Southern Medical University, Guangzhou, 510515, China.
| | - Heping Li
- Department of Medical Oncology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, P. R. China.
| |
Collapse
|
6
|
Bai X, Tang J. TRIM proteins in breast cancer: Function and mechanism. Biochem Biophys Res Commun 2023; 640:26-31. [PMID: 36495607 DOI: 10.1016/j.bbrc.2022.11.103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022]
Abstract
Breast cancer is the most prevalent malignancy in the world, and despite tremendous progress in current treatment strategies, recurrence, metastasis and drug resistance of breast cancer remain the major causes of death in patients. Tripartite motif (TRIM) family proteins play a critical role in the tumor progression such as cell proliferation, migration, invasion, and metastasis. Accumulating evidence suggests that the TRIM protein family serve as cancer suppressor proteins or oncoproteins in breast cancer. This review focused on the roles and molecular mechanisms of TRIM protein in breast cancer. Importantly, it provides new insights that TRIM proteins may be ideal targets to treat breast cancer.
Collapse
Affiliation(s)
- Xin Bai
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, Gansu, 730000, PR China
| | - Jianming Tang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, Gansu, 730000, PR China.
| |
Collapse
|
7
|
A nomogram for predicting prognosis of multiple myeloma patients based on a ubiquitin-proteasome gene signature. Aging (Albany NY) 2022; 14:9951-9968. [PMID: 36534449 PMCID: PMC9831738 DOI: 10.18632/aging.204432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 11/21/2022] [Indexed: 12/23/2022]
Abstract
BACKGROUND Multiple myeloma (MM) is a malignant hematopoietic disease that is usually incurable. However, the ubiquitin-proteasome system (UPS) genes have not yet been established as a prognostic predictor for MM, despite their potential applications in other cancers. METHODS RNA sequencing data and corresponding clinical information were acquired from Multiple Myeloma Research Foundation (MMRF)-COMMPASS and served as a training set (n=787). Validation of the prediction signature were conducted by the Gene Expression Omnibus (GEO) databases (n=1040). To develop a prognostic signature for overall survival (OS), least absolute shrinkage and selection operator regressions, along with Cox regressions, were used. RESULTS A six-gene signature, including KCTD12, SIAH1, TRIM58, TRIM47, UBE2S, and UBE2T, was established. Kaplan-Meier survival analysis of the training and validation cohorts revealed that patients with high-risk conditions had a significantly worse prognosis than those with low-risk conditions. Furthermore, UPS-related signature is associated with a positive immune response. For predicting survival, a simple to use nomogram and the corresponding web-based calculator (https://jiangyanxiamm.shinyapps.io/MMprognosis/) were built based on the UPS signature and its clinical features. Analyses of calibration plots and decision curves showed clinical utility for both training and validation datasets. CONCLUSIONS As a result of these results, we established a genetic signature for MM based on UPS. This genetic signature could contribute to improving individualized survival prediction, thereby facilitating clinical decisions in patients with MM.
Collapse
|
8
|
TRIM47 promotes glioma angiogenesis by suppressing Smad4. In Vitro Cell Dev Biol Anim 2022; 58:771-779. [PMID: 36203070 DOI: 10.1007/s11626-022-00722-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 09/14/2022] [Indexed: 11/05/2022]
Abstract
Angiogenesis is required for tumor progression; thus, its investigation can be useful to identify strategies for potential cancer treatments. Tripartite motif 47 (TRIM47) is involved in the progression of multiple cancers. However, its role in glioma angiogenesis is largely unknown. In this study, we first showed that TRIM47 is frequently upregulated in gliomas, and increased TRIM47 levels are correlated with microvascular density. We then examined the role of TRIM47 in cellular functions related to angiogenesis in vitro and observed that TRIM47 knockdown significantly reduced human umbilical vein endothelial cell proliferation, migration, and tube formation. We also found that TRIM47 silencing reduced vessel density and tumor volume in glioma xenografts. Mechanistically, TRIM47 negatively regulated Smad4 expression in glioma cells, and SMAD4 knockdown rescued the suppressive effects of TRIM47 silencing. Taken together, our results indicate that TRIM47 promotes angiogenesis in gliomas by downregulating SMAD4. Therefore, targeting the TRIM47/SMAD4 axis may offer an innovative approach to glioma treatment.
Collapse
|
9
|
Qian Y, Wang Z, Lin H, Lei T, Zhou Z, Huang W, Wu X, Zuo L, Wu J, Liu Y, Wang LF, Guan XH, Deng KY, Fu M, Xin HB. TRIM47 is a novel endothelial activation factor that aggravates lipopolysaccharide-induced acute lung injury in mice via K63-linked ubiquitination of TRAF2. Signal Transduct Target Ther 2022; 7:148. [PMID: 35513381 PMCID: PMC9072678 DOI: 10.1038/s41392-022-00953-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 03/01/2022] [Accepted: 03/06/2022] [Indexed: 12/18/2022] Open
Abstract
Endothelial activation plays an essential role in the pathogenesis of sepsis-induced acute lung injury, however, the detailed regulatory mechanisms remain largely unknown. Here, we reported that TRIM47, an E3 ubiquitin ligase of the tripartite motif-containing protein family, was highly expressed in vascular endothelial cells. TRIM47-deficient mice were effectively resistant to lipopolysaccharide (LPS)-induced acute lung injury and death by attenuating pulmonary inflammation. TRIM47 was upregulated during TNFα-induced endothelial activation in vitro. Knockdown of TRIM47 in endothelial cells inhibited the transcription of multiple pro-inflammatory cytokines, reduced monocyte adhesion and the expression of adhesion molecules, and suppressed the secretion of IL-1β and IL-6 in endothelial cells. By contrast, overexpression of TRIM47 promoted inflammatory response and monocyte adhesion upon TNFα stimulation. In addition, TRIM47 was able to activate the NF-κB and MAPK signaling pathways during endothelial activation. Furthermore, our experiments revealed that TRIM47 resulted in endothelial activation by promoting the K63-linked ubiquitination of TRAF2, a key component of the TNFα signaling pathway. Taken together, our studies demonstrated that TRIM47 as a novel activator of endothelial cells, promoted LPS-induced pulmonary inflammation and acute lung injury through potentiating the K63-linked ubiquitination of TRAF2, which in turn activates NF-κB and MAPK signaling pathways to trigger an inflammatory response in endothelial cells.
Collapse
Affiliation(s)
- Yisong Qian
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, 1299 Xuefu Rd, Honggu District, 330031, Nanchang, China
- Department of Biomedical Science, School of Medicine, University of Missouri Kansas City, 2411 Holmes Street, Kansas City, MO, 64108, USA
| | - Ziwei Wang
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, 1299 Xuefu Rd, Honggu District, 330031, Nanchang, China
| | - Hongru Lin
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, 1299 Xuefu Rd, Honggu District, 330031, Nanchang, China
| | - Tianhua Lei
- Department of Biomedical Science, School of Medicine, University of Missouri Kansas City, 2411 Holmes Street, Kansas City, MO, 64108, USA
| | - Zhou Zhou
- Department of Biomedical Science, School of Medicine, University of Missouri Kansas City, 2411 Holmes Street, Kansas City, MO, 64108, USA
| | - Weilu Huang
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, 1299 Xuefu Rd, Honggu District, 330031, Nanchang, China
| | - Xuehan Wu
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, 1299 Xuefu Rd, Honggu District, 330031, Nanchang, China
| | - Li Zuo
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, 1299 Xuefu Rd, Honggu District, 330031, Nanchang, China
| | - Jie Wu
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, 1299 Xuefu Rd, Honggu District, 330031, Nanchang, China
| | - Yu Liu
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, 1299 Xuefu Rd, Honggu District, 330031, Nanchang, China
| | - Ling-Fang Wang
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, 1299 Xuefu Rd, Honggu District, 330031, Nanchang, China
| | - Xiao-Hui Guan
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, 1299 Xuefu Rd, Honggu District, 330031, Nanchang, China
| | - Ke-Yu Deng
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, 1299 Xuefu Rd, Honggu District, 330031, Nanchang, China
| | - Mingui Fu
- Department of Biomedical Science, School of Medicine, University of Missouri Kansas City, 2411 Holmes Street, Kansas City, MO, 64108, USA.
| | - Hong-Bo Xin
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, 1299 Xuefu Rd, Honggu District, 330031, Nanchang, China.
| |
Collapse
|
10
|
Chang SC, Zhang BX, Ding JL. E2-E3 ubiquitin enzyme pairing - partnership in provoking or mitigating cancers. Biochim Biophys Acta Rev Cancer 2022; 1877:188679. [DOI: 10.1016/j.bbcan.2022.188679] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/31/2021] [Accepted: 01/11/2022] [Indexed: 02/08/2023]
|
11
|
Mohammadi A, Pour Abbasi MS, Khorrami S, Khodamoradi S, Mohammadi Goldar Z, Ebrahimzadeh F. The TRIM proteins in cancer: from expression to emerging regulatory mechanisms. Clin Transl Oncol 2021; 24:460-470. [PMID: 34643877 DOI: 10.1007/s12094-021-02715-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 09/23/2021] [Indexed: 12/15/2022]
Abstract
New clinical evidence suggests that dysregulation of the ubiquitin-mediated destruction of tumor suppressors or oncogene products is probably engaged in the etiology of leukemia and carcinoma. The superfamily of tripartite motif (TRIM)-containing protein family is among the biggest recognized single protein RING finger E3 ubiquitin ligases that are considered vital carcinogenesis regulators, which is not shocking since TRIM proteins are engaged in various biological processes, including cell growth, development, and differentiation; hence, TRIM proteins' alterations may influence apoptosis, cell proliferation, and transcriptional regulation. In this review article, the various mechanisms through which TRIM proteins exert their role in the most prevalent malignancies including lung, prostate, colorectal, liver, breast, brain cancer, and leukemia are summarized.
Collapse
Affiliation(s)
- A Mohammadi
- Department of Genetics Islamic, Azad University of Marand, Marand, Iran
| | | | - S Khorrami
- Tehran University of Medical Sciences, Tehran, Iran
| | - S Khodamoradi
- Department of Microbiology, Shahr-e-Qods Branch, Islamic Azad University, Tehran, Iran
| | - Z Mohammadi Goldar
- Department of Medicine, School of Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
| | - F Ebrahimzadeh
- Department of Internal Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
12
|
TRIM47 activates NF-κB signaling via PKC-ε/PKD3 stabilization and contributes to endocrine therapy resistance in breast cancer. Proc Natl Acad Sci U S A 2021; 118:2100784118. [PMID: 34433666 DOI: 10.1073/pnas.2100784118] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Increasing attention has been paid to roles of tripartite motif-containing (TRIM) family proteins in cancer biology, often functioning as E3 ubiquitin ligases. In the present study, we focus on a contribution of TRIM47 to breast cancer biology, particularly to endocrine therapy resistance, which is a major clinical problem in breast cancer treatment. We performed immunohistochemical analysis of TRIM47 protein expression in 116 clinical samples of breast cancer patients with postoperative endocrine therapy using tamoxifen. Our clinicopathological study showed that higher immunoreactivity scores of TRIM47 were significantly associated with higher relapse rate of breast cancer patients (P = 0.012). As functional analyses, we manipulated TRIM47 expression in estrogen receptor-positive breast cancer cells MCF-7 and its 4-hydroxytamoxifen (OHT)-resistant derivative OHTR, which was established in a long-term culture with OHT. TRIM47 promoted both MCF-7 and OHTR cell proliferation. MCF-7 cells acquired tamoxifen resistance by overexpressing exogenous TRIM47. We found that TRIM47 enhances nuclear factor kappa-B (NF-κB) signaling, which further up-regulates TRIM47. We showed that protein kinase C epsilon (PKC-ε) and protein kinase D3 (PKD3), known as NF-κB-activating protein kinases, are directly associated with TRIM47 and stabilized in the presence of TRIM47. As an underlying mechanism, we showed TRIM47-dependent lysine 27-linked polyubiquitination of PKC-ε. These results indicate that TRIM47 facilitates breast cancer proliferation and endocrine therapy resistance by forming a ternary complex with PKC-ε and PKD3. TRIM47 and its associated kinases can be a potential diagnostic and therapeutic target for breast cancer refractory to endocrine therapy.
Collapse
|
13
|
Li L, Yu Y, Zhang Z, Guo Y, Yin T, Wu H, Yang M. TRIM47 accelerates aerobic glycolysis and tumor progression through regulating ubiquitination of FBP1 in pancreatic cancer. Pharmacol Res 2021; 166:105429. [PMID: 33529753 DOI: 10.1016/j.phrs.2021.105429] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 12/11/2020] [Accepted: 01/05/2021] [Indexed: 01/26/2023]
Abstract
Increasing studies demonstrated that ubiquitination plays a vital role in the pathogenesis of pancreatic cancer, and targeting regulation of the ubiquitination process is a potential means for cancer treatment. However, the role of tripartite motif 47 (TRIM47) in pancreatic cancer is still unclear. Here, significantly upregulated TRIM47 and decreased FBP1 expressions were found in pancreatic cancer patient tissues and pointed to a lower survival rate. In addition, we show that TRIM47 was upregulated in pancreatic cancer cells and promoted cell proliferation in vitro and in vivo. Mechanistic investigations showed that TRIM47 promoted the aerobic glycolysis of pancreatic cancer cells, which was largely dependent on the direct binding to and ubiquitination of fructose-1, 6-biphosphatase (FBP1). Furthermore, the promotion of TRIM47 on the Warburg effect and pancreatic cancer progression was abolished by the overexpression of FBP1. Therefore, targeting TRIM47/FBP1 axis might provide a novel strategy to suppress the development of pancreatic cancer.
Collapse
Affiliation(s)
- Lei Li
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yuan Yu
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zhengle Zhang
- Department of Pancreatic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yao Guo
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Tao Yin
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Heshui Wu
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Ming Yang
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
14
|
Analysis of human total antibody repertoires in TIF1γ autoantibody positive dermatomyositis. Commun Biol 2021; 4:419. [PMID: 33772100 PMCID: PMC7997983 DOI: 10.1038/s42003-021-01932-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 02/03/2021] [Indexed: 12/17/2022] Open
Abstract
We investigate the accumulated microbial and autoantigen antibody repertoire in adult-onset dermatomyositis patients sero-positive for TIF1γ (TRIM33) autoantibodies. We use an untargeted high-throughput approach which combines immunoglobulin disease-specific epitope-enrichment and identification of microbial and human antigens. We observe antibodies recognizing a wider repertoire of microbial antigens in dermatomyositis. Antibodies recognizing viruses and Poxviridae family species are significantly enriched. The identified autoantibodies recognise a large portion of the human proteome, including interferon regulated proteins; these proteins cluster in specific biological processes. In addition to TRIM33, we identify autoantibodies against eleven further TRIM proteins, including TRIM21. Some of these TRIM proteins share epitope homology with specific viral species including poxviruses. Our data suggest antibody accumulation in dermatomyositis against an expanded diversity of microbial and human proteins and evidence of non-random targeting of specific signalling pathways. Our findings indicate that molecular mimicry and epitope spreading events may play a role in dermatomyositis pathogenesis. Megremis, Walker at al. identify immunogenic epitopes in dermatomyositis patients. They identify antibodies recognizing a wider diversity of microbial antigens including poxviruses, and autoantibodies recognizing a large portion of the human proteome. Shared epitope homology between viral and human proteins suggests that molecular mimicry and epitope spreading events may play a role in dermatomyositis pathogenesis.
Collapse
|
15
|
Upregulated Tripartite Motif 47 Could Facilitate Glioma Cell Proliferation and Metastasis as a Tumorigenesis Promoter. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2021; 2021:5594973. [PMID: 33833824 PMCID: PMC8016597 DOI: 10.1155/2021/5594973] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 02/28/2021] [Accepted: 03/05/2021] [Indexed: 01/26/2023]
Abstract
Introduction Tripartite motif 47 (TRIM47) belongs to a category of the TRIM family. It takes part in cancer tumorigenesis, thus demonstrating important functions across numerous carcinomas. Unfortunately, it is still elusive towards TRIM47 expression, characteristic, and biological function in brain gliomas. Methods Public database analysis was applied to analyze TRIM47 expression, and quantitative real-time PCR (qRT-PCR) was applied to detect the expression of TRIM47 in 9 paired tissues of glioma. The Cancer Genome Atlas (TCGA) and the Chinese Glioma Genome Atlas (CGGA) databases were applied to evaluate the overall survival (OS). Gene Ontology (GO) term and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were applied to analyze differentially expressed gene (DEG) functions. In vitro experiments were performed to validate TRIM47-mediated effects on glioma cell proliferation, migration, and invasion. Results Compared to that in normal tissues, TRIM47 expression was greatly higher in glioma tissues, and its expression level was associated with different grades of glioma. Our data indicated that highly expressed TRIM47 displayed an association with the poor prognosis of glioma patients. Ablating TRIM47 obviously impeded glioma cell invasion and migration. Conclusion TRIM47 could modulate glioma cell proliferation, invasion, and migration. Highly expressed TRIM47 exhibited a correlation with poor prognosis. All data imply that TRIM47 is a probable biomarker for glioma and has the potentiality to become a newly generated target for glioma treatment.
Collapse
|
16
|
Cui C, Dwyer BG, Liu C, Abegg D, Cai ZJ, Hoch DG, Yin X, Qiu N, Liu JQ, Adibekian A, Dai M. Total Synthesis and Target Identification of the Curcusone Diterpenes. J Am Chem Soc 2021; 143:4379-4386. [PMID: 33705657 DOI: 10.1021/jacs.1c00557] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The curcusone natural products are complex diterpenes featuring a characteristic [6-7-5] tricyclic carbon skeleton similar to the daphnane and tigliane diterpenes. Among them, curcusones A-D demonstrated potent anticancer activity against a broad spectrum of human cancer cell lines. Prior to this study, no total synthesis of the curcusones was achieved and their anticancer mode of action remained unknown. Herein, we report our synthetic and chemoproteomics studies of the curcusone diterpenes which culminate in the first total synthesis of several curcusone natural products and identification of BRCA1-associated ATM activator 1 (BRAT1) as a cellular target. Our efficient synthesis is highly convergent, builds upon cheap and abundant starting materials, features a thermal [3,3]-sigmatropic rearrangement and a novel FeCl3-promoted cascade reaction to rapidly construct the critical cycloheptadienone core of the curcusones, and led us to complete the first total synthesis of curcusones A and B in only 9 steps, C and D in 10 steps, and dimericursone A in 12 steps. The chemical synthesis of dimericursone A from curcusones C and D provided direct evidence to support the proposed Diels-Alder dimerization and cheletropic elimination biosynthetic pathway. Using an alkyne-tagged probe molecule, BRAT1, an important but previously "undruggable" oncoprotein, was identified as a key cellular target via chemoproteomics. We further demonstrate for the first time that BRAT1 can be inhibited by curcusone D, resulting in impaired DNA damage response, reduced cancer cell migration, potentiated activity of the DNA damaging drug etoposide, and other phenotypes similar to BRAT1 knockdown.
Collapse
Affiliation(s)
- Chengsen Cui
- Department of Chemistry and Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907, United States
| | - Brendan G Dwyer
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Chang Liu
- Department of Chemistry and Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907, United States
| | - Daniel Abegg
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Zhong-Jian Cai
- Department of Chemistry and Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907, United States
| | - Dominic G Hoch
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Xianglin Yin
- Department of Chemistry and Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907, United States
| | - Nan Qiu
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Jie-Qing Liu
- School of Medicine, Huaqiao University, Quanzhou 362021, P. R. China
| | - Alexander Adibekian
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Mingji Dai
- Department of Chemistry and Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
17
|
Marzano F, Caratozzolo MF, Pesole G, Sbisà E, Tullo A. TRIM Proteins in Colorectal Cancer: TRIM8 as a Promising Therapeutic Target in Chemo Resistance. Biomedicines 2021; 9:biomedicines9030241. [PMID: 33673719 PMCID: PMC7997459 DOI: 10.3390/biomedicines9030241] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/16/2021] [Accepted: 02/23/2021] [Indexed: 12/12/2022] Open
Abstract
Colorectal cancer (CRC) represents one of the most widespread forms of cancer in the population and, as all malignant tumors, often develops resistance to chemotherapies with consequent tumor growth and spreading leading to the patient’s premature death. For this reason, a great challenge is to identify new therapeutic targets, able to restore the drugs sensitivity of cancer cells. In this review, we discuss the role of TRIpartite Motifs (TRIM) proteins in cancers and in CRC chemoresistance, focusing on the tumor-suppressor role of TRIM8 protein in the reactivation of the CRC cells sensitivity to drugs currently used in the clinical practice. Since the restoration of TRIM8 protein levels in CRC cells recovers chemotherapy response, it may represent a new promising therapeutic target in the treatment of CRC.
Collapse
Affiliation(s)
- Flaviana Marzano
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council, CNR, 70126 Bari, Italy; (F.M.); (M.F.C.); (G.P.)
| | - Mariano Francesco Caratozzolo
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council, CNR, 70126 Bari, Italy; (F.M.); (M.F.C.); (G.P.)
| | - Graziano Pesole
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council, CNR, 70126 Bari, Italy; (F.M.); (M.F.C.); (G.P.)
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari, “Aldo Moro”, 70125 Bari, Italy
| | - Elisabetta Sbisà
- Institute for Biomedical Technologies, National Research Council, CNR, 70126 Bari, Italy;
| | - Apollonia Tullo
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council, CNR, 70126 Bari, Italy; (F.M.); (M.F.C.); (G.P.)
- Correspondence:
| |
Collapse
|
18
|
Chen JX, Xu D, Cao JW, Zuo L, Han ZT, Tian YJ, Chu CM, Zhou W, Pan XW, Cui XG. TRIM47 promotes malignant progression of renal cell carcinoma by degrading P53 through ubiquitination. Cancer Cell Int 2021; 21:129. [PMID: 33622324 PMCID: PMC7903798 DOI: 10.1186/s12935-021-01831-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 02/10/2021] [Indexed: 12/18/2022] Open
Abstract
Background Renal cell carcinoma (RCC) is one of the most common malignant tumors originating from the renal parenchymal urinary epithelial system. Tripartite motif 47 (TRIM47) is a member of the TRIM family proteins, which has E3 ligase activity and has been demonstrated to be involved in the occurrence and prognosis of many tumors. The main purpose of this study is to explore the role and potential mechanism of TRIM47 in promoting malignant biological behavior of RCC. Materials and methods TRIM47 mRNA and protein levels in human renal cancer and paired normal adjacent tissues were detected by qRT-PCR and Western blot. The effects of TRIM47 knockdown and overexpression in renal cell carcinoma cells on cell proliferation, invasion and xenograft tumor growth in nude mice were analyzed. The molecular mechanism was explored by mass spectrometric exploration,Western blot and immunoprecipitation assays. Results TRIM47 promoted RCC cell proliferation in vitro and in vivo as an oncogene. Mechanistically, TRIM47 exerted an E3 ligase activity by interacting with P53 protein to increase its ubiquitination and degradation, which further promoted the malignant biological behavior of RCC. Conclusions Our study demonstrated that the TRIM47-P53 axis played a functional role in RCC progression and suggested a potential therapeutic target for RCC.
Collapse
Affiliation(s)
- Jia-Xin Chen
- Department of Urology, Third Affiliated Hospital of the Second Military Medical University, 200433, China, Shanghai
| | - Da Xu
- Department of Urology, Third Affiliated Hospital of the Second Military Medical University, 200433, China, Shanghai
| | - Jian-Wei Cao
- Department of Urology, Third Affiliated Hospital of the Second Military Medical University, 200433, China, Shanghai
| | - Li Zuo
- Department of Urology, Changzhou Second People's Hospital, Changzhou, 213000, China
| | - Zhi-Tao Han
- Nanjing University of Traditional Chinese Medicine School of Medical and Life Sciences, Nanjing, 210023, China
| | - Yi-Jun Tian
- Department of Urology, Third Affiliated Hospital of the Second Military Medical University, 200433, China, Shanghai
| | - Chuan-Min Chu
- Department of Urology, Third Affiliated Hospital of the Second Military Medical University, 200433, China, Shanghai
| | - Wang Zhou
- Department of Urology, Third Affiliated Hospital of the Second Military Medical University, 200433, China, Shanghai.
| | - Xiu-Wu Pan
- Department of Urology, Third Affiliated Hospital of the Second Military Medical University, 200433, China, Shanghai.
| | - Xin-Gang Cui
- Department of Urology, Third Affiliated Hospital of the Second Military Medical University, 200433, China, Shanghai.
| |
Collapse
|
19
|
Wei H, Ding C, Zhuang H, Hu W. TRIM47 Promotes the Development of Glioma by Ubiquitination and Degradation of FOXO1. Onco Targets Ther 2021; 13:13401-13411. [PMID: 33408486 PMCID: PMC7781021 DOI: 10.2147/ott.s264459] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 12/08/2020] [Indexed: 01/26/2023] Open
Abstract
Objective To investigate the effect of TRIM47 on glioma cells and further explore its underlying molecular mechanisms. Methods Mouse xenograft model was used in this study. The mRNA expression of TRIM47 was detected by qRT-PCR. The cell viability and proliferation activity was detected by MTT assay and colony formation assay. The migration and invasion of glioma cells were determined by Transwell assay. The protein levels of TRIM47, FOXO1, CyclinD1, C-myc, MMP-2 and TIMP-1 were assessed by Western-blotting. The interaction between TRIM47 and FOXO1 was measured by Co-immunoprecipitation (Co-IP) assay. Results In glioma tissues and cells, TRIM47 was significantly up-regulated. Silencing the expression of TRIM47 inhibited the cell viability and proliferation of cells A172 and U251, as well as their ability to invade and migrate. Among them, the expression levels of C-myc and CyclinD1 also decreased, and MMP-2 was down-regulated and TIMP-1 was up-regulated. Similarly, in vivo model, tumor volume and weight also decreased after TRIM47 knockout. Further research showed that TRIM47 inhibited FOXO1 expression by ubiquitination and degradation of FOXO1, thereby promoting glioma growth and progression. Conclusion In our study, we confirmed functional role of the TRIM47-FOXO1 axis in the progression of gliomas and provided a potential target for glioma treatment.
Collapse
Affiliation(s)
- Huaming Wei
- Department of Neurology, Jiyang District People's Hospital of Jinan, Jinan, Shandong 251400, People's Republic of China
| | - Chonglan Ding
- Special Inspection Section, Shandong Zaozhuang Traditional Chinese Medicine Hospital, Zaozhuang, Shandong 277000, People's Republic of China
| | - Huanxia Zhuang
- Department of Neurology, Gaotang County People's Hospital, Gaotang, Shandong 252800, People's Republic of China
| | - WeiLi Hu
- Department of Neurology, Lianshui County People's Hospital, Lianshui, Jiangsu 223400, People's Republic of China
| |
Collapse
|
20
|
Zhan W, Zhang S. TRIM proteins in lung cancer: Mechanisms, biomarkers and therapeutic targets. Life Sci 2021; 268:118985. [PMID: 33412211 DOI: 10.1016/j.lfs.2020.118985] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 12/13/2020] [Accepted: 12/22/2020] [Indexed: 12/24/2022]
Abstract
The tripartite motif (TRIM) family is defined by the presence of a Really Interesting New Gene (RING) domain, one or two B-box motifs and a coiled-coil region. TRIM proteins play key roles in many biological processes, including innate immunity, tumorigenesis, cell differentiation and ontogenetic development. Alterations in TRIM gene and protein levels frequently emerge in a wide range of tumors and affect tumor progression. As canonical E3 ubiquitin ligases, TRIM proteins participate in ubiquitin-dependent proteolysis of prominent components of the p53, NF-κB and PI3K/AKT signaling pathways. The occurrence of ubiquitylation events induced by TRIM proteins sustains internal balance between tumor suppressive and tumor promoting genes. In this review, we summarized the diverse mechanism of TRIM proteins responsible for the most common malignancy, lung cancer. Furthermore, we also discussed recent progress in both the diagnosis and therapeutics of tumors contributed by TRIM proteins.
Collapse
Affiliation(s)
- Weihua Zhan
- Ecology and Health Institute, Hangzhou Vocational & Technical College, Hangzhou 310018, China.
| | - Song Zhang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
21
|
Guo Q, Ke XX, Fang SX, Gao WL, Song YX, Chen C, Lu HL, Xu G. PAQR3 Inhibits Non-small Cell Lung Cancer Growth by Regulating the NF-κB/p53/Bax Axis. Front Cell Dev Biol 2020; 8:581919. [PMID: 33123538 PMCID: PMC7573313 DOI: 10.3389/fcell.2020.581919] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 09/14/2020] [Indexed: 12/18/2022] Open
Abstract
Background The expression of progestin and adipoQ receptor 3 (PAQR3) is generally downregulated in multiple tumors, which is associated with tumor progression and poor prognosis. Methods The clinical value of PAQR3 was analyzed using various databases and in 60 patients with non-small cell lung cancer (NSCLC). In addition, cell counting kit-8 (CCK-8), colony formation, and flow cytometry assays were used to evaluate the effect of PAQR3 on the growth of NSCLC cells in vitro. Gene set enrichment analysis (GSEA) was performed to investigate the possible mechanism through which PAQR3 is involved in the progression of lung cancer. Furthermore, western blotting was employed to verify the relevant mechanism. Results The expression of PAQR3 was decreased in 60 NSCLC patients and was related to the histological subtype, lymph node metastasis, tumor size, and diagnosis of NSCLC. Patients with lung adenocarcinoma with increased PAQR3 expression tended to have a better prognosis. Besides, PAQR3 inhibited proliferation, clone formation, and cycle transition in NSCLC cells, but induced apoptosis. The results of GSEA showed that PAQR3 regulated the progression of lung cancer by affecting cell cycle, DNA replication, and the p53 signaling pathway. We confirmed that PAQR3 overexpression inhibited the expression of NF-κB, while it increased the expression of p53, phospho-p53, and Bax. On the contrary, PAQR3 inhibition played an opposite role in these proteins. Conclusion PAQR3 inhibited the growth of NSCLC cells through the NF-κB/P53/Bax signaling pathway and might be a new target for diagnosis and treatment.
Collapse
Affiliation(s)
- Qiang Guo
- Department of Thoracic Surgery, The Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Xi-Xian Ke
- Department of Thoracic Surgery, The Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Shi-Xu Fang
- Department of Thoracic Surgery, The Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Wei-Long Gao
- Department of Cardiac Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Yong-Xiang Song
- Department of Thoracic Surgery, The Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Cheng Chen
- Department of Thoracic Surgery, The Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Hong-Ling Lu
- Department of Biochemistry, Zunyi Medical University, Zunyi, China
| | - Gang Xu
- Department of Thoracic Surgery, The Affiliated Hospital of Zunyi Medical University, Zunyi, China
| |
Collapse
|
22
|
Chen L, Li M, Li Q, Xu M, Zhong W. Knockdown of TRIM47 inhibits glioma cell proliferation, migration and invasion through the inactivation of Wnt/β-catenin pathway. Mol Cell Probes 2020; 53:101623. [PMID: 32603762 DOI: 10.1016/j.mcp.2020.101623] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 06/18/2020] [Indexed: 01/26/2023]
Abstract
Tripartite motif 47 (TRIM47), a member of the TRIM protein family, plays a crucial role in tumor development and progression. However, the role of TRIM47 in glioma has not been investigated. In the present study, we investigated the expression of TRIM47 in glioma and explored the role of TRIM47 in glioma proliferation and migration both in vitro and in vivo. Our results showed that TRIM47 expression was significantly increased in glioma tissues compared to the normal brain tissues. Knockdown of TRIM47 in U87 and U251 cells inhibited cell proliferation, as well as cell migration and invasion. TRIM47 knockdown caused significant increase in E-cadherin expression and remarkable decrease in N-cadherin and vimentin expressions in both U87 and U251 cells. In vivo assay proved that knockdown of TRIM47 prevented tumor growth of glioma. Furthermore, TRIM47 silencing significantly inhibited the activation of Wnt/β-catenin pathway. Additionally, treatment with LiCl reversed the inhibitory effects of TRIM47 knockdown on cell proliferation and migration in U87 cells. In conclusion, these findings indicated that knockdown of TRIM47 suppressed cell proliferation and metastasis of glioma both in vitro and in vivo. TRIM47 exerted an oncogenic role in glioma and might be a therapeutic target for the treatment of glioma.
Collapse
Affiliation(s)
- Lihong Chen
- International Medical Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China.
| | - Mengdan Li
- Cardiovascular Department, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Qi Li
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Min Xu
- International Medical Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Wenting Zhong
- International Medical Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| |
Collapse
|
23
|
Li L, Zhang S, Wei L, Wang Z, Ma W, Liu F, Shen Y, Zhang S, Zhang X, Hang Y, Qian Y. Anti-fibrotic effect of melittin on TRIM47 expression in human embryonic lung fibroblast through regulating TRIM47 pathway. Life Sci 2020; 256:117893. [PMID: 32502539 DOI: 10.1016/j.lfs.2020.117893] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/27/2020] [Accepted: 05/31/2020] [Indexed: 12/15/2022]
Abstract
AIMS To investigate the effect and underlying mechanism of melittin and tripartite motif (TRIM) family in human embryonic lung fibroblast (HELF). MATERIALS AND METHODS Lentiviral RNA interference vector and lentiviral overexpression vector were constructed and packaged by transfecting 293T cells; the proliferation of HELF was examined using Cell Counting Kit 8; Western blot and qRT-PCR were performed to examine protein and mRNA expression; the interaction with protein phosphatase magnesium-dependent 1A (PPM1A) was examined by Co-immunoprecipitation. KEY FINDINGS Compared with the control group, the mRNA expression of the TRIM6, TRIM8 and TRIM47 in the IPF group significantly increased. Melittin inhibited the mRNA expression and protein expression levels of TRIM47, the HELF proliferation, the hydroxyproline levels, and the phosphorylation of Smad2/3; the interference of TRIM47 inhibited the protein expression of Vimentin, α-SMA, CTGF, the phosphorylation of Smad2/3 and the synthesis of hydroxyproline; TRIM47 overexpression elevated the phosphorylation of Smad2/3, induced ubiquitination of PPM1A and decreased the expression level of PPM1A, while TRIM47 RNA interference reversed this result. SIGNIFICANCE Melittin has anti-fibrotic effect in HELF by directly reducing the phosphorylation of Smad2/3 or indirectly reducing the phosphorylation of Smad2/3 by decreasing the expression levels of TRIM47 whose overexpression induces ubiquitination of PPM1A.
Collapse
Affiliation(s)
- Li Li
- Department of Respiratory Disease, Baoshan Branch, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, China; Department of Respiratory Disease, Baoshan District Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai, China.
| | - Sufang Zhang
- Department of Traditional Chinese and Western Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Lei Wei
- Department of Respiratory Disease, Baoshan Branch, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, China; Department of Respiratory Disease, Baoshan District Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai, China
| | - Zhongfu Wang
- Department of Respiratory Disease, Baoshan Branch, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, China; Department of Respiratory Disease, Baoshan District Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai, China
| | - Wei Ma
- Department of Respiratory Disease, Baoshan Branch, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, China; Department of Respiratory Disease, Baoshan District Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai, China
| | - Fangying Liu
- Department of Respiratory Disease, Baoshan Branch, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, China; Department of Respiratory Disease, Baoshan District Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai, China
| | - Yanhua Shen
- Department of Respiratory Disease, Baoshan Branch, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, China; Department of Respiratory Disease, Baoshan District Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai, China
| | - Shanfang Zhang
- Department of Respiratory Disease, Baoshan Branch, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, China; Department of Respiratory Disease, Baoshan District Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai, China
| | - Xiulian Zhang
- Department of Respiratory Disease, Baoshan Branch, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, China; Department of Respiratory Disease, Baoshan District Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai, China
| | - Yu Hang
- Department of Respiratory Disease, Baoshan Branch, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, China; Department of Respiratory Disease, Baoshan District Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai, China
| | - Yechang Qian
- Department of Respiratory Disease, Baoshan Branch, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, China; Department of Respiratory Disease, Baoshan District Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai, China.
| |
Collapse
|
24
|
Han Y, Tan Y, Zhao Y, Zhang Y, He X, Yu L, Jiang H, Lu H, Tian H. TRIM23 overexpression is a poor prognostic factor and contributes to carcinogenesis in colorectal cancer. J Cell Mol Med 2020; 24:5491-5500. [PMID: 32227572 PMCID: PMC7214184 DOI: 10.1111/jcmm.15203] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 11/02/2019] [Accepted: 03/06/2020] [Indexed: 01/20/2023] Open
Abstract
The tripartite motif (TRIM) family proteins play a great role in carcinogenesis. However, the expression pattern, prognostic value and biological functions of tripartite motif containing 23 (TRIM23) in colorectal cancer (CRC) are poorly understood. Here, we found that TRIM23 is up‐regulated and associated with tumour size, lymph node metastasis, American Joint Committee on Cancer (AJCC) stage and poor prognosis in CRC. Multivariate Cox regression analyses revealed that TRIM23 overexpression could be identified as an independent prognostic factor for CRC. TRIM23 could promote the proliferation of CRC cell in vitro and in vivo; additionally, TRIM23 depletion induced G1phase arrest. Gene set enrichment analysis (GSEA) revealed that P53 and cell cycle signalling pathway‐related genes were enriched in patients with high TRIM23 expression levels. We show in this study that TRIM23 physically binds to P53 and enhances the ubiquitination of P53, thereby promoting tumour proliferation. Thus, our data indicated that TRIM23 acts as an oncogene in colorectal carcinogenesis and may provide a novel therapeutic target for CRC management.
Collapse
Affiliation(s)
- Yudong Han
- Department of Thoracic Surgery, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Ye Tan
- Department of Radiation Oncology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yuanyuan Zhao
- Department of Radiation Oncology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yongchun Zhang
- Department of Radiation Oncology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xinjia He
- Department of Radiation Oncology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Li Yu
- Department of Radiation Oncology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Haiping Jiang
- Department of Radiation Oncology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Haijun Lu
- Department of Radiation Oncology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Haiying Tian
- Department of Radiation Oncology, Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
25
|
Mandell MA, Saha B, Thompson TA. The Tripartite Nexus: Autophagy, Cancer, and Tripartite Motif-Containing Protein Family Members. Front Pharmacol 2020; 11:308. [PMID: 32226386 PMCID: PMC7081753 DOI: 10.3389/fphar.2020.00308] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 03/02/2020] [Indexed: 12/12/2022] Open
Abstract
Autophagy is a cellular degradative process that has multiple important actions in cancer. Autophagy modulation is under consideration as a promising new approach to cancer therapy. However, complete autophagy dysregulation is likely to have substantial undesirable side effects. Thus, more targeted approaches to autophagy modulation may prove clinically beneficial. One potential avenue to achieving this goal is to focus on the actions of tripartite motif-containing protein family members (TRIMs). TRIMs have key roles in an array of cellular processes, and their dysregulation has been extensively linked to cancer risk and prognosis. As detailed here, emerging data shows that TRIMs can play important yet context-dependent roles in controlling autophagy and in the selective targeting of autophagic substrates. This review covers how the autophagy-related actions of TRIM proteins contribute to cancer and the possibility of targeting TRIM-directed autophagy in cancer therapy.
Collapse
Affiliation(s)
- Michael A Mandell
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM, United States.,Autophagy, Inflammation and Metabolism Center of Biomedical Research Excellence, University of New Mexico Health Sciences Center, Albuquerque, NM, United States
| | - Bhaskar Saha
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM, United States
| | - Todd A Thompson
- Autophagy, Inflammation and Metabolism Center of Biomedical Research Excellence, University of New Mexico Health Sciences Center, Albuquerque, NM, United States.,Department of Pharmaceutical Sciences, University of New Mexico College of Pharmacy, Albuquerque, NM, United States
| |
Collapse
|
26
|
Xiang Y, Zhang S, Lu J, Zhang W, Cai M, Xiang J, Cai D. Ginkgolide B protects human pulmonary alveolar epithelial A549 cells from lipopolysaccharide-induced inflammatory responses by reducing TRIM37-mediated NF-κB activation. Biotechnol Appl Biochem 2020; 67:903-911. [PMID: 31691373 DOI: 10.1002/bab.1847] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 11/02/2019] [Indexed: 12/16/2022]
Abstract
The treatment options for acute stroke combined with pulmonary infection are limited. Clinically, there are several therapies to promote blood circulation and dissipate blood stasis; these treatment options include ginkgolide B (GB), which has PAF (platelet activating factor)-inhibiting effects. PAF-receptor (PAF-R) antagonists are used to treat a variety of inflammatory diseases; however, the potential of PAF-R antagonists as a treatment for lung infections remains unclear. The aim of the present study is to investigate the protective effect of GB on lipopolysaccharide-induced inflammatory responses in A549 human pulmonary alveolar epithelial cells (HPAEpiC) in vitro. Cell viability and apoptosis were measured by CCK-8 and flow cytometry. TRIM37, Caspase-3, and NF-κBp65 expression levels were measured by real-time PCR and Western blotting. The release of tumor necrosis factor-α and interleukin-1β was measured by ELISA. The data indicates that GB may reduce TRIM37 expression by antagonizing the PAF-R pathway, thereby inhibiting the activation of nuclear factor-κB and alleviating the inflammatory response of alveolar epithelial cells. This study is the first to provide insight into the therapeutic potential of GB and suggests that clinical application of GB in acute stroke combined with pulmonary inflammation may be efficacious.
Collapse
Affiliation(s)
- Yijin Xiang
- Department of Integrative Medicine, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China.,Institutes of Integrative Medicine, Fudan University, Shanghai, People's Republic of China.,Development Project of Shanghai Peak Disciplines-Integrative Medicine, Shanghai, People's Republic of China
| | - Shaoyan Zhang
- Department of Respiratory, Longhua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Jia Lu
- Department of Traditional Chinese Medicine, Shanghai Jiangwan Town Community Health Service Center, Shanghai, People's Republic of China
| | - Wen Zhang
- Department of Integrative Medicine, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China.,Institutes of Integrative Medicine, Fudan University, Shanghai, People's Republic of China.,Development Project of Shanghai Peak Disciplines-Integrative Medicine, Shanghai, People's Republic of China
| | - Min Cai
- Department of Integrative Medicine, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China.,Institutes of Integrative Medicine, Fudan University, Shanghai, People's Republic of China.,Development Project of Shanghai Peak Disciplines-Integrative Medicine, Shanghai, People's Republic of China
| | - Jun Xiang
- Department of Integrative Medicine, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China.,Institutes of Integrative Medicine, Fudan University, Shanghai, People's Republic of China.,Development Project of Shanghai Peak Disciplines-Integrative Medicine, Shanghai, People's Republic of China
| | - Dingfang Cai
- Department of Integrative Medicine, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China.,Institutes of Integrative Medicine, Fudan University, Shanghai, People's Republic of China.,Development Project of Shanghai Peak Disciplines-Integrative Medicine, Shanghai, People's Republic of China
| |
Collapse
|
27
|
Wang Y, Liu C, Xie Z, Lu H. Knockdown of TRIM47 inhibits breast cancer tumorigenesis and progression through the inactivation of PI3K/Akt pathway. Chem Biol Interact 2020; 317:108960. [PMID: 31981573 DOI: 10.1016/j.cbi.2020.108960] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 01/08/2020] [Accepted: 01/19/2020] [Indexed: 01/25/2023]
Abstract
Tripartite motif (TRIM) protein family is a group of proteins, which belongs to RING family of ubiquitin E3 ligases. TRIM proteins are involved in oncogenesis, while the roles in different cancers are controversial. However, the expression pattern and biological functions of TRIM47 in breast cancer remain unclear. In the present study, we aimed to investigate the function of TRIM47 in the progression and metastasis of breast cancer. TRIM47 was found to be significantly up-regulated in breast cancer tissues and cell lines. TRIM47 knockdown in breast cancer cell lines significantly inhibited cell proliferation, migration, and invasion. Besides, TRIM47 knockdown regulated the expressions of the epithelial-mesenchymal transition (EMT)-related markers including increase in E-cadherin, and decrease in N-cadherin, vimentin and Snail. Xenograft tumor assay proved that TRIM47 knockdown also suppressed tumor growth in vivo. Furthermore, TRIM47 knockdown markedly inhibited the activation of PI3K/Akt signaling pathway, while the effects of TRIM47 knockdown were reversed by the treatment of insulin-like growth factor-1 (IGF-1), which is an activator of PI3K/Akt. Taken together, the findings indicated that knockdown of TRIM47 suppressed tumorigenesis and progression of breast cancer through the inhibition of PI3K/Akt pathway, and suggested that TRIM47 might be a potential therapy target for breast cancer treatment.
Collapse
Affiliation(s)
- Yaqiu Wang
- Department of Oncology, Huaihe Hospital of Henan University, Kaifeng, 475000, China
| | - Can Liu
- Department of Oncology, Huaihe Hospital of Henan University, Kaifeng, 475000, China
| | - Zhihui Xie
- Department of Oncology, Huaihe Hospital of Henan University, Kaifeng, 475000, China
| | - Hong Lu
- Department of Oncology, Huaihe Hospital of Henan University, Kaifeng, 475000, China.
| |
Collapse
|
28
|
Tian H, Zhang D, Xu R, Qin Y, Lan Y, Jiao W, Han Y. [Expression of TRIM59 in Non-small Cell Lung Cancer and Its Correlation with Prognosis]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2020; 23:21-28. [PMID: 31948534 PMCID: PMC7007392 DOI: 10.3779/j.issn.1009-3419.2020.01.04] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND TRIM proteins are important members of E3 ubiquitin ligases, and many studies have confirmed that TRIM family members play an important role in the development of various tumors. We found that TRIM59 expression level in non-small cell lung cancer (NSCLC) was significantly increased through second-generation sequencing. The purpose of this study was to investigate the expression of TRIM59 in NSCLC and its relationship with the clinicopathological parameters as well as the prognosis of patients. METHODS The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) datasets were excavated to analyze the expression of TRIM59 mRNA in NSCLC and its relationship with the prognosis of patients; The expression of TRIM59 protein in 90 tumor tissues and adjacent tissues was detected by immunohistochemical staining, and the relationship between the expression of TRIM59 protein and clinicopathological parameters and prognosis was analyzed. RESULTS Overexpression of TRIM59 mRNA in tumor tissues predicted poor prognosis. The expression level of TRIM59 protein was significantly higher in tumor tissues than in adjacent tissues, and TRIM59 protein expression was correlated with tumor size (P=0.007), tumor differentiation (P=0.009), tumor-node-metastasis (TNM) stage (P=0.003) and lymph node metastasis (P=0.003). Multivariate Cox regression analyses showed that along with TNM stage, overexpression of TRIM59 could be considered an independent prognostic factor for NSCLC patients. CONCLUSIONS The expression of TRIM59 is closely related to the prognosis of NSCLC patients, and it is an independent risk factor for NSCLC patients.
Collapse
Affiliation(s)
- Haiying Tian
- Department of Radiation Oncology, Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Dongyang Zhang
- Department of Thoracic Surgery, Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Rongjian Xu
- Department of Thoracic Surgery, Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Yi Qin
- Department of Thoracic Surgery, Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Yaliang Lan
- Department of Thoracic Surgery, Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Wenjie Jiao
- Department of Thoracic Surgery, Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Yudong Han
- Department of Thoracic Surgery, Affiliated Hospital of Qingdao University, Qingdao 266000, China
| |
Collapse
|
29
|
Liang Q, Tang C, Tang M, Zhang Q, Gao Y, Ge Z. TRIM47 is up-regulated in colorectal cancer, promoting ubiquitination and degradation of SMAD4. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:159. [PMID: 30979374 PMCID: PMC6461818 DOI: 10.1186/s13046-019-1143-x] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 03/18/2019] [Indexed: 02/06/2023]
Abstract
Background Tripartite motif 47 (TRIM47), a member of the TRIM family proteins, plays a key role in many types of cancers including colorectal cancer (CRC). We found that levels of TRIM47 mRNA and protein were increased significantly in colorectal tumors compared with nontumor tissues and the increased levels were associated with advanced tumor stage and poor outcome. Methods We used quantitative polymerase chain reaction and western blot to measure levels of TRIM47 mRNA and protein in human colorectal cancer and paired normal tissues. TRIM47 was knocked down and overexpressed in colorectal cancer cells, and the effects on cell proliferation, migration and growth of xenograft tumors in nude mice were assessed. The signaling pathways were examined by western blot and immunoprecipitation assays. Results TRIM47 promoted CRC proliferation and metastasis in vitro and in vivo as an oncogene. Mechanistically, TRIM47 interacted physically with SMAD4, increasing its ubiquitination and degradation. Loss of SMAD4 leaded to up-regulation of CCL15 expression and caused growth and invasion in human CRC cells through the CCL15-CCR1 signaling. Moreover, TRIM47 overexpression played a role in CRC chemoresistance in response to 5-FU therapy. Conclusions Our study demonstrated a functional role of the TRIM47-SMAD4-CCL15 axis in CRC progression and suggested a potential target for CRC therapy. Electronic supplementary material The online version of this article (10.1186/s13046-019-1143-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Qian Liang
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, 200001, China
| | - Chaotao Tang
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, 200001, China
| | - Mingyu Tang
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, 200001, China
| | - Qingwei Zhang
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, 200001, China
| | - Yunjie Gao
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, 200001, China
| | - Zhizheng Ge
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, 200001, China.
| |
Collapse
|
30
|
Li Y, Deng L, Zhao X, Li B, Ren D, Yu L, Pan H, Gong Q, Song L, Zhou X, Dai T. Tripartite motif-containing 37 (TRIM37) promotes the aggressiveness of non-small-cell lung cancer cells by activating the NF-κB pathway. J Pathol 2018; 246:366-378. [PMID: 30043491 DOI: 10.1002/path.5144] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 05/25/2018] [Accepted: 06/28/2018] [Indexed: 12/15/2022]
Abstract
Non-small-cell lung cancer (NSCLC), in which the NF-κB pathway is constitutively activated, is one of the most common malignancies. Herein, we identify an E3 ubiquitin ligase, tripartite motif-containing 37 (TRIM37), participating in the K63 polyubiquitination of TRAF2, which is a significant step in the activation of NF-κB signaling. Both the mRNA and the protein expression levels of TRIM37 were much higher in NSCLC cell lines and tissues than in normal bronchial epithelial cells and matched adjacent non-tumor tissues. TRIM37 expression correlated closely with clinical stage and poor survival in NSCLC. Overexpression of TRIM37 antagonized cisplatin-induced apoptosis, induced angiogenesis and proliferation, and increased the aggressiveness of NSCLC cells in vitro and in vivo, whereas inhibition of TRIM37 led to the opposite effects. Gene set enrichment analysis (GSEA) showed that TRIM37 expression significantly correlated with NF-κB signaling. Furthermore, we found that TRIM37 bound to TRAF2 and promoted K63-linked ubiquitination of TRAF2, sustaining the eventual activation of the NF-κB pathway. Mutation in the ring finger domain of TRIM37, a hallmark of E3 ubiquitin ligases, led to loss of the ability to promote K63 polyubiquitination of TRAF2 and activate NF-κB signaling. Taken together, our findings provide evidence that TRIM37 plays an important role in constitutive NF-κB pathway activation and could serve as a prognostic factor and therapeutic target in NSCLC. Copyright © 2018 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Yun Li
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, PR China.,Department of Immunobiology, Jinan University, Guangzhou, PR China
| | - Liwen Deng
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, PR China
| | - Xiaohui Zhao
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, PR China
| | - Bohan Li
- Department of Microsurgery, Trauma and Hand Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, PR China
| | - Dong Ren
- State Key Laboratory of Oncology in Southern China, Department of Experimental Research, Cancer Centre, Sun Yat-sen University, Guangzhou, PR China
| | - Lihong Yu
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, PR China
| | - Hehai Pan
- Department of Microsurgery, Trauma and Hand Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, PR China
| | - Qing Gong
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, PR China
| | - Libing Song
- State Key Laboratory of Oncology in Southern China, Department of Experimental Research, Cancer Centre, Sun Yat-sen University, Guangzhou, PR China.,Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, PR China
| | - Xiang Zhou
- Department of Microsurgery, Trauma and Hand Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, PR China
| | - Ting Dai
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, PR China
| |
Collapse
|
31
|
Huang WQ, Yi KH, Li Z, Wang H, Li ML, Cai LL, Lin HN, Lin Q, Tzeng CM. DNA Methylation Profiling Reveals the Change of Inflammation-Associated ZC3H12D in Leukoaraiosis. Front Aging Neurosci 2018; 10:143. [PMID: 29875652 PMCID: PMC5974056 DOI: 10.3389/fnagi.2018.00143] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Accepted: 04/27/2018] [Indexed: 01/04/2023] Open
Abstract
Leukoaraiosis (LA) is neuroimaging abnormalities of the cerebral white matter in elderly people. However, the molecular mechanisms underlying the cerebral white matter lesions remain unclear. Here, we reported an epigenetic basis and potential pathogenesis for this complex illness. 317 differentially methylated genes were identified to distinguish the mechanism of occurrence and progression of LA. Gene-Ontology pathway analysis highlighted that those genes with epigenetic changes are mostly involved in four major signaling pathways including inflammation and immune response-associated processes (antigen processing and presentation, T cell costimulation and interferon-γ-mediated signaling pathway), synapse assembly, synaptic transmission and cell adhesion. Moreover, immune response seems to be specific to LA occurrence and subsequent disruption of nervous system functions could drive the progression of LA. The significant change of inflammation-associated ZC3H12D in promoter methylation and mRNA expression was implicated in the occurrence of LA, suggesting its potential functions in the molecular mechanism of LA. Our results suggested that inflammation-associated signaling pathways were involved in the pathogenesis of LA and ZC3H12D may contribute to such inflammatory process underlying LA, and further echoed it as a neuroinflammatory disorder in central nervous system (CNS).
Collapse
Affiliation(s)
- Wen-Qing Huang
- Translational Medicine Research Center, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China.,Key Laboratory for Cancer T-Cell Theranostics and Clinical Translation, Xiamen University, Fujian, China.,Department of Physiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Ke-Hui Yi
- Department of Neurology, The First Affiliated Hospital of Xiamen University, Xiamen, China.,Department of Neurology, The First Clinical College of Fujian Medical University, Fuzhou, China
| | - Zhi Li
- Translational Medicine Research Center, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China.,Key Laboratory for Cancer T-Cell Theranostics and Clinical Translation, Xiamen University, Fujian, China
| | - Han Wang
- Translational Medicine Research Center, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China.,Key Laboratory for Cancer T-Cell Theranostics and Clinical Translation, Xiamen University, Fujian, China
| | - Ming-Li Li
- Translational Medicine Research Center, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China.,Key Laboratory for Cancer T-Cell Theranostics and Clinical Translation, Xiamen University, Fujian, China
| | - Liang-Liang Cai
- Translational Medicine Research Center, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China.,Key Laboratory for Cancer T-Cell Theranostics and Clinical Translation, Xiamen University, Fujian, China
| | - Hui-Nuan Lin
- Translational Medicine Research Center, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China.,Key Laboratory for Cancer T-Cell Theranostics and Clinical Translation, Xiamen University, Fujian, China
| | - Qing Lin
- Translational Medicine Research Center, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China.,Department of Neurology, The First Affiliated Hospital of Xiamen University, Xiamen, China.,Department of Neurology, The First Clinical College of Fujian Medical University, Fuzhou, China
| | - Chi-Meng Tzeng
- Translational Medicine Research Center, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China.,Key Laboratory for Cancer T-Cell Theranostics and Clinical Translation, Xiamen University, Fujian, China.,INNOVA Cell: TDx/Clinics and TRANSLA Health Group, Yangzhou, China.,College of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, China.,Jiansu Provincial Institute of Translation Medicine and Women-Child Health Care Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|