1
|
Li Z, Su H, Lin G, Wang K, Huang Y, Wen Y, Luo D, Hou Y, Cao X, Weng J, Lin D, Wang L, Li X. Transplantation of MiR-28-5p-Modified BMSCs Promotes Functional Recovery After Spinal Cord Injury. Mol Neurobiol 2024; 61:2197-2214. [PMID: 37864767 DOI: 10.1007/s12035-023-03702-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 10/06/2023] [Indexed: 10/23/2023]
Abstract
Traumatic spinal cord injury (TSCI) is a prevalent central nervous system condition that imposes a significant burden on both families and society, affecting more than 2 million people worldwide. Recently, there has been increasing interest in bone marrow mesenchymal stem cell (BMSC) transplantation as a promising treatment for spinal cord injury (SCI) due to their accessibility and low immunogenicity. However, the mere transplantation of BMSCs has limited capacity to directly participate in the repair of host spinal cord nerve function. MiR-28-5p, identified as a key differentially expressed miRNA in spinal cord ischemia-reperfusion injury, exhibits differential expression and regulation in various neurological diseases. Nevertheless, its involvement in this process and its specific regulatory mechanisms in SCI remain unclear. Therefore, this study aimed to investigate the potential mechanisms through which miR-28-5p promotes the neuronal differentiation of BMSCs both in vivo and in vitro. Our results indicate that miR-28-5p may directly target Notch1, thereby facilitating the neuronal differentiation of BMSCs in vitro. Furthermore, the transplantation of lentivirus-mediated miR-28-5p-overexpressed BMSCs into SCI rats effectively improved footprint tests and Basso, Beattie, and Bresnahan (BBB) scores, ameliorated histological morphology (hematoxylin-eosin [HE] and Nissl staining), promoted axonal regeneration (MAP2 and growth-associated protein 43 [GAP43]), and facilitated axonal remyelination (myelin basic protein [MBP]). These findings may suggest that miR-28-5p-modified BMSCs could serve as a therapeutic target to enhance the behavioral and neurological recovery of SCI rats.
Collapse
Affiliation(s)
- Zhen Li
- State Key Laboratory of Dampness, Syndrome of Chinese Medicine, Department of Orthopedic Surgery, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, Guangdong, China
- The Second Clinical College of Guangzhou, University of Chinese Medicine, Guangzhou, 510120, Guangdong, China
- Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, China
| | - Haitao Su
- State Key Laboratory of Dampness, Syndrome of Chinese Medicine, Department of Orthopedic Surgery, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, Guangdong, China
- The Second Clinical College of Guangzhou, University of Chinese Medicine, Guangzhou, 510120, Guangdong, China
- Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, China
| | - Guandai Lin
- State Key Laboratory of Dampness, Syndrome of Chinese Medicine, Department of Orthopedic Surgery, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, Guangdong, China
- The Second Clinical College of Guangzhou, University of Chinese Medicine, Guangzhou, 510120, Guangdong, China
- Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, China
| | - Kai Wang
- State Key Laboratory of Dampness, Syndrome of Chinese Medicine, Department of Orthopedic Surgery, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, Guangdong, China
- The Second Clinical College of Guangzhou, University of Chinese Medicine, Guangzhou, 510120, Guangdong, China
- Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, China
| | - Yongming Huang
- State Key Laboratory of Dampness, Syndrome of Chinese Medicine, Department of Orthopedic Surgery, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, Guangdong, China
- The Second Clinical College of Guangzhou, University of Chinese Medicine, Guangzhou, 510120, Guangdong, China
- Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, China
| | - Yaqian Wen
- Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, China
| | - Dan Luo
- State Key Laboratory of Dampness, Syndrome of Chinese Medicine, Department of Orthopedic Surgery, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, Guangdong, China
- The Second Clinical College of Guangzhou, University of Chinese Medicine, Guangzhou, 510120, Guangdong, China
- Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, China
| | - Yu Hou
- State Key Laboratory of Dampness, Syndrome of Chinese Medicine, Department of Orthopedic Surgery, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, Guangdong, China
- The Second Clinical College of Guangzhou, University of Chinese Medicine, Guangzhou, 510120, Guangdong, China
- Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, China
| | - Xuewei Cao
- State Key Laboratory of Dampness, Syndrome of Chinese Medicine, Department of Orthopedic Surgery, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, Guangdong, China
- The Second Clinical College of Guangzhou, University of Chinese Medicine, Guangzhou, 510120, Guangdong, China
- Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, China
| | - Jiaxian Weng
- The Second Clinical College of Guangzhou, University of Chinese Medicine, Guangzhou, 510120, Guangdong, China
- Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, China
| | - Dingkun Lin
- State Key Laboratory of Dampness, Syndrome of Chinese Medicine, Department of Orthopedic Surgery, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, Guangdong, China
- The Second Clinical College of Guangzhou, University of Chinese Medicine, Guangzhou, 510120, Guangdong, China
- Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, China
| | - Le Wang
- Department of Spine Surgery, the First Affiliated Hospital of Sun Yat-Sen University; Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Guangzhou, 510080, Guangdong, China.
| | - Xing Li
- State Key Laboratory of Dampness, Syndrome of Chinese Medicine, Department of Orthopedic Surgery, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, Guangdong, China.
- The Second Clinical College of Guangzhou, University of Chinese Medicine, Guangzhou, 510120, Guangdong, China.
- Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, China.
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, China.
| |
Collapse
|
3
|
Sharifi-Rad J, Herrera-Bravo J, Salazar LA, Shaheen S, Abdulmajid Ayatollahi S, Kobarfard F, Imran M, Imran A, Custódio L, Dolores López M, Schoebitz M, Martorell M, Kumar M, Ansar Rasul Suleria H, Cho WC. The Therapeutic Potential of Wogonin Observed in Preclinical Studies. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:9935451. [PMID: 34221094 PMCID: PMC8221866 DOI: 10.1155/2021/9935451] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/02/2021] [Accepted: 06/04/2021] [Indexed: 02/01/2023]
Abstract
Wogonin is a flavonoid found in different plants such as roots of Scutellaria baicalensis Georgi distributed mainly in Asia and Europe. Dried root extracts of S. baicalensis with high content of wogonin, popularly known as "Huang-Qin" or Chinese or baical skullcap, have been used for long time in traditional Chinese medicine. Several health benefits are attributed to wogonin and derivatives showing anti-inflammatory, antiviral, anticancer, and antioxidant effects and more recently antineurodegenerative properties. Preclinical pharmacological activities of wogonin against diverse types of cancer such as breast, colorectal, and human gastric cancer will be presented in this review. In addition, studies on oxidative stress and bioavailability of wogonin will be discussed together with antineurodegenerative potential with special focus on Alzheimer's disease. Outcomes extracted from the last preclinical studies related to therapeutic applications of wogonin will be commented and updated in this review. The scientific evidence collected in this review aims to encourage transfer of the preclinical evidence of wogonin to new clinical studies.
Collapse
Affiliation(s)
- Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Facultad de Medicina, Universidad del Azuay, Cuenca, Ecuador
| | - Jesús Herrera-Bravo
- Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad Santo Tomas, Santiago, Chile
- Center of Molecular Biology and Pharmacogenetics, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco 4811230, Chile
| | - Luis A. Salazar
- Center of Molecular Biology and Pharmacogenetics, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco 4811230, Chile
| | | | - Seyed Abdulmajid Ayatollahi
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Pharmacognosy and Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Farzad Kobarfard
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Medicinal Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Muhammad Imran
- University Institute of Diet and Nutritional Sciences, Faculty of Allied Health Sciences, The University of Lahore, Lahore, Pakistan
| | - Ali Imran
- Department of Food Science, Nutrition & Home Economics, Institute of Home and Food Sciences Government College University, Faisalabad, Pakistan
| | - Luísa Custódio
- Centre of Marine Sciences, University of Algarve, Faculty of Sciences and Technology, Building 7, Campus of Gambelas, Faro 8005-139, Portugal
| | - María Dolores López
- Department of Plant Production, Faculty of Agronomy, Universidad de Concepción, Avenida Vicente Mendez, 595, Chillán 3812120, Chile
| | - Mauricio Schoebitz
- Departamento de Suelos y Recursos Naturales, Facultad de Agronomía, Universidad de Concepción, Concepción, Chile
| | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy, and Centre for Healthy Living, University of Concepción, Concepción 4070386, Chile
- Unidad de Desarrollo Tecnológico, Universidad de Concepción UDT, Concepción 4070386, Chile
| | - Manoj Kumar
- Chemical and Biochemical Processing Division, ICAR–Central Institute for Research on Cotton Technology, Mumbai 400019, India
| | | | - William C. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong
| |
Collapse
|
4
|
Li F, Wu H, Zou G, Cang D, Shen Y. Circular RNA_0062582 promotes osteogenic differentiation of human bone marrow mesenchymal stem cells via regulation of microRNA-145/CBFB axis. Bioengineered 2021; 12:1952-1963. [PMID: 34027799 PMCID: PMC8806255 DOI: 10.1080/21655979.2021.1921553] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Osteoporosis poses a threat to human health worldwide. To date, there have been few studies regarding targeted treatment of osteoporosis. We aimed to identify the possible molecular mechanism of circular RNA (circ)_0062582 in osteogenic differentiation, and the interactions among circ_0062582, microRNA-145 (miR-145) and core-binding factor subunit β (CBFB). The proliferation of human bone marrow mesenchymal stem cells (hBMSCs) was tested with a cell counting kit-8 assay. Circ_0062582, miR-145 and CBFB were overexpressed by transient transfection. Dual-luciferase reporter assay system was used to analyze the combination among circ_0062582, miR-145 and CBFB. Additionally, the levels of circ_0062582, miR-145, CBFB, osterix (OSX), osteocalcin (OCN) and collagen type 1 (COL1) were detected by means of RT-qPCR or western blot analysis. Alkaline phosphatase and Alizarin red stainings were performed to analyze the degree of osteogenic differentiation under the control of circ_0062582, miR-145 and CBFB. The results demonstrated that circ_0062582 level was notably elvated during osteogenic differentiation of hBMSCs. Circ_0062582 overexpression significantly promoted osteogenic differentiation and upregulated the levels of osteogenic differentiation-related proteins, including OSX, OCN and COL1. In addition, miR-145, which was identified as the target gene of circ_0062582, could specifically target CBFB 3′-UTR regions. Next, these changes caused by the overexpression of circ_0062582 were reversed following the addition of miR-145 mimic. Following overexpression of CBFB, osteogenic differentiation was increased. In summary, these results demonstrated that the role of circ_0062582 in osteoporosis is mediated through regulating the expression level of CBFB via miR-145.
Collapse
Affiliation(s)
- Feng Li
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, P.R.China.,Department of Orthopedics, The First People's Hospital of Yancheng, Yancheng, Jiangsu, P.R.China
| | - Hao Wu
- Department of Orthopedics, The First People's Hospital of Yancheng, Yancheng, Jiangsu, P.R.China
| | - Guoyou Zou
- Department of Orthopedics, The First People's Hospital of Yancheng, Yancheng, Jiangsu, P.R.China
| | - Dingwei Cang
- Department of Orthopedics, The First People's Hospital of Yancheng, Yancheng, Jiangsu, P.R.China
| | - Yixin Shen
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, P.R.China
| |
Collapse
|
5
|
Zhan J, Li X, Luo D, Hou Y, Hou Y, Chen S, Xiao Z, Luan J, Lin D. Polydatin promotes the neuronal differentiation of bone marrow mesenchymal stem cells in vitro and in vivo: Involvement of Nrf2 signalling pathway. J Cell Mol Med 2020; 24:5317-5329. [PMID: 32299154 PMCID: PMC7205798 DOI: 10.1111/jcmm.15187] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 01/26/2020] [Accepted: 02/23/2020] [Indexed: 12/11/2022] Open
Abstract
Bone marrow mesenchymal stem cell (BMSC) transplantation represents a promising repair strategy following spinal cord injury (SCI), although the therapeutic effects are minimal due to their limited neural differentiation potential. Polydatin (PD), a key component of the Chinese herb Polygonum cuspidatum, exerts significant neuroprotective effects in various central nervous system disorders and protects BMSCs against oxidative injury. However, the effect of PD on the neuronal differentiation of BMSCs, and the underlying mechanisms remain inadequately understood. In this study, we induced neuronal differentiation of BMSCs in the presence of PD, and analysed the Nrf2 signalling and neuronal differentiation markers using routine molecular assays. We also established an in vivo model of SCI and assessed the locomotor function of the mice through hindlimb movements and electrophysiological measurements. Finally, tissue regeneration was evaluated by H&E staining, Nissl staining and transmission electron microscopy. PD (30 μmol/L) markedly facilitated BMSC differentiation into neuron‐like cells by activating the Nrf2 pathway and increased the expression of neuronal markers in the transplanted BMSCs at the injured spinal cord sites. Furthermore, compared with either monotherapy, the combination of PD and BMSC transplantation promoted axonal rehabilitation, attenuated glial scar formation and promoted axonal generation across the glial scar, thereby enhancing recovery of hindlimb locomotor function. Taken together, PD augments the neuronal differentiation of BMSCs via Nrf2 activation and improves functional recovery, indicating a promising new therapeutic approach against SCI.
Collapse
Affiliation(s)
- Jiheng Zhan
- Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China.,Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xing Li
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Spine Surgery, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Dan Luo
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Spine Surgery, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yu Hou
- Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Spine Surgery, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yonghui Hou
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Spine Surgery, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shudong Chen
- Department of Spine Surgery, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhifeng Xiao
- Department of Spine Surgery, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jiyao Luan
- Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China.,Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Dingkun Lin
- Department of Spine Surgery, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|