1
|
Konuma T, Zhou MM. Distinct Histone H3 Lysine 27 Modifications Dictate Different Outcomes of Gene Transcription. J Mol Biol 2024; 436:168376. [PMID: 38056822 DOI: 10.1016/j.jmb.2023.168376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/26/2023] [Accepted: 11/27/2023] [Indexed: 12/08/2023]
Abstract
Site-specific histone modifications have long been recognized to play an important role in directing gene transcription in chromatin in biology of health and disease. However, concrete illustration of how different histone modifications in a site-specific manner dictate gene transcription outcomes, as postulated in the influential "Histone code hypothesis", introduced by Allis and colleagues in 2000, has been lacking. In this review, we summarize our latest understanding of the dynamic regulation of gene transcriptional activation, silence, and repression in chromatin that is directed distinctively by histone H3 lysine 27 acetylation, methylation, and crotonylation, respectively. This represents a special example of a long-anticipated verification of the "Histone code hypothesis."
Collapse
Affiliation(s)
- Tsuyoshi Konuma
- Graduate School of Medical Life Science, Yokohama 230-0045, Japan; School of Science, Yokohama City University, Yokohama 230-0045, Japan
| | - Ming-Ming Zhou
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
2
|
Ji K, Li L, Liu H, Shen Y, Jiang J, Zhang M, Teng H, Yan X, Zhang Y, Cai Y, Zhou H. Unveiling the role of GAS41 in cancer progression. Cancer Cell Int 2023; 23:245. [PMID: 37853482 PMCID: PMC10583379 DOI: 10.1186/s12935-023-03098-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 10/12/2023] [Indexed: 10/20/2023] Open
Abstract
GAS41, a member of the human YEATS domain family, plays a pivotal role in human cancer development. It serves as a highly promising epigenetic reader, facilitating precise regulation of cell growth and development by recognizing essential histone modifications, including histone acetylation, benzoylation, succinylation, and crotonylation. Functional readouts of these histone modifications often coincide with cancer progression. In addition, GAS41 functions as a novel oncogene, participating in numerous signaling pathways. Here, we summarize the epigenetic functions of GAS41 and its role in the carcinoma progression. Moving forward, elucidating the downstream target oncogenes regulated by GAS41 and the developing small molecule inhibitors based on the distinctive YEATS recognition properties will be pivotal in advancing this research field.
Collapse
Affiliation(s)
- Kangkang Ji
- Department of Central Laboratory, Binhai County People's Hospital, Yancheng, 224000, China
| | - Li Li
- Department of Central Laboratory, Binhai County People's Hospital, Yancheng, 224000, China
| | - Hui Liu
- Department of Central Laboratory, Binhai County People's Hospital, Yancheng, 224000, China
| | - Yucheng Shen
- Department of Central Laboratory, Binhai County People's Hospital, Yancheng, 224000, China
| | - Jian Jiang
- Department of Central Laboratory, Binhai County People's Hospital, Yancheng, 224000, China
| | - Minglei Zhang
- Department of Central Laboratory, Binhai County People's Hospital, Yancheng, 224000, China
| | - Hongwei Teng
- Department of Central Laboratory, Binhai County People's Hospital, Yancheng, 224000, China
| | - Xun Yan
- Department of Central Laboratory, Binhai County People's Hospital, Yancheng, 224000, China
| | - Yanhua Zhang
- Department of Central Laboratory, Binhai County People's Hospital, Yancheng, 224000, China
| | - Yong Cai
- Department of Central Laboratory, Binhai County People's Hospital, Yancheng, 224000, China
| | - Hai Zhou
- Department of Central Laboratory, Binhai County People's Hospital, Yancheng, 224000, China.
| |
Collapse
|
3
|
Liu N, Konuma T, Sharma R, Wang D, Zhao N, Cao L, Ju Y, Liu D, Wang S, Bosch A, Sun Y, Zhang S, Ji D, Nagatoishi S, Suzuki N, Kikuchi M, Wakamori M, Zhao C, Ren C, Zhou TJ, Xu Y, Meslamani J, Fu S, Umehara T, Tsumoto K, Akashi S, Zeng L, Roeder RG, Walsh MJ, Zhang Q, Zhou MM. Histone H3 lysine 27 crotonylation mediates gene transcriptional repression in chromatin. Mol Cell 2023; 83:2206-2221.e11. [PMID: 37311463 PMCID: PMC11138481 DOI: 10.1016/j.molcel.2023.05.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 02/22/2023] [Accepted: 05/16/2023] [Indexed: 06/15/2023]
Abstract
Histone lysine acylation, including acetylation and crotonylation, plays a pivotal role in gene transcription in health and diseases. However, our understanding of histone lysine acylation has been limited to gene transcriptional activation. Here, we report that histone H3 lysine 27 crotonylation (H3K27cr) directs gene transcriptional repression rather than activation. Specifically, H3K27cr in chromatin is selectively recognized by the YEATS domain of GAS41 in complex with SIN3A-HDAC1 co-repressors. Proto-oncogenic transcription factor MYC recruits GAS41/SIN3A-HDAC1 complex to repress genes in chromatin, including cell-cycle inhibitor p21. GAS41 knockout or H3K27cr-binding depletion results in p21 de-repression, cell-cycle arrest, and tumor growth inhibition in mice, explaining a causal relationship between GAS41 and MYC gene amplification and p21 downregulation in colorectal cancer. Our study suggests that H3K27 crotonylation signifies a previously unrecognized, distinct chromatin state for gene transcriptional repression in contrast to H3K27 trimethylation for transcriptional silencing and H3K27 acetylation for transcriptional activation.
Collapse
Affiliation(s)
- Nan Liu
- Bethune Institute of Epigenetic Medicine, First Hospital of Jilin University, Changchun 130061, China; International Center of Future Science, Jilin University, Changchun 130012, China.
| | - Tsuyoshi Konuma
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Graduate School of Medical Life Science, Yokohama City University, Yokohama 230-0045, Japan; School of Science, Yokohama City University, Yokohama 230-0045, Japan
| | - Rajal Sharma
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Deyu Wang
- Bethune Institute of Epigenetic Medicine, First Hospital of Jilin University, Changchun 130061, China
| | - Nan Zhao
- Bethune Institute of Epigenetic Medicine, First Hospital of Jilin University, Changchun 130061, China
| | - Lingling Cao
- Bethune Institute of Epigenetic Medicine, First Hospital of Jilin University, Changchun 130061, China
| | - Ying Ju
- Bethune Institute of Epigenetic Medicine, First Hospital of Jilin University, Changchun 130061, China
| | - Di Liu
- Bethune Institute of Epigenetic Medicine, First Hospital of Jilin University, Changchun 130061, China
| | - Shuai Wang
- Bethune Institute of Epigenetic Medicine, First Hospital of Jilin University, Changchun 130061, China
| | - Almudena Bosch
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Yifei Sun
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Siwei Zhang
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun 130000, China
| | - Donglei Ji
- Bethune Institute of Epigenetic Medicine, First Hospital of Jilin University, Changchun 130061, China
| | - Satoru Nagatoishi
- Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Noa Suzuki
- School of Science, Yokohama City University, Yokohama 230-0045, Japan
| | - Masaki Kikuchi
- RIKEN Center for Biosystems Dynamics Research, Yokohama 230-0045, Japan
| | | | - Chengcheng Zhao
- Bethune Institute of Epigenetic Medicine, First Hospital of Jilin University, Changchun 130061, China
| | - Chunyan Ren
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Thomas Jiachi Zhou
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Yaoyao Xu
- Bethune Institute of Epigenetic Medicine, First Hospital of Jilin University, Changchun 130061, China
| | - Jamel Meslamani
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Shibo Fu
- Bethune Institute of Epigenetic Medicine, First Hospital of Jilin University, Changchun 130061, China; International Center of Future Science, Jilin University, Changchun 130012, China
| | - Takashi Umehara
- RIKEN Center for Biosystems Dynamics Research, Yokohama 230-0045, Japan
| | - Kouhei Tsumoto
- Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan; Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Satoko Akashi
- Graduate School of Medical Life Science, Yokohama City University, Yokohama 230-0045, Japan; School of Science, Yokohama City University, Yokohama 230-0045, Japan
| | - Lei Zeng
- Bethune Institute of Epigenetic Medicine, First Hospital of Jilin University, Changchun 130061, China; International Center of Future Science, Jilin University, Changchun 130012, China
| | - Robert G Roeder
- Laboratory of Biochemistry and Molecular Biology, the Rockefeller University, New Nork, NY 10065, USA
| | - Martin J Walsh
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Qiang Zhang
- Bethune Institute of Epigenetic Medicine, First Hospital of Jilin University, Changchun 130061, China; International Center of Future Science, Jilin University, Changchun 130012, China.
| | - Ming-Ming Zhou
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
4
|
Xian Q, Song Y, Gui C, Zhou Y. Mechanistic insights into genomic structure and functions of a novel oncogene YEATS4. Front Cell Dev Biol 2023; 11:1192139. [PMID: 37435030 PMCID: PMC10332269 DOI: 10.3389/fcell.2023.1192139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 06/12/2023] [Indexed: 07/13/2023] Open
Abstract
As a novel oncogene, the role of YEATS domain-containing protein 4 (YEATS4) in the occurrence, development, and treatment of tumors is now beginning to be appreciated. YEATS4 plays an important role in regulating DNA repair during replication. The upregulation of YEAST4 promotes DNA damage repair and prevents cell death, whereas its downregulation inhibits DNA replication and induces apoptosis. Additionally, accumulating evidence indicates that the aberrant activation of YEATS4 leads to changes in drug resistance, epithelial-mesenchymal transition and also in the migration and invasion capacity of tumor cells. Therefore, specific inhibition of the expression or activity of YEATS4 protein may be an effective strategy for inhibiting the proliferation, motility, differentiation, and/or survival of tumor cells. Taken together, YEATS4 has emerged as a potential target for multiple cancers and is an attractive protein for the development of small-molecule inhibitors. However, research on YEAST4 in tumor-related fields is limited and its biological functions, metabolism, and the regulatory mechanism of YEATS4 in numerous cancers remain undetermined. This review comprehensively and extensively summarizes the functions, structure and oncogenic roles of YEATS4 in cancer progression and aims to further contribute to the study of its underlying molecular mechanism and targeted drugs.
Collapse
Affiliation(s)
- Qingqing Xian
- Department of Clinical Laboratory Diagnosis, Shandong University, Jinan, Shandong, China
| | - Yiying Song
- Department of Clinical Laboratory Diagnosis, Shandong University, Jinan, Shandong, China
| | - Chengzhi Gui
- Department of Clinical Laboratory Diagnosis, Shandong First Medical University, Jinan, Shandong, China
| | - Yunying Zhou
- Department of Clinical Laboratory Diagnosis, Shandong University, Jinan, Shandong, China
- Department of Clinical Laboratory Diagnosis, Shandong First Medical University, Jinan, Shandong, China
- Medical Research and Laboratory Diagnostic Center, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| |
Collapse
|
5
|
Londregan AT, Aitmakhanova K, Bennett J, Byrnes LJ, Canterbury DP, Cheng X, Christott T, Clemens J, Coffey SB, Dias JM, Dowling MS, Farnie G, Fedorov O, Fennell KF, Gamble V, Gileadi C, Giroud C, Harris MR, Hollingshead BD, Huber K, Korczynska M, Lapham K, Loria PM, Narayanan A, Owen DR, Raux B, Sahasrabudhe PV, Ruggeri RB, Sáez LD, Stock IA, Thuma BA, Tsai A, Varghese AE. Discovery of High-Affinity Small-Molecule Binders of the Epigenetic Reader YEATS4. J Med Chem 2023; 66:460-472. [PMID: 36562986 DOI: 10.1021/acs.jmedchem.2c01421] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A series of small-molecule YEATS4 binders have been discovered as part of an ongoing research effort to generate high-quality probe molecules for emerging and/or challenging epigenetic targets. Analogues such as 4d and 4e demonstrate excellent potency and selectivity for YEATS4 binding versus YEATS1,2,3 and exhibit good physical properties and in vitro safety profiles. A new X-ray crystal structure confirms direct binding of this chemical series to YEATS4 at the lysine acetylation recognition site of the YEATS domain. Multiple analogues engage YEATS4 with nanomolar potency in a whole-cell nanoluciferase bioluminescent resonance energy transfer assay. Rodent pharmacokinetic studies demonstrate the competency of several analogues as in vivo-capable binders.
Collapse
Affiliation(s)
- Allyn T Londregan
- Pfizer Medicine Design, Pfizer Worldwide Research and Development, Cambridge, Massachusetts 02139, United States
| | | | - James Bennett
- Centre for Medicines Discovery, NDM, University of Oxford, Oxford OX3 7DQ, U.K
| | - Laura J Byrnes
- Pfizer Worldwide Research and Development, Groton, Connecticut 06340, United States
| | - Daniel P Canterbury
- Pfizer Worldwide Research and Development, Groton, Connecticut 06340, United States
| | - Xiayun Cheng
- Pfizer Worldwide Research and Development, Cambridge, Massachusetts 02139, United States
| | - Thomas Christott
- Centre for Medicines Discovery, NDM, University of Oxford, Oxford OX3 7DQ, U.K
| | - Jennifer Clemens
- Pfizer Worldwide Research and Development, Groton, Connecticut 06340, United States
| | - Steven B Coffey
- Pfizer Worldwide Research and Development, Groton, Connecticut 06340, United States
| | - João M Dias
- Pfizer Worldwide Research and Development, Groton, Connecticut 06340, United States
| | - Matthew S Dowling
- Pfizer Worldwide Research and Development, Groton, Connecticut 06340, United States
| | - Gillian Farnie
- Centre for Medicines Discovery, NDM, University of Oxford, Oxford OX3 7DQ, U.K
| | - Oleg Fedorov
- Centre for Medicines Discovery, NDM, University of Oxford, Oxford OX3 7DQ, U.K
| | - Kimberly F Fennell
- Pfizer Worldwide Research and Development, Groton, Connecticut 06340, United States
| | - Vicki Gamble
- Centre for Medicines Discovery, NDM, University of Oxford, Oxford OX3 7DQ, U.K
| | - Carina Gileadi
- Centre for Medicines Discovery, NDM, University of Oxford, Oxford OX3 7DQ, U.K
| | - Charline Giroud
- Centre for Medicines Discovery, NDM, University of Oxford, Oxford OX3 7DQ, U.K
| | - Michael R Harris
- Pfizer Worldwide Research and Development, Groton, Connecticut 06340, United States
| | - Brett D Hollingshead
- Pfizer Worldwide Research and Development, Cambridge, Massachusetts 02139, United States
| | - Kilian Huber
- Centre for Medicines Discovery, NDM, University of Oxford, Oxford OX3 7DQ, U.K
| | - Magdalena Korczynska
- Pfizer Worldwide Research and Development, Cambridge, Massachusetts 02139, United States
| | - Kimberly Lapham
- Pfizer Worldwide Research and Development, Groton, Connecticut 06340, United States
| | - Paula M Loria
- Pfizer Worldwide Research and Development, Groton, Connecticut 06340, United States
| | - Arjun Narayanan
- Pfizer Worldwide Research and Development, Cambridge, Massachusetts 02139, United States
| | - Dafydd R Owen
- Pfizer Worldwide Research and Development, Cambridge, Massachusetts 02139, United States
| | - Brigitt Raux
- Centre for Medicines Discovery, NDM, University of Oxford, Oxford OX3 7DQ, U.K
| | - Parag V Sahasrabudhe
- Pfizer Worldwide Research and Development, Groton, Connecticut 06340, United States
| | - Roger B Ruggeri
- Pfizer Worldwide Research and Development, Groton, Connecticut 06340, United States
| | - Laura Díaz Sáez
- Centre for Medicines Discovery, NDM, University of Oxford, Oxford OX3 7DQ, U.K
| | - Ingrid A Stock
- Pfizer Worldwide Research and Development, Groton, Connecticut 06340, United States
| | - Benjamin A Thuma
- Pfizer Worldwide Research and Development, Groton, Connecticut 06340, United States
| | - Andy Tsai
- Pfizer Worldwide Research and Development, Groton, Connecticut 06340, United States
| | - Alison E Varghese
- Pfizer Worldwide Research and Development, Groton, Connecticut 06340, United States
| |
Collapse
|
6
|
Yeewa R, Chaiya P, Jantrapirom S, Shotelersuk V, Lo Piccolo L. Multifaceted roles of YEATS domain-containing proteins and novel links to neurological diseases. Cell Mol Life Sci 2022; 79:183. [PMID: 35279775 PMCID: PMC11071958 DOI: 10.1007/s00018-022-04218-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 02/17/2022] [Accepted: 02/22/2022] [Indexed: 11/29/2022]
Abstract
The so-called Yaf9, ENL, AF9, Taf14, and Sas5 (YEATS) domain-containing proteins, hereafter referred to as YD proteins, take control over the transcription by multiple steps of regulation either involving epigenetic remodelling of chromatin or guiding the processivity of RNA polymerase II to facilitate elongation-coupled mRNA 3' processing. Interestingly, an increasing amount of evidence suggest a wider repertoire of YD protein's functions spanning from non-coding RNA regulation, RNA-binding proteins networking, post-translational regulation of a few signalling transduction proteins and the spindle pole formation. However, such a large set of non-canonical roles is still poorly characterized. Notably, four paralogous of human YEATS domain family members, namely eleven-nineteen-leukaemia (ENL), ALL1-fused gene from chromosome 9 protein (AF9), YEATS2 and glioma amplified sequence 41 (GAS41), have a strong link to cancer yet new findings also highlight a potential novel role in neurological diseases. Here, in an attempt to more comprehensively understand the complexity of four YD proteins and to gain more insight into the novel functions they may accomplish in the neurons, we summarized the YD protein's networks, systematically searched and reviewed the YD genetic variants associated with neurodevelopmental disorders and finally interrogated the model organism Drosophila melanogaster.
Collapse
Affiliation(s)
- Ranchana Yeewa
- Centre of Multidisciplinary Technology for Advanced Medicine (CMUTEAM), Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Pawita Chaiya
- Centre of Multidisciplinary Technology for Advanced Medicine (CMUTEAM), Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Salinee Jantrapirom
- Drosophila Centre for Human Diseases and Drug Discovery (DHD), Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Vorasuk Shotelersuk
- Centre of Excellence for Medical Genomics, Medical Genomics Cluster, Department of Paediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
- Excellence Centre for Genomics and Precision Medicine, The Thai Red Cross Society, King Chulalongkorn Memorial Hospital, Bangkok, 10330, Thailand
| | - Luca Lo Piccolo
- Centre of Multidisciplinary Technology for Advanced Medicine (CMUTEAM), Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.
- Musculoskeletal Science and Translational Research Centre (MSTR), Faculty of Medicine, Chiang Mai University, Muang, Chiang Mai, 50200, Thailand.
| |
Collapse
|
7
|
Li N, Li C, Li D, Dang LH, Ren K, Du QX, Cao J, Jin QQ, Wang YY, Bai RF, Sun JH. Identifying biomarkers for evaluating wound extent and age in the contused muscle of rats using microarray analysis: a pilot study. PeerJ 2022; 9:e12709. [PMID: 35036173 PMCID: PMC8710249 DOI: 10.7717/peerj.12709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 12/08/2021] [Indexed: 11/20/2022] Open
Abstract
Wound age estimation is still one of the most important and significant challenges in forensic practice. The extent of wound damage greatly affects the accuracy and reliability of wound age estimation, so it is important to find effective biomarkers to help diagnose wound degree and wound age. In the present study, the gene expression profiles of both mild and severe injuries in 33 rats were assayed at 0, 1, 3, 24, 48, and 168 hours using the Affymetrix microarray system to provide biomarkers for the evaluation of wound age and the extent of the wound. After obtaining thousands of differentially expressed genes, a principal component analysis, the least absolute shrinkage and selection operator, and a time-series analysis were used to select the most predictive prognostic genes. Finally, 15 genes were screened for evaluating the extent of wound damage, and the top 60 genes were also screened for wound age estimation in mild and severe injury. Selected indicators showed good diagnostic performance for identifying the extent of the wound and wound age in a Fisher discriminant analysis. A function analysis showed that the candidate genes were mainly related to cell proliferation and the inflammatory response, primarily IL-17 and the Hematopoietic cell lineage signalling pathway. The results revealed that these genes play an essential role in wound-healing and yield helpful and valuable potential biomarkers for further targeted studies.
Collapse
Affiliation(s)
- Na Li
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, China
| | - Chun Li
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, China
| | - Dan Li
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, China
| | - Li-Hong Dang
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, China
| | - Kang Ren
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, China
| | - Qiu-Xiang Du
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, China
| | - Jie Cao
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, China
| | - Qian-Qian Jin
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, China
| | - Ying-Yuan Wang
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, China
| | - Ru-Feng Bai
- Key Laboratory of Evidence Science, China University of Political Science and Law, Beijing, China
| | - Jun-Hong Sun
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, China
| |
Collapse
|
8
|
Li Y, Li L, Wu J, Qin J, Dai X, Jin T, Xu J. YEATS4 is associated with poor prognosis and promotes epithelial-to-mesenchymal transition and metastasis by regulating ZEB1 expression in breast cancer. Am J Cancer Res 2021; 11:416-440. [PMID: 33575079 PMCID: PMC7868763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 12/04/2020] [Indexed: 06/12/2023] Open
Abstract
YEATS domain-containing protein 4 (YEATS4) is implicated in several oncogenic signaling pathways, and its expression is involved in various types of cancer; regardless, the pathophysiologic effects of YEATS4 on breast cancer remain unclear. This study finds that YEATS4 is increasingly expressed with breast cancer progression, and its expression is related to poor outcome and distant metastasis. YEATS4 overexpression in breast cancer cells strengthens their malignant characteristics in vitro and in vivo, particularly inducing epithelial-to-mesenchymal transition (EMT) and consequently, metastatic capability in breast cancer cells. By contrast, deleting YEATS4 in breast cancer cells with high-grade malignancy reduced these characteristics. With regard to the molecular mechanism, YEATS4 mediates histone H3K27ac at specific sites of the ZEB1 promoter to regulate its expression at the transcription level. Depleting ZEB1 blocks YEATS4-induced EMT, migration, invasion, and metastasis. YEATS4 expression is also positively correlated with ZEB1 expression in patients with breast cancer. Co-expression of YEATS4 and ZEB1 correlates with the shortest distant metastasis-free period. Taken together, our data reveal the critical role of YEATS4 in the progression and metastasis of breast cancer, as well as support YEATS4 as a potential therapeutic target and prognostic biomarker for breast cancer.
Collapse
Affiliation(s)
- Yang Li
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine Shanghai 200080, China
| | - Lei Li
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine Shanghai 200080, China
| | - Junyi Wu
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine Shanghai 200080, China
| | - Jun Qin
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine Shanghai 200080, China
| | - Xueming Dai
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine Shanghai 200080, China
| | - Tao Jin
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine Shanghai 200080, China
| | - Junming Xu
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine Shanghai 200080, China
| |
Collapse
|
9
|
Kiuchi J, Komatsu S, Imamura T, Nishibeppu K, Shoda K, Arita T, Kosuga T, Konishi H, Shiozaki A, Kubota T, Okamoto K, Fujiwara H, Ichikawa D, Tsuda H, Otsuji E. Overexpression of YEATS4 contributes to malignant outcomes in gastric carcinoma. Am J Cancer Res 2018; 8:2436-2452. [PMID: 30662802 PMCID: PMC6325477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Accepted: 11/29/2018] [Indexed: 06/09/2023] Open
Abstract
YEATS domain containing 4 (YEATS4) has functions of chromatin modification and transcriptional regulation and is in a gene-amplified region (12q13) in various human cancers. In this study, we tested whether YEATS4 acts as a cancer-promoting gene through its activation/overexpression in gastric cancer (GC). We analyzed 5 GC cell lines and 135 primary tumor samples of GC, which were curatively resected in our hospital. Overexpression of the YEATS4 protein was frequently detected in GC cell lines (5/5 cell lines, 100%) and primary GC tumor tissues (32/135 cases, 23.7%). Knockdown of YEATS4 inhibited proliferation, migration and invasion of GC cells through NOTCH2 down-regulation in a TP53 mutation-independent manner, and induced apoptosis in wild-type TP53 GC cells. Moreover, knockdown of YEATS4 improved chemosensitivity for CDDP and L-OHP. Overexpression of YEATS4 protein significantly correlated with more aggressive lymphatic invasion, larger tumor size, deeper tumor depth, positive lymph node metastasis and recurrence. Patients with YEATS4-overexpressing tumors had a lower overall survival rate than those with non-expressing tumors. Multivariate analysis demonstrated that YEATS4 was independently associated with poor outcomes. These findings suggest that YEATS4 plays a pivotal role in tumor malignant potential through its overexpression and highlight its usefulness as a prognostic factor and potential therapeutic target in GC.
Collapse
Affiliation(s)
- Jun Kiuchi
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine465 Kajii-Cho, Kawaramachihirokoji, Kamigyo-Ku, Kyoto, Japan
| | - Shuhei Komatsu
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine465 Kajii-Cho, Kawaramachihirokoji, Kamigyo-Ku, Kyoto, Japan
| | - Taisuke Imamura
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine465 Kajii-Cho, Kawaramachihirokoji, Kamigyo-Ku, Kyoto, Japan
| | - Keiji Nishibeppu
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine465 Kajii-Cho, Kawaramachihirokoji, Kamigyo-Ku, Kyoto, Japan
| | - Katsutoshi Shoda
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine465 Kajii-Cho, Kawaramachihirokoji, Kamigyo-Ku, Kyoto, Japan
| | - Tomohiro Arita
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine465 Kajii-Cho, Kawaramachihirokoji, Kamigyo-Ku, Kyoto, Japan
| | - Toshiyuki Kosuga
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine465 Kajii-Cho, Kawaramachihirokoji, Kamigyo-Ku, Kyoto, Japan
| | - Hirotaka Konishi
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine465 Kajii-Cho, Kawaramachihirokoji, Kamigyo-Ku, Kyoto, Japan
| | - Atsushi Shiozaki
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine465 Kajii-Cho, Kawaramachihirokoji, Kamigyo-Ku, Kyoto, Japan
| | - Takeshi Kubota
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine465 Kajii-Cho, Kawaramachihirokoji, Kamigyo-Ku, Kyoto, Japan
| | - Kazuma Okamoto
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine465 Kajii-Cho, Kawaramachihirokoji, Kamigyo-Ku, Kyoto, Japan
| | - Hitoshi Fujiwara
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine465 Kajii-Cho, Kawaramachihirokoji, Kamigyo-Ku, Kyoto, Japan
| | - Daisuke Ichikawa
- First Department of Surgery, Faculty of Medicine, University of YamanashiYamanashi, Japan
| | - Hitoshi Tsuda
- Department of Pathology, National Cancer Center HospitalTokyo, Japan
- Department of Basic Pathology, National Defense Medical CollegeTokorozawa, Japan
| | - Eigo Otsuji
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine465 Kajii-Cho, Kawaramachihirokoji, Kamigyo-Ku, Kyoto, Japan
| |
Collapse
|
10
|
You S, Wang F, Hu Q, Li P, Zhang C, Yu Y, Zhang Y, Li Q, Bao Q, Liu P, Li J. Abnormal expression of YEATS4 associates with poor prognosis and promotes cell proliferation of hepatic carcinoma cell by regulation the TCEA1/DDX3 axis. Am J Cancer Res 2018; 8:2076-2087. [PMID: 30416857 PMCID: PMC6220140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 09/14/2018] [Indexed: 06/09/2023] Open
Abstract
YEATS domain containing 4 (YEATS4) is usually amplified and functions as an oncogene in several malignancies, such as colorectum, ovarian, breast and lung. However, the biological role of YEATS4 in hepatocellular carcinoma (HCC) has not yet been discussed. Herein, we found that YEATS4 was significantly upregulated in HCC compared to para-cancerous tissues, and was associated with poor prognosis, large tumor size, poor differentiation and distant metastasis. In addition, YEATS4 promoted HCC cell proliferation and colony formation by binding to and increasing the transcriptional activity of the TCEA1 promoter. Concurrently, upregulation of TCEA1 increased the stability of the DDX3 protein, a member of the DEAD box RNA helicase family, and augmented the proliferative and colony forming ability of HCC cells. Furthermore, YEATS4 accelerated tumor growth in vivo in a xenograft HCC model. Taken together, our study provides evidence for the first time on the potential role of the YEATS4/TCEA1/DDX3 axis in regulating HCC progression, and presents YEATS4 as a promising therapeutic target and prognosis maker for HCC.
Collapse
Affiliation(s)
- Song You
- Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma (Xiamen University Affiliated Zhongshan Hospital)Xiamen, Fujian, China
- Graduate College of Fujian Medical UniversityFuzhou, Fujian, China
| | - Fuqiang Wang
- Department of Hepatobiliary Surgery, Zhongshan Hospital of Xiamen UniversityXiamen, Fujian, China
- Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma (Xiamen University Affiliated Zhongshan Hospital)Xiamen, Fujian, China
| | - Qing Hu
- Medicine Clinical Laboratory of Xiamen Xianyue HospitalXiamen, Fujian, China
| | - Pengtao Li
- Department of Hepatobiliary Surgery, Zhongshan Hospital of Xiamen UniversityXiamen, Fujian, China
- Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma (Xiamen University Affiliated Zhongshan Hospital)Xiamen, Fujian, China
| | - Changmao Zhang
- Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma (Xiamen University Affiliated Zhongshan Hospital)Xiamen, Fujian, China
- Graduate College of Fujian Medical UniversityFuzhou, Fujian, China
| | - Yaqi Yu
- Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma (Xiamen University Affiliated Zhongshan Hospital)Xiamen, Fujian, China
| | - Yi Zhang
- Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma (Xiamen University Affiliated Zhongshan Hospital)Xiamen, Fujian, China
| | - Qiu Li
- Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma (Xiamen University Affiliated Zhongshan Hospital)Xiamen, Fujian, China
| | - Qing Bao
- Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma (Xiamen University Affiliated Zhongshan Hospital)Xiamen, Fujian, China
| | - Pingguo Liu
- Department of Hepatobiliary Surgery, Zhongshan Hospital of Xiamen UniversityXiamen, Fujian, China
- Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma (Xiamen University Affiliated Zhongshan Hospital)Xiamen, Fujian, China
| | - Jie Li
- Department of Hepatobiliary Surgery, Zhongshan Hospital of Xiamen UniversityXiamen, Fujian, China
- Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma (Xiamen University Affiliated Zhongshan Hospital)Xiamen, Fujian, China
| |
Collapse
|
11
|
|
12
|
Zhi D, Zhao X, Dong M, Yan C. miR-493 inhibits proliferation and invasion in pancreatic cancer cells and inversely regulated hERG1 expression. Oncol Lett 2017; 14:7398-7404. [PMID: 29344180 PMCID: PMC5755206 DOI: 10.3892/ol.2017.7178] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 10/03/2017] [Indexed: 12/19/2022] Open
Abstract
The human ether-a-go-go-related potassium channel 1 (hERG1) is a component of the voltage-gated Kv11.1 potassium channel, which has been recently indicated to have a crucial role in the tumorigenesis of multiple tumors, including pancreatic carcinoma. Pancreatic carcinoma is one of the most malignant human cancer types, which has an extremely poor prognosis. The present study demonstrated that the expression levels of hERG1 were markedly elevated in pancreatic cancer tissues and pancreatic cancer cell lines, and that the abnormal hERG1 expression was significantly associated with the proliferation and invasion ability of pancreatic cancer. Furthermore, hERG1 was identified to be a direct target of miR-493, which is generally reduced in pancreatic cancer tissues and cell lines. These findings provide a novel insight into the regulatory mechanism of miR-493/hERG1 in pancreatic cancer cell proliferation and invasion, which may aid the development of novel diagnostic and therapeutic strategies for pancreatic cancer in the future.
Collapse
Affiliation(s)
- Duo Zhi
- Department of Pharmacy, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150040, P.R. China
| | - Xin Zhao
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Mei Dong
- Department of Pharmacy, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150040, P.R. China
| | - Caichuan Yan
- Department of Cancer Molecular and Biology, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin, Heilongjiang 150040, P.R. China
| |
Collapse
|