1
|
Liu X, Wang Y, Wang C, Wang X, Tang G, Xiong Z, Zhou W. Role of non-coding RNA in exosomes for the diagnosis and treatment of osteosarcoma. Front Oncol 2024; 14:1469833. [PMID: 39512768 PMCID: PMC11540661 DOI: 10.3389/fonc.2024.1469833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 10/08/2024] [Indexed: 11/15/2024] Open
Abstract
Osteosarcoma (OS) is a malignancy characterized by the proliferation of osteoblasts that predominantly affects pediatric and adolescent populations. At present, early detection of OS is significantly lacking, coupled with treatment challenges such as high recurrence rates, increased side effects, and the development of drug resistance. Therefore, developing new diagnostic and therapeutic modalities is clinically significant. Exosomes are naturally occurring nanoparticles found in the body that contain various materials, including DNA, RNA, and proteins. Owing to their numerous beneficial properties, including histocompatibility and in vivo stability, they can be useful as drug carriers. With the development of competitive endogenous non-coding RNA (ncRNA) networks, the role of ncRNA in OS cell control has been increasingly studied. This review provides a thorough summary of multiple potential biogenetic pathways of different ncRNAs in exosomes, including microRNAs, long ncRNAs, and circular RNAs. Moreover, the review highlights their effects on OS cells and their potential applications in the diagnosis, treatment, and control of OS drug resistance. The interplay between different types of ncRNAs, which collectively affect OS through the networks of competing endogenous ncRNAs, is the primary focus of this research.
Collapse
Affiliation(s)
- Xin Liu
- Department of Orthopedics, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yaling Wang
- Department of Nephropathy, Huanggang Hospital of Traditional Chinese Medicine, Hubei University of Traditional Chinese Medicine, Huanggang, China
| | - Chenwen Wang
- Department of Orthopedics, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xinyuan Wang
- Department of Orthopedics, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Gangqiang Tang
- Department of Orthopedics, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhou Xiong
- Department of Orthopedics, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Zhou
- Department of Orthopedics, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
2
|
Zhao C, Ma M, Yang J, Ye Z, Ma P, Song D. "Hedgehog Ball"-Shaped Nanoprobes for Multimodal Detection and Imaging of Inflammatory Markers in Osteosarcoma Using Fluorescence and Electrochemiluminescence. Anal Chem 2024; 96:16053-16062. [PMID: 39316735 DOI: 10.1021/acs.analchem.4c03739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
Inflammation can affect the progression of cancer at tumor sites, such as in osteosarcoma, by intensifying metastasis and complicating outcomes. The current diagnostic methods lack the specificity and sensitivity required for early and accurate detection, particularly in differentiating between inflammation-induced changes and tumor activities. To address this, a novel "hedgehog ball"-shaped nanoprobe, Fe3O4@Au-pep-CQDs, was developed and designed to enhance the detection of caspase-1, a key marker of inflammation. This magnetic nanoprobe facilitates simultaneous fluorescence (FL) and electrochemiluminescence (ECL) detection. Magnetic separation minimizes the quenching of nanoparticles in solution and eliminates the need for frequent electrode replacement in ECL tests, thereby simplifying diagnostic procedures. The experimental results showed that in the detection of caspase-1, the nanoprobe had a detection limit of 0.029 U/mL (FL) and 0.033 U/mL (ECL) and had a dynamic range of 0.05 to 1.0 U/mL. Additionally, the nanoprobe achieved high recovery rates of 94.36 to 102.44% (FL) and 94.36-100.12% (ECL) in spiked biological samples. Furthermore, the nanoprobe's capabilities were extended to in vivo bioimaging to provide direct, intuitive visualization of biological processes. These novel nanoprobes were able to significantly enhance the accurate detection of inflammation at tumor sites, thereby optimizing both diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Chen Zhao
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun 130012, China
| | - Mo Ma
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun 130012, China
- School of Pharmacy, Jilin University, Qianjin Street 2699, Changchun 130012, China
| | - Jukun Yang
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun 130012, China
| | - Zhuoxin Ye
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun 130012, China
| | - Pinyi Ma
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun 130012, China
| | - Daqian Song
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun 130012, China
| |
Collapse
|
3
|
Bi G, Zhang L. Hsa_circ_0001480 affects osteosarcoma progression by regulating the miR-363-3p/IBSP pathway. Biotechnol Appl Biochem 2024; 71:721-732. [PMID: 38409882 DOI: 10.1002/bab.2571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 02/10/2024] [Indexed: 02/28/2024]
Abstract
Osteosarcoma (OS) is a malignant bone tumor that commonly affects young individuals. Circular RNAs (circRNAs) are associated with OS progression. In this study, we aimed to determine the role of hsa_circ_0001480 (circ_0001480) in OS development. OS cell invasion, viability, and colony numbers were assessed via transwell, cell counting kit-8, and colony formation assays, respectively. Tumor growth in vivo was also assessed using an OS mouse model. Additionally, targeted associations among the integrin-binding sialoprotein (IBSP), microRNA (miR)-363-3p, and circ_0001480 were evaluated via RNA immunoprecipitation and dual luciferase reporter assays, whereas their expression levels in OS cells and tissues were determined via quantitative reverse transcription-polymerase chain reaction and western blotting. Loss of circ_0001480 or IBSP significantly inhibited the proliferation and invasion of OS cells, but this effect was reversed by miR-363-3p downregulation. Moreover, circ_0001480 knockdown inhibited neoplasm growth in vivo. circ_0001480 directly bound to miR-363-3p, which further modulated IBSP. Both circ_0001480 and IBSP levels were high, whereas miR-363-3p levels were low in OS cells. Furthermore, low miR-363-3p levels attenuated the suppressive effects of circ_0001480 silencing on the proliferation and invasion of OS cells; however, loss of IBSP partially reversed these effects. Overall, our findings revealed circ_0001480 an oncogenic circRNA stimulating OS progression by modulating the miR-363-3p/IBSP pathway, suggesting its potential for OS treatment.
Collapse
Affiliation(s)
- Guijuan Bi
- Department of Rehabilitation Medicine, Wuhan Fourth Hospital, Wuhan, Hubei, China
| | - Li Zhang
- Department of Rehabilitation Medicine, Wuhan Fourth Hospital, Wuhan, Hubei, China
| |
Collapse
|
4
|
Mosca N, Alessio N, Di Paola A, Marrapodi MM, Galderisi U, Russo A, Rossi F, Potenza N. Osteosarcoma in a ceRNET perspective. J Biomed Sci 2024; 31:59. [PMID: 38835012 DOI: 10.1186/s12929-024-01049-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 05/24/2024] [Indexed: 06/06/2024] Open
Abstract
Osteosarcoma (OS) is the most prevalent and fatal type of bone tumor. It is characterized by great heterogeneity of genomic aberrations, mutated genes, and cell types contribution, making therapy and patients management particularly challenging. A unifying picture of molecular mechanisms underlying the disease could help to transform those challenges into opportunities.This review deeply explores the occurrence in OS of large-scale RNA regulatory networks, denominated "competing endogenous RNA network" (ceRNET), wherein different RNA biotypes, such as long non-coding RNAs, circular RNAs and mRNAs can functionally interact each other by competitively binding to shared microRNAs. Here, we discuss how the unbalancing of any network component can derail the entire circuit, driving OS onset and progression by impacting on cell proliferation, migration, invasion, tumor growth and metastasis, and even chemotherapeutic resistance, as distilled from many studies. Intriguingly, the aberrant expression of the networks components in OS cells can be triggered also by the surroundings, through cytokines and vesicles, with their bioactive cargo of proteins and non-coding RNAs, highlighting the relevance of tumor microenvironment. A comprehensive picture of RNA regulatory networks underlying OS could pave the way for the development of innovative RNA-targeted and RNA-based therapies and new diagnostic tools, also in the perspective of precision oncology.
Collapse
Affiliation(s)
- Nicola Mosca
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Nicola Alessio
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Alessandra Di Paola
- Department of Woman, Child and General and Specialist Surgery, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Maria Maddalena Marrapodi
- Department of Woman, Child and General and Specialist Surgery, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Umberto Galderisi
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Aniello Russo
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Francesca Rossi
- Department of Woman, Child and General and Specialist Surgery, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Nicoletta Potenza
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Caserta, Italy.
| |
Collapse
|
5
|
Wu F, Guo X, Ren Y, Peng Y, Lai Z, Xu J. CircRNA0007766 accelerates cancer progression via miR-34c-5p/cyclin D1 axis in adenocarcinoma of the esophagogastric junction (AEG). Cell Signal 2023; 112:110912. [PMID: 37802173 DOI: 10.1016/j.cellsig.2023.110912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/12/2023] [Accepted: 10/02/2023] [Indexed: 10/08/2023]
Abstract
Growing empirical evidence shows that circular RNAs (circRNAs) are implicated in tumor pathogenesis. However, little is known about the mechanism by which circRNAs contribute to the progression of adenocarcinoma of the esophagogastric junction (AEG). We conducted RNA high-throughput sequencing and bioinformatic analyses on 22 AEG tissues and their matching healthy gastric mucosal tissues and found that circRNA0007766 may act as a tumor promoter in AEG pathogenesis. BaseScope® in situ hybridization revealed that circRNA0007766 was strongly upregulated in AEG. We then constructed co-expression and ceRNA networks to elucidate the relationships among specific circRNAs, microRNAs (miRNAs), and mRNAs. We also demonstrated that circRNA0007766 acted as the sponge of miR-34c-5p, thereby positively regulating cyclin D1. In vivo and in vitro experiments demonstrated the roles of circRNA0007766 in promoting AEG progression and invasion. AEG tissues are characterized by circRNA0007766 upregulation which is correlated with lymph node metastasis and poor survival. To the best of our knowledge, the present study is one of the first to show that the circRNA0007766/miR-34c-5p/cyclin D1 axis is important in AEG progression. Furthermore, the results of this work imply that circRNA0007766 is potentially a novel AEG biomarker.
Collapse
Affiliation(s)
- Feng Wu
- First Hospital of Shanxi Medical University, Taiyuan, Shanxi Province, China.
| | - Xin Guo
- Medical ICU, Shanxi Province Cancer Hospital/ Shanxi Hospital Affiliated to Cancer Hospital,Chinese Academy of Medical Sciences, Taiyuan, Shanxi Province, China
| | - Yifan Ren
- First Hospital of Shanxi Medical University, Taiyuan, Shanxi Province, China
| | - Yuting Peng
- Faculty of Graduate Studies, Shanxi Medical University, Taiyuan,Shanxi Province, China
| | - Zhiyong Lai
- Department of Hepatobiliary and Pancreatic Surgery, First Hospital of Shanxi Medical University, Taiyuan,Shanxi Province, China.
| | - Jun Xu
- Department of Hepatobiliary and Pancreatic Surgery, First Hospital of Shanxi Medical University, Taiyuan,Shanxi Province, China; Institute of Liver Diseases and Organ Transplantation, Shanxi Medical University, Taiyuan,Shanxi Province, China.
| |
Collapse
|
6
|
Li Z, Fu Y, Ouyang W, He M, Wang Y, Wang X, Tan W. Circ_0016347 Promotes Osteosarcoma Progression by Regulating miR-1225-3p/KCNH1 Axis. Cancer Biother Radiopharm 2023; 38:619-631. [PMID: 33764794 DOI: 10.1089/cbr.2019.3349] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Background: Osteosarcoma (OS) is a common malignant bone cancer and usually occurs in adolescents and children. Circular RNAs (circRNAs) play essential roles in tumor development and progression. This study aimed to explore the function and molecular basis of circ_0016347 in OS progression. Materials and Methods: The levels of circ_0016347, miR-1225-3p, and ether à go-go 1 (KCNH1) were measured by quantitative real-time polymerase chain reaction or Western blot assay. Cell proliferation was assessed by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) assay and colony formation assay. Cell migration and invasion were evaluated by transwell assay. Glucose consumption and lactate production were detected by glucose detection and lactic acid detection kits. The levels of Ki-67, matrix metalloproteinase-9 (MMP-9), and hexokinase-2 (HK2) were examined by Western blot assay. The interaction among circ_0016347, miR-1225-3p, and KCNH1 was validated by dual-luciferase reporter assay. Xenograft assay was conducted to analyze tumor growth in vivo. Results: Circ_0016347 and KCNH1 were upregulated, while miR-1225-3p was downregulated in OS tissues or cells. Circ_0016347 and KCNH1 promoted proliferation, migration, invasion, and glycolysis of OS cells. Circ_0016347 regulated OS progression by modulating KCNH1. Circ_0016347 was a sponge of miR-1225-3p, and miR-1225-3p targeted KCNH1. Circ_0016347 regulated KCNH1 expression via sponging miR-1225-3p. Moreover, silencing of circ_0016347 inhibited tumor growth in vivo. Conclusion: Circ_0016347 contributed to OS progression through the miR-1225-3p/KCNH1 axis, which might provide a promising biomarker for OS therapy.
Collapse
Affiliation(s)
- Zhengmao Li
- Department of Traumatic Orthopedics, The Second Affiliated Hospital, University of South China, Hengyang, China
| | - Yong Fu
- Department of Traumatic Orthopedics, The Second Affiliated Hospital, University of South China, Hengyang, China
| | - Wei Ouyang
- Department of Oncology, The Affiliated Zhuzhou Hospital of Xiangya Medical College CSU, Zhuzhou, China
| | - Min He
- Department of Traumatic Orthopedics, The Second Affiliated Hospital, University of South China, Hengyang, China
| | - Yu Wang
- Department of Clinical Laboratory, The Second Affiliated Hospital, University of South China, Hengyang, China
| | - Xin Wang
- Department of Traumatic Orthopedics, The Second Affiliated Hospital, University of South China, Hengyang, China
| | - Wenfu Tan
- Department of Traumatic Orthopedics, The Second Affiliated Hospital, University of South China, Hengyang, China
| |
Collapse
|
7
|
He L, Qiu L, Chen F, Chen T, Peng F, Li Z, Dong X, Cai Z, Fang Y, Chen H, Chen G, Liu X. Dysregulation of global circular RNA abundance regulated by spliceosomes predicts prognosis in hepatocellular carcinoma. Hepatol Commun 2022; 6:3578-3591. [PMID: 36349484 PMCID: PMC9701485 DOI: 10.1002/hep4.2074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 07/14/2022] [Accepted: 08/08/2022] [Indexed: 11/11/2022] Open
Abstract
CircRNAs have been reported to play crucial roles in tumor progression and recurrence, showing potential as biomarkers in cancer. However, the global abundance of circRNA and their involvement in hepatocellular carcinoma (HCC) development have not been fully explored. Whole transcriptome sequencing was performed on tumor and peritumor from 60 patients with HCC to quantify the expression of circRNAs, and the global circRNA abundance was calculated by circRNA index (CRI). Gene-set enrichment analysis and weighted gene co-expression network analysis were used to reveal the biological signaling pathways associated with the global circRNA abundance. The correlation between the global circRNA abundance and the infiltration level of CD8+ T cells was explored by immunohistochemical assays. Small interfering RNA was used to knock down the pre-messenger RNA spliceosome in HCC cell lines to verify the regulation of spliceosome in global circRNA abundance. We found that dysregulation of global circRNA abundance in both tumor and peritumor could lead to worse prognosis. The immunohistochemical assay further revealed that the dysregulation of global circRNA abundance in both tumor and peritumor would obstruct the CD8+ T cells from invading into the tumor, which might explain its correlation with HCC prognosis. We also demonstrated that the spliceosome genes were the main factors to regulate the global circRNA abundance in HCC, and these results were also confirmed by knockdown experiments. Conclusion: This study revealed the association between the global circRNA abundance and patients' prognosis and its underlying mechanism.
Collapse
Affiliation(s)
- Lei He
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian ProvinceMengchao Hepatobiliary Hospital of Fujian Medical UniversityFuzhouP. R. China,Mengchao Med‐X CenterFuzhou UniversityFuzhouP. R. China
| | - Liman Qiu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian ProvinceMengchao Hepatobiliary Hospital of Fujian Medical UniversityFuzhouP. R. China
| | - Feng Chen
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian ProvinceMengchao Hepatobiliary Hospital of Fujian Medical UniversityFuzhouP. R. China
| | - Tingting Chen
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian ProvinceMengchao Hepatobiliary Hospital of Fujian Medical UniversityFuzhouP. R. China
| | - Fang Peng
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian ProvinceMengchao Hepatobiliary Hospital of Fujian Medical UniversityFuzhouP. R. China,Mengchao Med‐X CenterFuzhou UniversityFuzhouP. R. China
| | - Zhenli Li
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian ProvinceMengchao Hepatobiliary Hospital of Fujian Medical UniversityFuzhouP. R. China
| | - Xiuqing Dong
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian ProvinceMengchao Hepatobiliary Hospital of Fujian Medical UniversityFuzhouP. R. China
| | - Zhixiong Cai
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian ProvinceMengchao Hepatobiliary Hospital of Fujian Medical UniversityFuzhouP. R. China
| | - Yuanchang Fang
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian ProvinceMengchao Hepatobiliary Hospital of Fujian Medical UniversityFuzhouP. R. China
| | - Hengkai Chen
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian ProvinceMengchao Hepatobiliary Hospital of Fujian Medical UniversityFuzhouP. R. China
| | - Geng Chen
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian ProvinceMengchao Hepatobiliary Hospital of Fujian Medical UniversityFuzhouP. R. China
| | - Xiaolong Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian ProvinceMengchao Hepatobiliary Hospital of Fujian Medical UniversityFuzhouP. R. China
| |
Collapse
|
8
|
Sohn EJ. Differentially expression and function of circular RNAs in ovarian cancer stem cells. J Ovarian Res 2022; 15:97. [PMID: 35978436 PMCID: PMC9382745 DOI: 10.1186/s13048-022-01014-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 06/27/2022] [Indexed: 11/16/2022] Open
Abstract
Background Circular RNAs (circRNAs) are noncoding RNAs that regulate miRNA expression; however, their functions in cancer stem cells (CSCs) are not well known. Methods To determine the function of differentially expression of circRNAs associated with ovarian CSCs, circRNA profiling was conducted using a circRNA-based microarray on sphere-forming cells derived from A2780 and SKOV3 epithelial ovarian cancer cells termed A2780-SP and SKOV3-SP compared to monolayer cells such as A2780 and SKOV3 cells, respectively. Gene Ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were performed to predict the biological functions of the circRNAs expressed in CSCs. Results The circRNA-based microarray data showed that 159 circRNAs were significantly upregulated (fold change > 1.5) and 55 circRNAs were downregulated in ovarian CSCs compared to monolayer cells. GO and KEGG enrichment analysis of differentially expressed circRNAs in ovarian CSCs showed that they were mainly involved in cell cycle, histone modification, cellular protein metabolic process, cell cycle, apoptotic signaling pathway, and ubiquitin-mediated proteolysis in ovarian cancer. In addition, the hsa-circRNA000963-miRNA-mRNA regulatory network was constructed based on potential target of miRNAs. These analyses involved that the biological function of the hsa-circRNA00096/miRNA/mRNA network was involved in signaling pathways regulating pluripotency of stem cells, PI3K-Akt signaling pathway, cell cycle, p53 signaling pathway, Wnt signaling pathway, calcium modulating pathway, and production of miRNAs involved in gene silencing by miRNA. Conclusions Our data demonstrate the expression profiles of circRNAs in ovarian CSCs and suggest that circRNAs may be potential diagnostic and predictive biomarkers of ovarian cancer. Supplementary Information The online version contains supplementary material available at 10.1186/s13048-022-01014-z.
Collapse
Affiliation(s)
- Eun Jung Sohn
- Pusan National University, Yangsan, 50612, Republic of Korea.
| |
Collapse
|
9
|
Fatema K, Larson Z, Barrott J. Navigating the genomic instability mine field of osteosarcoma to better understand implications of non-coding RNAs. BIOCELL 2022; 46:2177-2193. [PMID: 35755302 PMCID: PMC9224338 DOI: 10.32604/biocell.2022.020141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Osteosarcoma is one of the most genomically complex cancers and as result, it has been difficult to assign genomic aberrations that contribute to disease progression and patient outcome consistently across samples. One potential source for correlating osteosarcoma and genomic biomarkers is within the non-coding regions of RNA that are differentially expressed. However, it is unsurprising that a cancer classification that is fraught with genomic instability is likely to have numerous studies correlating non-coding RNA expression and function have been published on the subject. This review undertakes the formidable task of evaluating the published literature of noncoding RNAs in osteosarcoma. This is not the first review on this topic and will certainly not be the last. The review is organized with an introduction into osteosarcoma and the epigenetic control of gene expression before reviewing the molecular function and expression of long non-coding RNAs, circular RNAs, and short non-coding RNAs such as microRNAs, piwi RNAs, and short-interfering RNAs. The review concludes with a review of the literature and how the biology of non-coding RNAs can be used therapeutically to treat cancers, especially osteosarcoma. We conclude that non-coding RNA expression and function in osteosarcoma is equally complex to understanding the expression differences and function of coding RNA and proteins; however, with the added lens of both coding and non-coding genomic sequence, researchers can begin to identify the patterns that consistently associate with aggressive osteosarcoma.
Collapse
Affiliation(s)
- Kaniz Fatema
- Biomedical and Pharmaceutical Science, Idaho State University, Pocatello, 83209, USA
| | - Zachary Larson
- Biomedical and Pharmaceutical Science, Idaho State University, Pocatello, 83209, USA
| | - Jared Barrott
- Biomedical and Pharmaceutical Science, Idaho State University, Pocatello, 83209, USA
| |
Collapse
|
10
|
Sharma AR, Banerjee S, Bhattacharya M, Saha A, Lee SS, Chakraborty C. Recent progress of circular RNAs in different types of human cancer: Technological landscape, clinical opportunities and challenges (Review). Int J Oncol 2022; 60:56. [PMID: 35362541 DOI: 10.3892/ijo.2022.5346] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/10/2022] [Indexed: 11/11/2022] Open
Abstract
Circular RNAs (circRNAs) are a novel class of endogenous non‑coding RNAs that have been recently regarded as functionally active. CircRNAs are remarkably stable and known to possess several biological functions such as microRNA sponging, regulating transcription and splicing and occasionally acting as polypeptide‑producing templates. CircRNAs show tissue‑specific expression and have been reported to be associated with the progression of several types of malignancies. Given the recent progress in genome sequencing and bioinformatics techniques, a rapid increment in the biological role of circRNAs has been observed. Concurrently, the patent search from different patent databases shows that the patent number of circRNA is increasing very quickly. These phenomena reveal a rapid development of the technological landscape. In the present review, the recent progress on circRNAs in various kinds of cancer has been investigated and their function as biomarkers or therapeutic targets and their technological landscape have been appreciated. A new insight into circRNAs structure and functional capabilities in cancer has been reviewed. Continually increasing knowledge on their critical role during cancer progression is projecting them as biomarkers or therapeutic targets for various kinds of cancer. Thus, recent updates on the functional role of circRNAs in terms of the technological landscape, clinical opportunities (biomarkers and therapeutic targets), and challenges in cancer have been illustrated.
Collapse
Affiliation(s)
- Ashish Ranjan Sharma
- Institute for Skeletal Aging and Orthopedic Surgery, Hallym University‑Chuncheon Sacred Heart Hospital, Chuncheon, Gangwon 24252, Republic of Korea
| | - Shreya Banerjee
- Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Kolkata, West Bengal 700126, India
| | - Manojit Bhattacharya
- Department of Zoology, Fakir Mohan University, Vyasa Vihar, Balasore, Odisha 756020, India
| | - Abinit Saha
- Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Kolkata, West Bengal 700126, India
| | - Sang-Soo Lee
- Institute for Skeletal Aging and Orthopedic Surgery, Hallym University‑Chuncheon Sacred Heart Hospital, Chuncheon, Gangwon 24252, Republic of Korea
| | - Chiranjib Chakraborty
- Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Kolkata, West Bengal 700126, India
| |
Collapse
|
11
|
Liu Y, Yuan J, Zhang Q, Ren Z, Li G, Tian R. Circ_0016347 modulates proliferation, migration, invasion, cell cycle, and apoptosis of osteosarcoma cells via the miR-661/IL6R axis. Autoimmunity 2022; 55:264-274. [PMID: 35166635 DOI: 10.1080/08916934.2022.2037129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
BACKGROUND Osteosarcoma is a common primary bone tumour in children and adolescents. Circular RNAs (circRNAs) exert vital functions in human diseases, including osteosarcoma. Therefore, we explored the role of circ_0016347 in osteosarcoma. METHODS The real-time quantitative polymerase chain reaction (RT-qPCR) was used to detect the expression levels of circ_0016347, microRNA-661 (miR-661), and Interleukin-6 receptor (IL6R) in osteosarcoma tissues and cells. The proliferation of osteosarcoma cells was assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazol-3-ium bromide (MTT) and EdU experiments. The migration and invasion were determined by transwell assay. The cell cycle distribution and apoptosis were assessed by flow cytometry assay. The association relationships among circ_0016347, miR-661, and IL6R were analyzed by dual-luciferase reporter assays. The western blot assay was employed to assay the protein expression. A xenograft experiment was established to clarify the functional role of circ_0016347 inhibition in vivo. RESULTS Circ_0016347 was obviously overexpressed in osteosarcoma tissues and cells compared with control groups. The suppression of circ_0016347 impeded proliferation, migration, invasion, and cell cycle and induced apoptosis in osteosarcoma cells, which was overturned by knockdown of miR-661. Consistently, circ_0016347 knockdown repressed tumour growth in vivo. Moreover, miR-661 directly targeted and inhibited IL6R, and the upregulation of IL6R reversed miR-661-induced effects on osteosarcoma cells. Furthermore, circ_0016347 could regulate IL6R expression through miR-661. Inhibition of circ_0016347 also inactivated the Janus kinase 2 (JAK2)/Transcription 3 (STAT3) signalling pathway in osteosarcoma cells by IL6R. CONCLUSION Circ_0016347 functioned as an oncogene in osteosarcoma at least in part by the miR-661/IL6R axis and JAK2/STAT3 signalling pathway.
Collapse
Affiliation(s)
- Yan Liu
- Department of Spine Surgery, Tianjin Union Medical Center, Tianjin, China
| | - Jianjun Yuan
- Department of Spine Surgery, Tianjin Union Medical Center, Tianjin, China
| | - Quan Zhang
- Department of Spine Surgery, Tianjin Union Medical Center, Tianjin, China
| | - Zhishuai Ren
- Department of Spine Surgery, Tianjin Union Medical Center, Tianjin, China
| | - Guang Li
- Department of Spine Surgery, Tianjin Union Medical Center, Tianjin, China
| | - Rong Tian
- Department of Spine Surgery, Tianjin Union Medical Center, Tianjin, China
| |
Collapse
|
12
|
Fatema K, Barrott JJ. Circling back to epigenetic regulation in osteosarcoma: Comment on 'Hsa_circ_0088212-mediated miR-520h/APOA1 axis inhibits the osteosarcoma progression' by ' Hao Peng'. Transl Oncol 2021; 15:101271. [PMID: 34801860 PMCID: PMC8605336 DOI: 10.1016/j.tranon.2021.101271] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 10/21/2021] [Accepted: 10/26/2021] [Indexed: 12/12/2022] Open
Abstract
CircRNAs are useful biomarkers and therapeutic targets in osteosarcoma. The circ_0088212/miR-520h/APOA1 signaling axis highlights dysregulation of opposing signals that facilitate tumor growth.
Osteosarcoma is a genetically complex cancer, thus there are increasing efforts to identify biomarkers and regulators within the epigenome that can better predict patient outcomes and provide new therapeutic targets. In this commentary, we have evaluated the work of Peng and colleagues on the identification and function of the signaling axis circ_0088212/miR_520 h/APOA1 in osteosarcoma. We provide the context of how novel it is to demonstrate the anti-tumor functions of APOA1 and not just correlative gene expression with patient outcome. We further postulate why some studies involving circRNAs in osteosarcoma contradict one another. We conclude that the study performed by Peng and colleagues was performed with enough rigor to give confidence that circ_0088212 is a bona fide tumor suppressor in osteosarcoma.
Collapse
Affiliation(s)
- Kaniz Fatema
- Biomedical and Pharmaceutical Sciences, Idaho State University, Pocatello, ID, USA
| | - Jared J Barrott
- Biomedical and Pharmaceutical Sciences, Idaho State University, Pocatello, ID, USA.
| |
Collapse
|
13
|
Lakiotaki E, Kanakoglou DS, Pampalou A, Karatrasoglou EA, Piperi C, Korkolopoulou P. Dissecting the Role of Circular RNAs in Sarcomas with Emphasis on Osteosarcomas. Biomedicines 2021; 9:1642. [PMID: 34829872 PMCID: PMC8615931 DOI: 10.3390/biomedicines9111642] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/04/2021] [Accepted: 11/06/2021] [Indexed: 12/20/2022] Open
Abstract
Circular RNAs (circRNAs) are single-stranded RNAs generated from exons back-splicing from a single pre-mRNA, forming covalently closed loop structures which lack 5'-3'-polarity or polyadenylated tail. Ongoing research depicts that circRNAs play a pivotal role in tumorigenesis, tumor progression, metastatic potential and chemoresistance by regulating transcription, microRNA (miRNA) sponging, RNA-binding protein interactions, alternative splicing and to a lesser degree, protein coding. Sarcomas are rare malignant tumors stemming from mesenchymal cells. Due to their clinically insidious onset, they often present at advanced stage and their treatment may require aggressive chemotherapeutic or surgical options. This review is mainly focused on the regulatory functions of circRNAs on osteosarcoma progression and their potential role as biomarkers, an area which has prompted lately extensive research. The attributed oncogenic role of circRNAs on other mesenchymal tumors such as Kaposi Sarcoma (KS), Rhabdomyosarcoma (RMS) or Gastrointestinal Stromal Tumors (GISTs) is also described. The involvement of circRNAs on sarcoma oncogenesis and relevant emerging diagnostic, prognostic and therapeutic applications are expected to gain more research interest in the future.
Collapse
Affiliation(s)
- Eleftheria Lakiotaki
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, 11527 Athens, Greece; (D.S.K.); (A.P.); (E.A.K.); (P.K.)
| | - Dimitrios S. Kanakoglou
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, 11527 Athens, Greece; (D.S.K.); (A.P.); (E.A.K.); (P.K.)
| | - Andromachi Pampalou
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, 11527 Athens, Greece; (D.S.K.); (A.P.); (E.A.K.); (P.K.)
| | - Eleni A. Karatrasoglou
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, 11527 Athens, Greece; (D.S.K.); (A.P.); (E.A.K.); (P.K.)
| | - Christina Piperi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, 11527 Athens, Greece;
| | - Penelope Korkolopoulou
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, 11527 Athens, Greece; (D.S.K.); (A.P.); (E.A.K.); (P.K.)
| |
Collapse
|
14
|
Khorsandi K, Esfahani H, Abrahamse H. Characteristics of circRNA and its approach as diagnostic tool in melanoma. Expert Rev Mol Diagn 2021; 21:1079-1094. [PMID: 34380368 DOI: 10.1080/14737159.2021.1967749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
Abstract
One of the most common types of cancer in the world is skin cancer, which has been divided into two groups: non-melanoma and melanoma skin cancer. Different external and internal agents are considered as risk factors for melanoma skin cancer pathogenesis but the exact mechanisms are not yet confirmed. Genetic and epigenetic changes, UV exposure, arsenic compounds, and chemical substances are contributory factors to the development of melanoma. A correlation has emerged between new therapies and the discovery of a basic molecular pattern for skin cancer patients. Circular RNAs (circRNAs) are described as a unique group of extensively expressed endogenous regulatory RNAs with closed-loop structure bonds connecting the 5' and 3' ends, which are commonly expressed in mammalian cells. In this review, we describe the biogenesis of circular RNAs and its function in cancerous conditions focusing on the crosstalk between different circRNAs and melanoma. Increasing evidence suggests that circRNAs appears to be relative to the origin and development of skin-related diseases like malignant melanoma. Different circular RNAs like hsa_circ_0025039, hsa_circRNA006612, circRNA005537, and circANRIL, by targeting different cellular and molecular targets (e.g., CDK4, DAB2IP, ZEB1, miR-889, and let-7 c-3p), can participate in melanoma cancer progression.
Collapse
Affiliation(s)
- Khatereh Khorsandi
- Department of Photodynamic, Medical Laser Research Center, Yara Institute, ACECR, Tehran, Iran
| | - HomaSadat Esfahani
- Department of Photodynamic, Medical Laser Research Center, Yara Institute, ACECR, Tehran, Iran
| | - Heidi Abrahamse
- Laser Research Centre, Nrf SARChI Chair: Laser Applications in Health, Faculty of Health Sciences, University of Johannesburg, Auckland Park, South Africa
| |
Collapse
|
15
|
Zhang Q, Wu J, Zhang X, Cao L, Wu Y, Miao X. Transcription factor ELK1 accelerates aerobic glycolysis to enhance osteosarcoma chemoresistance through miR-134/PTBP1 signaling cascade. Aging (Albany NY) 2021; 13:6804-6819. [PMID: 33621196 PMCID: PMC7993718 DOI: 10.18632/aging.202538] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 03/31/2020] [Indexed: 12/12/2022]
Abstract
Osteosarcoma is a malignancy that primarily affects children and young adults. The poor survival is largely attributed to acquisition of chemoresistance. Thus, the current study aimed to elucidate the role of ELK1/miR-134/PTBP1 signaling cascade in osteosarcoma chemoresistance. Doxorubicin (DXR)-resistant human osteosarcoma cells were initially self-established by continuous exposure of MG-63, U2OS and HOS cells to increasing DXR doses. Osteosarcoma chemoresistance in vitro was evaluated using CCK-8 assays and EdU staining. Aerobic glycolysis was evaluated by lactic acid production, glucose consumption, ATP levels, and Western blot analysis of GLUT3, HK2 and PDK1 proteins. The nude mice were injected with 5.0 mg/kg DXR following the subcutaneous transplantation of osteosarcomas. PTBP1 was upregulated in tumor tissues derived from non-responders to DXR treatment and correlated with patient poor survival. PTBP1 enhanced chemoresistance in cultured osteosarcoma cells in vitro and in vivo by increasing aerobic glycolysis. Additionally, miR-134 inhibited translation of PTBP1. ELK1 bound to miR-134 promoter and inhibited its expression. Overexpressed ELK1 enhanced chemoresistance and increased aerobic glycolysis by downregulating miR-134 and upregulating PTBP1 in DXR-resistant cells. Altogether, the key findings of the present study highlight ELK1/miR-134/PTBP1 signaling cascade as a novel molecular mechanism underlying the acquisition of osteosarcoma chemoresistance.
Collapse
Affiliation(s)
- Qiang Zhang
- Foot and Ankle Group of Department of Orthopaedics, The Second Hospital Affiliated to Zhejiang University School of Medicine, Hangzhou 310000, China
| | - Jiaqi Wu
- Trauma Group of Orthopaedics, The Second Hospital Affiliated to Zhejiang University School of Medicine, Hangzhou 310000, China
| | - Xiangfeng Zhang
- Trauma Group of Orthopaedics, The Second Hospital Affiliated to Zhejiang University School of Medicine, Hangzhou 310000, China
| | - Le Cao
- Foot and Ankle Group of Department of Orthopaedics, The Second Hospital Affiliated to Zhejiang University School of Medicine, Hangzhou 310000, China
| | - Yongping Wu
- Foot and Ankle Group of Department of Orthopaedics, The Second Hospital Affiliated to Zhejiang University School of Medicine, Hangzhou 310000, China
| | - Xudong Miao
- Foot and Ankle Group of Department of Orthopaedics, The Second Hospital Affiliated to Zhejiang University School of Medicine, Hangzhou 310000, China
| |
Collapse
|
16
|
Nisar S, Bhat AA, Singh M, Karedath T, Rizwan A, Hashem S, Bagga P, Reddy R, Jamal F, Uddin S, Chand G, Bedognetti D, El-Rifai W, Frenneaux MP, Macha MA, Ahmed I, Haris M. Insights Into the Role of CircRNAs: Biogenesis, Characterization, Functional, and Clinical Impact in Human Malignancies. Front Cell Dev Biol 2021; 9:617281. [PMID: 33614648 PMCID: PMC7894079 DOI: 10.3389/fcell.2021.617281] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 01/04/2021] [Indexed: 01/17/2023] Open
Abstract
Circular RNAs (circRNAs) are an evolutionarily conserved novel class of non-coding endogenous RNAs (ncRNAs) found in the eukaryotic transcriptome, originally believed to be aberrant RNA splicing by-products with decreased functionality. However, recent advances in high-throughput genomic technology have allowed circRNAs to be characterized in detail and revealed their role in controlling various biological and molecular processes, the most essential being gene regulation. Because of the structural stability, high expression, availability of microRNA (miRNA) binding sites and tissue-specific expression, circRNAs have become hot topic of research in RNA biology. Compared to the linear RNA, circRNAs are produced differentially by backsplicing exons or lariat introns from a pre-messenger RNA (mRNA) forming a covalently closed loop structure missing 3′ poly-(A) tail or 5′ cap, rendering them immune to exonuclease-mediated degradation. Emerging research has identified multifaceted roles of circRNAs as miRNA and RNA binding protein (RBP) sponges and transcription, translation, and splicing event regulators. CircRNAs have been involved in many human illnesses, including cancer and neurodegenerative disorders such as Alzheimer’s and Parkinson’s disease, due to their aberrant expression in different pathological conditions. The functional versatility exhibited by circRNAs enables them to serve as potential diagnostic or predictive biomarkers for various diseases. This review discusses the properties, characterization, profiling, and the diverse molecular mechanisms of circRNAs and their use as potential therapeutic targets in different human malignancies.
Collapse
Affiliation(s)
- Sabah Nisar
- Functional and Molecular Imaging Laboratory, Cancer Research Department, Sidra Medicine, Doha, Qatar
| | - Ajaz A Bhat
- Functional and Molecular Imaging Laboratory, Cancer Research Department, Sidra Medicine, Doha, Qatar
| | - Mayank Singh
- Dr. B. R. Ambedkar Institute Rotary Cancer Hospital (BRAIRCH), All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | | | - Arshi Rizwan
- Department of Nephrology, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Sheema Hashem
- Functional and Molecular Imaging Laboratory, Cancer Research Department, Sidra Medicine, Doha, Qatar
| | - Puneet Bagga
- Diagnostic Imaging, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - Ravinder Reddy
- Department of Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States
| | - Farrukh Jamal
- Dr. Rammanohar Lohia Avadh University, Ayodhya, India
| | - Shahab Uddin
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Gyan Chand
- Department of Endocrine Surgery, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India
| | - Davide Bedognetti
- Laboratory of Cancer Immunogenomics, Cancer Research Department, Sidra Medicine, Doha, Qatar.,Department of Internal Medicine and Medical Specialties, University of Genoa, Genoa, Italy.,College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| | - Wael El-Rifai
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| | | | - Muzafar A Macha
- Watson-Crick Centre for Molecular Medicine, Islamic University of Science and Technology (IUST), Pulwama, India
| | - Ikhlak Ahmed
- Research Branch, Sidra Medicine, Doha, Qatar.,Research Branch, Sidra Medicine, Doha, Qatar
| | - Mohammad Haris
- Functional and Molecular Imaging Laboratory, Cancer Research Department, Sidra Medicine, Doha, Qatar.,Laboratory Animal Research Center, Qatar University, Doha, Qatar
| |
Collapse
|
17
|
Huang A, Chen L, Wang Y, Ma S, Jin S, Cai H, Huang X, Zhang H, Wang Z, Lin K, Lin F. The Analysis of Differentially Expressed circRNAs Under the Antiproliferative Effect From 5-Fluorouracil on Osteosarcoma Cells. Technol Cancer Res Treat 2020; 19:1533033820964215. [PMID: 33308021 PMCID: PMC7739131 DOI: 10.1177/1533033820964215] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND 5-fluorouracil (5-FU) is a widely used drug for cancer treatment, but its effect and underlying mechanisms on osteosarcoma (OS) cells remain unclear. METHODS U2OS and MG63 cells were treated with 0, 50, 100, and 500 μM 5-FU. MTS and flow cytometry were used to examine the effect of 5-FU on cell viability and apoptosis, respectively. Circular RNA (circRNA) expression was detected using RNA sequencing and quantitative real-time PCR (qPCR). Differentially expressed circRNAs were further subjected to the Kyoto Encyclopedia of Genes and Genomes (KEGG) and gene ontology (GO) analysis to predict their functions. A circRNA-miRNA-mRNA interaction network was generated to analyze the regulatory networks of 5-FU-induced differentially expressed circRNAs. Western blotting (WB) was used to verify the protein in the downstream of circRNAs. RESULTS 5-FU inhibited the cell viability of the MG63 cells in a concentration-dependent manner. The most significant effect was observed in the cells treated with 500 μM 5-FU. Apoptosis was also increased in the MG63 cells after 500 μM 5-FU treatment for 3 days. RNA sequencing results showed that 183 differentially expressed circRNAs (172 upregulated and 11 downregulated) in 5-FU-treated cells. KEGG and GO analysis showed that the differentially expressed circRNAs were primarily enriched in proliferation-, apoptosis-, and metabolism-related functions. qPCR was used to verify the most upregulated and downregulated circRNAs. The circRNA-miRNA-mRNA interaction network showed that these 8 circRNAs had a sizable regulatory network that links a series of genes involved in tumor suppression. CONCLUSION 5-FU treatment resulted in the differentially expressed circRNAs that were proliferation- and apoptosis-associated and were involved in the 5-FU-induced inhibition of tumor proliferation in OS cells.
Collapse
Affiliation(s)
- AiJun Huang
- Department of Orthopaedic Surgery, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, People's Republic of China
| | - LiPing Chen
- Department of Nephrology, The Second People's Hospital of Futian District, Shenzhen, People's Republic of China
| | - YiMing Wang
- Department of Orthopaedic Surgery, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, People's Republic of China
| | - ShuQiang Ma
- Department of Orthopaedic Surgery, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, People's Republic of China
| | - Song Jin
- Department of Orthopaedic Surgery, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, People's Republic of China
| | - Hanzhou Cai
- Department of Orthopaedic Surgery, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, People's Republic of China
| | - Xingzhong Huang
- Department of Orthopaedic Surgery, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, People's Republic of China
| | - Hongbo Zhang
- Department of Orthopaedic Surgery, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, People's Republic of China
| | - ZengRong Wang
- Department of Orthopaedic Surgery, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, People's Republic of China
| | - Kun Lin
- Department of Orthopaedic Surgery, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, People's Republic of China
| | - Fangsiyu Lin
- Department of Orthopaedic Surgery, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, People's Republic of China
| |
Collapse
|
18
|
Li W, Liu JQ, Chen M, Xu J, Zhu D. Circular RNA in cancer development and immune regulation. J Cell Mol Med 2020; 26:1785-1798. [PMID: 33277969 PMCID: PMC8918416 DOI: 10.1111/jcmm.16102] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 10/14/2020] [Accepted: 11/01/2020] [Indexed: 12/22/2022] Open
Abstract
Circular RNAs (circRNAs) are a class of single‐stranded RNAs with closed loop structures formed by covalent bonds of head and tail. Exploration of circRNAs is continually increasing; however, their functional relevance largely remains to be elucidated. In general, they are stable, abundant, conserved and expressed in tissue‐specific manner. These distinct properties and their diverse cellular actions indicate that circRNAs modulate transcription and translation, and may even function as translation templates. Growing evidence reveals that circRNAs contribute to various physiological and pathological processes, including the initiation and progression of cancer. In this review, we present the current knowledge about circRNAs in cancer development, as well as their potential for use as biomarkers and even therapeutic targets. CircRNA’s role in immune regulation and antitumour immunotherapy is also discussed. In addition, possible challenges in antitumour therapy are raised, and current progress and future perspectives are provided.
Collapse
Affiliation(s)
- Weizhen Li
- Department of Laboratory Medicine, Sixth Affiliated Hospital of Yangzhou University, Taizhou, China.,Department of Laboratory Medicine, Affiliated Taixing Hospital of Bengbu Medical College, Taizhou, China
| | - Jia-Qiang Liu
- Department of Oral and Cranio-Maxillofacial, Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ming Chen
- Department of Laboratory Medicine, Sixth Affiliated Hospital of Yangzhou University, Taizhou, China.,Department of Laboratory Medicine, Affiliated Taixing Hospital of Bengbu Medical College, Taizhou, China
| | - Jiang Xu
- Department of Rehabilitation, Huai'an Second People's Hospital, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, China
| | - Di Zhu
- School of Pharmacy and Shanghai Pudong Hospital, Fudan University, Shanghai, China
| |
Collapse
|
19
|
Liu J, Yang L, Fu Q, Liu S. Emerging Roles and Potential Biological Value of CircRNA in Osteosarcoma. Front Oncol 2020; 10:552236. [PMID: 33251132 PMCID: PMC7673402 DOI: 10.3389/fonc.2020.552236] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 09/21/2020] [Indexed: 12/20/2022] Open
Abstract
Circular RNAs (circRNAs) are endogenous noncoding RNAs that are widely found in eukaryotic cells. They have been found to play a vital biological role in the development of human diseases. At present, circRNAs have been involved in the pathogenesis, diagnosis, and targeted treatment of multiple tumors. This article reviews the research progress of circRNAs in osteosarcoma (OSA) in recent years. The potential connection between circRNAs and OSA cell proliferation, apoptosis, metastasis, and chemotherapy sensitivity or resistance, as well as clinical values, is described in this review. Their categories and functions are generally summarized to facilitate a better understanding of OSA pathogenesis, and findings suggest novel circRNA-based methods may be used to investigate OSA and provide an outlook for viable biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Jiamei Liu
- Department of Pathology, The Shengjing Hospital of China Medical University, Shenyang, China
| | - Liyu Yang
- Department of Orthopedics, The Shengjing Hospital of China Medical University, Shenyang, China
| | - Qin Fu
- Department of Orthopedics, The Shengjing Hospital of China Medical University, Shenyang, China
| | - Shengye Liu
- Department of Orthopedics, The Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
20
|
Liu Y, Gu X, Liu H, Li Z, Wang Z, Zhu Z, Gao W, Wang J. New Insight of Circular RNAs in Human Musculoskeletal Diseases. DNA Cell Biol 2020; 39:1938-1947. [PMID: 32991198 DOI: 10.1089/dna.2020.5873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Circular RNAs (circRNAs), a novel group of noncoding RNAs, are present in most eukaryotic cells. Different from messenger RNAs, circRNAs have a covalently closed single-stranded stable structure and often act in cell type and tissue-specific manners, indicating that they can be used as biomarkers. With the advance of high-throughput RNA sequencing technology and bioinformatics, a large number of circRNAs have been identified in association with musculoskeletal diseases, but the functions of most circRNAs have not been clarified. circRNAs regulate biological processes by adsorbing microRNA as "sponges," binding to proteins, acting as transcriptional regulators, and participating in translation of proteins. In this study, we discuss the latest understanding of biogenesis and gene regulatory mechanisms of circRNAs with special emphasis on new targets for musculoskeletal disease diagnosis and clinical treatment.
Collapse
Affiliation(s)
- Yuzhe Liu
- Department of Orthopaedics of the Second Hospital, Jilin University, Changchun, China.,The Engineering Research Centre of Molecular Diagnosis and Cell Treatment for Metabolic Bone Diseases of Jilin Province, Jilin University, Changchun, China
| | - Xinming Gu
- Department of Oral Implantology of School and Hospital of Stomatology, and Jilin University, Changchun, China
| | - He Liu
- Department of Orthopaedics of the Second Hospital, Jilin University, Changchun, China.,The Engineering Research Centre of Molecular Diagnosis and Cell Treatment for Metabolic Bone Diseases of Jilin Province, Jilin University, Changchun, China
| | - Zhaoyan Li
- Department of Orthopaedics of the Second Hospital, Jilin University, Changchun, China.,The Engineering Research Centre of Molecular Diagnosis and Cell Treatment for Metabolic Bone Diseases of Jilin Province, Jilin University, Changchun, China.,Research Centre of the Second Hospital, Jilin University, Changchun, China
| | - Zhonghan Wang
- Department of Orthopaedics of the Second Hospital, Jilin University, Changchun, China.,The Engineering Research Centre of Molecular Diagnosis and Cell Treatment for Metabolic Bone Diseases of Jilin Province, Jilin University, Changchun, China
| | - Zhengqing Zhu
- Department of Orthopaedics of the Second Hospital, Jilin University, Changchun, China
| | - Weinan Gao
- Department of Orthopaedics of the Second Hospital, Jilin University, Changchun, China.,The Engineering Research Centre of Molecular Diagnosis and Cell Treatment for Metabolic Bone Diseases of Jilin Province, Jilin University, Changchun, China
| | - Jincheng Wang
- Department of Orthopaedics of the Second Hospital, Jilin University, Changchun, China.,The Engineering Research Centre of Molecular Diagnosis and Cell Treatment for Metabolic Bone Diseases of Jilin Province, Jilin University, Changchun, China
| |
Collapse
|
21
|
Borran S, Ahmadi G, Rezaei S, Anari MM, Modabberi M, Azarash Z, Razaviyan J, Derakhshan M, Akhbari M, Mirzaei H. Circular RNAs: New players in thyroid cancer. Pathol Res Pract 2020; 216:153217. [PMID: 32987339 DOI: 10.1016/j.prp.2020.153217] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 09/02/2020] [Accepted: 09/10/2020] [Indexed: 12/11/2022]
Abstract
The prevalence of thyroid cancer the most frequent endocrine malignancy, is rapidly increasing. Most of thyroid cancers are relatively indolent, however, some cases still possess a risk of developing into lethal types of thyroid cancer. Regarding its multistep tumorigenesis, the determination of the underlying mechanisms is a vital issue for thyroid cancer therapy. Circular RNAs (circRNAs) are a type of non-coding RNAs with a closed loop structure. Numerous circRNAs have been identified in cancerous tissues. Mounting data recommends that the biological activities of circRNAs, such as serving as microRNA or ceRNAs sponges, interacting with proteins, modulating gene translation and transcription, suggesting that circRNAs will be potential targets as well as agents for the prognosis and diagnosis of diseases, including cancer. Given that circular RNAs acts as oncogenes or tumor suppressors in the thyroid cancer. Several studies documented that circular RNAs via microRNA and protein sponges could regulate a sequences of cellular and molecular mechanisms e.g., apoptosis, angiogenesis, tumor growth, and invasion that are involved in thyroid cancer pathogenesis. Herein, we summarized the role of circular RNAs as therapeutic and diagnostic biomarkers in the thyroid cancer. Moreover, we highlighted the role of these molecules in the pathogenesis of various cancers.
Collapse
Affiliation(s)
- Sarina Borran
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Gelavizh Ahmadi
- Department of Biotechnology, Faculty of Science, University of Maragheh, Maragheh, Iran
| | - Samaneh Rezaei
- Department of Medical Biotechnology, School of Medicine, Mashhad University of Medical, Sciences, Mashhad, Iran
| | | | - Mohsen Modabberi
- Physical Medicine and Rehabilitation Department and Research Center, Shohada-e-Tajrish Hospital, Shahid Beheshti University of Medical Sciences, School of Medicine, Tehran, Iran
| | - Ziba Azarash
- Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Javad Razaviyan
- Student Research Committee, School of Medicine Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Derakhshan
- Department of Pathology, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Masoume Akhbari
- Department of Molecular Medicine, School of Medicine, Qazvin University of Medical Sciences, Qazvin, Iran.
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, I.R. Iran.
| |
Collapse
|
22
|
Soghli N, Qujeq D, Yousefi T, Soghli N. The regulatory functions of circular RNAs in osteosarcoma. Genomics 2020; 112:2845-2856. [DOI: 10.1016/j.ygeno.2020.03.024] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 03/21/2020] [Accepted: 03/23/2020] [Indexed: 02/06/2023]
|
23
|
Song C, Kong Y, Huang L, Luo H, Zhu X. Big data-driven precision medicine: Starting the custom-made era of iatrology. Biomed Pharmacother 2020; 129:110445. [PMID: 32593132 DOI: 10.1016/j.biopha.2020.110445] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/14/2020] [Accepted: 06/17/2020] [Indexed: 12/12/2022] Open
Abstract
Precision medicine is a new therapeutic concept and method emerging in recent years. The rapid development of precision medicine is driven by the development of omics related technology, biological information and big data science. Precision medicine is provided to implement precise and personalized treatment for diseases and specific patients. Precision medicine is commonly used in the diagnosis, treatment and prevention of various diseases. This review introduces the application of precision medicine in eight systematic diseases of the human body, and systematically presenting the current situation of precision medicine. At the same time, the shortcomings and limitations of precision medicine are pointed out. Finally, we prospect the development of precision medicine.
Collapse
Affiliation(s)
- Chang Song
- Marine Medical Research Institute of Guangdong Zhanjiang (GDZJMMRI), Southern Marine Science and Engineering Guangdong Laboratory Zhanjiang, Guangdong Medical University, Zhanjiang 524023, China
| | - Ying Kong
- Department of Clinical Laboratory, Hubei No. 3 People's Hospital of Jianghan University, Wuhan 430033, China
| | - Lianfang Huang
- Marine Medical Research Institute of Guangdong Zhanjiang (GDZJMMRI), Southern Marine Science and Engineering Guangdong Laboratory Zhanjiang, Guangdong Medical University, Zhanjiang 524023, China.
| | - Hui Luo
- Marine Medical Research Institute of Guangdong Zhanjiang (GDZJMMRI), Southern Marine Science and Engineering Guangdong Laboratory Zhanjiang, Guangdong Medical University, Zhanjiang 524023, China.
| | - Xiao Zhu
- Marine Medical Research Institute of Guangdong Zhanjiang (GDZJMMRI), Southern Marine Science and Engineering Guangdong Laboratory Zhanjiang, Guangdong Medical University, Zhanjiang 524023, China.
| |
Collapse
|
24
|
Di Agostino S, Riccioli A, De Cesaris P, Fontemaggi G, Blandino G, Filippini A, Fazi F. Circular RNAs in Embryogenesis and Cell Differentiation With a Focus on Cancer Development. Front Cell Dev Biol 2020; 8:389. [PMID: 32528957 PMCID: PMC7266935 DOI: 10.3389/fcell.2020.00389] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 04/29/2020] [Indexed: 12/12/2022] Open
Abstract
In the recent years thousands of non-coding RNAs have been identified, also thanks to highthroughput sequencing technologies. Among them, circular RNAs (circRNAs) are a well-represented class characterized by the high sequence conservation and cell type specific expression in eukaryotes. They are covalently closed loops formed through back-splicing. Recently, circRNAs were shown to regulate a variety of cellular processes functioning as miRNA sponges, RBP binding molecules, transcriptional regulators, scaffold for protein translation, as well as immune regulators. A growing number of studies are showing that deregulated expression of circRNAs plays important and decisive actions during the development of several human diseases, including cancer. The research on their biogenesis and on the various molecular mechanisms in which they are involved is going very fast, however, there are still few studies that address their involvement in embryogenesis and eukaryotic development. This review has the intent to describe the most recent progress in the study of the biogenesis and molecular activities of circRNAs providing insightful information in the field of embryogenesis and cell differentiation. In addition, we describe the latest research on circRNAs as novel promising biomarkers in diverse types of tumors.
Collapse
Affiliation(s)
- Silvia Di Agostino
- Oncogenomic and Epigenetic Unit, Department of Diagnostic Research and Technological Innovation, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Anna Riccioli
- Department of Anatomical, Histological, Forensic & Orthopedic Sciences, Section of Histology & Medical Embryology, Sapienza University of Rome, Rome, Italy
| | - Paola De Cesaris
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Giulia Fontemaggi
- Oncogenomic and Epigenetic Unit, Department of Diagnostic Research and Technological Innovation, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Giovanni Blandino
- Oncogenomic and Epigenetic Unit, Department of Diagnostic Research and Technological Innovation, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Antonio Filippini
- Department of Anatomical, Histological, Forensic & Orthopedic Sciences, Section of Histology & Medical Embryology, Sapienza University of Rome, Rome, Italy
| | - Francesco Fazi
- Department of Anatomical, Histological, Forensic & Orthopedic Sciences, Section of Histology & Medical Embryology, Sapienza University of Rome, Rome, Italy.,Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza Università di Roma, Rome, Italy
| |
Collapse
|
25
|
Tu C, He J, Qi L, Ren X, Zhang C, Duan Z, Yang K, Wang W, Lu Q, Li Z. Emerging landscape of circular RNAs as biomarkers and pivotal regulators in osteosarcoma. J Cell Physiol 2020; 235:9037-9058. [PMID: 32452026 DOI: 10.1002/jcp.29754] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 04/18/2020] [Accepted: 04/22/2020] [Indexed: 12/13/2022]
Abstract
Osteosarcoma represents the most prevailing primary bone tumor and the third most common cancer in children and adolescents worldwide. Among noncoding RNAs, circular RNAs (circRNAs) refer to a unique class in the shape of a covalently closed continuous loop with neither 5' caps nor 3'-polyadenylated tails, which are generated through back-splicing. Recently, with the development of whole-genome and transcriptome sequencing technologies, a growing number of circRNAs have been found aberrantly expressed in multiple diseases, including osteosarcoma. circRNA are capable of various biological functions including miRNA sponge, mediating alternatives, regulating genes at posttranscriptional levels, and interacting with proteins, indicating a pivotal role of circRNA in cancer initiation, progression, chemoresistance, and immune response. Moreover, circRNAs have been thrust into the spotlight as potential biomarkers and therapeutic targets in osteosarcoma. Herein, we briefly summarize the origin and biogenesis of circRNA with current knowledge of circRNA in tumorigenesis of osteosarcoma, aiming to elucidate the specific role and clinical implication of circRNAs in osteosarcoma.
Collapse
Affiliation(s)
- Chao Tu
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jieyu He
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lin Qi
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiaolei Ren
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Chenghao Zhang
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhixi Duan
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Kexin Yang
- Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Wanchun Wang
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qiong Lu
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhihong Li
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
26
|
Xie C, Chen B, Wu B, Guo J, Shi Y, Cao Y. CircSAMD4A regulates cell progression and epithelial‑mesenchymal transition by sponging miR‑342‑3p via the regulation of FZD7 expression in osteosarcoma. Int J Mol Med 2020; 46:107-118. [PMID: 32319545 PMCID: PMC7255482 DOI: 10.3892/ijmm.2020.4585] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 01/30/2020] [Indexed: 01/22/2023] Open
Abstract
Osteosarcoma (OS) is a primary malignant tumor with a complex etiology. Therefore, research into the pathogenesis of osteosarcoma is considered a priority. Circular RNAs play important roles in cell metabolism and in the immune response and are closely associated with cancer treatment. However, research into the association of circular RNAs with osteosarcoma is limited. In the present study, CircSAMD4A was validated by RT‑qPCR and agarose gel electrophoresis. CircSAMD4A and miR‑342‑3p expression was detected by RT‑qPCR. The relative protein expression levels were measured by western blot analysis. MTT assay and flow cytometry were used to detect cell cytotoxicity and apoptosis, respectively. Transwell assay was applied to assess cell migration and invasion. Dual‑luciferase reporter assay was used to determine the association among CircSAMD4A, Frizzled‑7 (FZD7) and miR‑342‑3p. In vivo, subcutaneous tumor formation assay was performed in an experiment with nude mice. The results revealed that the expression levels of CircSAMD4A and FZD7 were upregulated, while those of miR‑342‑3p were downregulated in OS tissues and cells. The inhibition of CircSAMD4A suppressed cell progression and epithelial‑mesenchymal transition (EMT), and promoted cell apoptosis in OS. The reduction of miR‑342‑3p reversed the effects of CircSAMD4A downregulation on cell cytotoxicity, migration, invasion, apoptosis and EMT in OS, while FZD7 overexpression blocked the effect of miR‑342‑3p upregulation on OS progression. The suppressive effect of sh‑CircSAMD4A on tumor growth was thus verified in OS. Overall, the present study demonstrated that CircSAMD4A affected cell cytotoxicity, invasion, apoptosis, migration and EMT by regulating the miR‑342‑3p/FDZ7 axis in OS, thereby providing a novel regulatory mechanism and a potential therapeutic target for OS.
Collapse
Affiliation(s)
- Chuhai Xie
- Department of Orthopedics, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510260, P.R. China
| | - Binwei Chen
- Department of Orthopedics, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510260, P.R. China
| | - Boyi Wu
- Department of Orthopedics, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510260, P.R. China
| | - Jianhong Guo
- Department of Orthopedics, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510260, P.R. China
| | - Yulong Shi
- Department of Orthopedics, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510260, P.R. China
| | - Yanming Cao
- Department of Orthopedics, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510260, P.R. China
| |
Collapse
|
27
|
Wan B, Hu H, Wang R, Liu W, Chen D. Therapeutic Potential of Circular RNAs in Osteosarcoma. Front Oncol 2020; 10:370. [PMID: 32351876 PMCID: PMC7174900 DOI: 10.3389/fonc.2020.00370] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 03/03/2020] [Indexed: 12/14/2022] Open
Abstract
Osteosarcoma is the most common malignant bone tumor in children and adolescents. Multiagent chemotherapy, together with surgical removal of all detectable lesions, has improved the long-term survival rate to 65-70% in patients with localized osteosarcoma and to 25-30% in patients with metastatic osteosarcoma since the 1970s. However, the conventional strategy has not improved in recent decades. With accumulating knowledge of the natural circular RNA (circRNA) pathogenesis of osteosarcoma, the diagnostic and therapeutic potential of some circRNAs has been explored. Meanwhile, artificial circular RNAs have been designed as onco-microRNA inhibitors to exert antitumor functions. Therefore, natural and artificial circular RNAs, like other RNA counterparts, are attractive new classes of therapeutic molecules for the treatment of osteosarcoma. This review summarizes the latest progress in the relationship between circRNAs and the malignant phenotype of osteosarcoma and sheds light on the therapeutic potential of the two types of circular RNA in the clinic.
Collapse
Affiliation(s)
- Ben Wan
- Laboratory of Bone Tissue Engineering, Beijing Laboratory of Biomedical Materials, Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Beijing, China
| | - Hao Hu
- Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, Guangzhou, China
- Department of Spinal Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Renxian Wang
- Laboratory of Bone Tissue Engineering, Beijing Laboratory of Biomedical Materials, Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Beijing, China
| | - Weifeng Liu
- Department of Orthopaedic Oncology Surgery, Beijing Jishuitan Hospital, Peking University, Beijing, China
| | - Dafu Chen
- Laboratory of Bone Tissue Engineering, Beijing Laboratory of Biomedical Materials, Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Beijing, China
| |
Collapse
|
28
|
Chen L, Shan Y, Zhang H, Wang H, Chen Y. Up-Regulation of Hsa_circ_0008792 Inhibits Osteosarcoma Cell Invasion and Migration and Promotes Apoptosis by Regulating Hsa-miR-711/ZFP1. Onco Targets Ther 2020; 13:2173-2181. [PMID: 32210583 PMCID: PMC7073447 DOI: 10.2147/ott.s239256] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 03/02/2020] [Indexed: 12/16/2022] Open
Abstract
Objective Circular RNA is a newly discovered non-coding RNA. It plays an important role in regulating gene expression, and may take part in tumor progression. This study aimed to investigate the functions of hsa_circ_0008792 in osteosarcoma regulation. Methods We identified a circular RNA, hsa_circ_0008792, by using bioinformatics to analyze the GSE96962 dataset. The capacities of migration and invasion were assessed by wound-healing assay and transwell Matrigel assay. The ratios of G0/G1, S, and G2/M phases in cell cycle and apoptosis were measured using flow cytometry. Results Hsa_circ_0008792 is expressed at low levels in osteosarcoma cells, and up-regulation of hsa_circ_0008792 could suppress osteosarcoma cell migration and invasion and promote apoptosis. This regulation is mediated by hsa-miR-711/ZFP1. The expression level of hsa_circ_0008792 showed no influence on cell cycle of osteosarcoma cells. Conclusion Osteosarcoma is suppressed by hsa_circ_0008792/hsa-miR-711/ZFP1 axis.
Collapse
Affiliation(s)
- Lu Chen
- Department of Spine Surgery, Qilu Hospital, Shandong University, Jinan, Shandong Province 250012, Republic of China
| | - Yu Shan
- Department of Spine Surgery, Qilu Hospital, Shandong University, Jinan, Shandong Province 250012, Republic of China
| | - Hengshuo Zhang
- Department of Spine Surgery, Qilu Hospital, Shandong University, Jinan, Shandong Province 250012, Republic of China
| | - Hongliang Wang
- Department of Spine Surgery, Qilu Hospital, Shandong University, Jinan, Shandong Province 250012, Republic of China
| | - Yunzhen Chen
- Department of Spine Surgery, Qilu Hospital, Shandong University, Jinan, Shandong Province 250012, Republic of China
| |
Collapse
|
29
|
Hu Y, Gu J, Shen H, Shao T, Li S, Wang W, Yu Z. Circular RNA LARP4 correlates with decreased Enneking stage, better histological response, and prolonged survival profiles, and it elevates chemosensitivity to cisplatin and doxorubicin via sponging microRNA-424 in osteosarcoma. J Clin Lab Anal 2020; 34:e23045. [PMID: 31642110 PMCID: PMC7031593 DOI: 10.1002/jcla.23045] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 09/03/2019] [Accepted: 09/09/2019] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND This study aimed to evaluate the association of circular RNA La-related RNA-binding protein 4 (circ-LARP4) with clinical features and prognosis in osteosarcoma patients, and further explore its effect on chemosensitivity in osteosarcoma cells. METHODS Seventy-two osteosarcoma patients with Enneking stage IIA-IIB who underwent resection were consecutively enrolled, and then, tumor tissues and non-tumor tissues were obtained. Circ-LARP4 in tumor tissue/non-tumor tissue was detected by quantitative polymerase chain reaction. After circ-LARP4 overexpression and negative control overexpression plasmid transfection, relative cell viability (%) was evaluated by Cell Counting Kit-8 in MG63 cells treated by different concentrations of cisplatin, methotrexate, and doxorubicin, and IC50 was calculated. RESULTS Circ-LARP4 was downregulated in tumor tissue compared with non-tumor tissue and had a good value in distinguishing tumor tissue from non-tumor tissue with an area under curve of 0.829 (95% CI: 0.762-0.859). Meanwhile, tumor circ-LARP4 was negatively correlated with the Enneking stage. After resection, circ-LARP4 high expression patients showed an increased tumor cell necrosis rate to adjuvant chemotherapy compared to circ-LARP4 low expression patients, and circ-LARP4 high expression correlated with prolonged disease-free survival and overall survival. In vitro experiments revealed that circ-LARP4 overexpression elevated the chemosensitivity of MG63 cells to cisplatin and doxorubicin but not methotrexate, with decreased cisplatin IC50 and doxorubicin IC50 concentrations than negative control. Besides, miR-424 overexpression attenuated the chemosensitivity in circ-LARP4 overexpression-treated MG63 cells. CONCLUSION Circ-LARP4 high expression correlates with decreased Enneking stage and prolonged survival profiles, and it elevates chemosensitivity to cisplatin and doxorubicin via sponging miR-424 in osteosarcoma.
Collapse
Affiliation(s)
- Yuhang Hu
- Department of OrthopedicsThe First Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Jiaao Gu
- Department of OrthopedicsThe First Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Hongtao Shen
- Department of OrthopedicsThe First Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Tuo Shao
- Department of OrthopedicsThe First Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Song Li
- Department of OrthopedicsThe First Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Wei Wang
- Department of OrthopedicsThe First Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Zhange Yu
- Department of OrthopedicsThe First Affiliated Hospital of Harbin Medical UniversityHarbinChina
| |
Collapse
|
30
|
Jinesh GG, Brohl AS. The genetic script of metastasis. Biol Rev Camb Philos Soc 2020; 95:244-266. [PMID: 31663259 DOI: 10.1111/brv.12562] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 09/24/2019] [Accepted: 09/26/2019] [Indexed: 01/24/2023]
Abstract
Metastasis is a pivotal event that changes the course of cancers from benign and treatable to malignant and difficult to treat, resulting in the demise of patients. Understanding the genetic control of metastasis is thus crucial to develop efficient and sustainable targeted therapies. Here we discuss the alterations in epigenetic mechanisms, transcription, chromosomal instability, chromosome imprinting, non-coding RNAs, coding RNAs, mutant RNAs, enhancers, G-quadruplexes, and copy number variation to dissect the genetic control of metastasis. We conclude that the genetic control of metastasis is predominantly executed through epithelial to mesenchymal transition and evasion of cell death. We discuss how genetic regulatory mechanisms can be harnessed for therapeutic purposes to achieve sustainable control over cancer metastasis.
Collapse
Affiliation(s)
- Goodwin G Jinesh
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, 33612, U.S.A.,Sarcoma Department, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, 33612, U.S.A
| | - Andrew S Brohl
- Sarcoma Department, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, 33612, U.S.A.,Chemical Biology and Molecular Medicine Program, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, 33612, U.S.A
| |
Collapse
|
31
|
Li S, Pei Y, Wang W, Liu F, Zheng K, Zhang X. Extracellular nanovesicles-transmitted circular RNA has_circ_0000190 suppresses osteosarcoma progression. J Cell Mol Med 2020; 24:2202-2214. [PMID: 31923350 PMCID: PMC7011131 DOI: 10.1111/jcmm.14877] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 11/16/2019] [Indexed: 01/12/2023] Open
Abstract
Under the microenvironment, tumour progression is substantially affected by cell-cell communication. In spite of the mediating effect of extracellular nanovesicles (EVs) on cell-cell communication by packaging into circRNAs, the effect of EVs circRNA hsa_circ_0000190 (circ-0000190) in osteosarcoma is still not clear. Circ-0000190 expressions in tissues and EVs from plasma were compared between osteosarcoma patients and controls. Thereafter, receiver operating characteristic (ROC) curve was drawn and area under the curve was calculated to examine whether the diagnostic results were accurate, and the effect of EVs circ-0000190 was dug out via the determination of cell phenotypes and animal assays. Results showed circ-0000190 exhibited an obvious reduction in EVs and tissues of osteosarcoma patients (P < .05). It was also discovered that EVs encapsulated the majority of circ-0000190, and EVs-encapsulated circ-0000190 could be applied to make a distinction between osteosarcoma patients and controls. Besides, EVs circ-0000190 in osteosarcoma cells transported from normal cells weakened the capacities of osteosarcoma cells to migrate, proliferate and invade, so as to block their biological malignant behaviours (P < .05). In addition, under the action of EVs circ-0000190, tumour growth was impeded and the expression of TET1 was inhibited via the competitive binding to miR-767-5p. In all, EVs circ-0000190 has a good prospect as it can be regarded as a new biomarker for detecting osteosarcoma. EVs circ-0000190 transported from normal cells to osteosarcoma cells impeded the in vitro and in vivo development of osteosarcoma, implying that EVs circ-0000190 exerts an effect on communication between normal cells and osteosarcoma cells in the carcinogenesis process of osteosarcoma.
Collapse
Affiliation(s)
- Shenglong Li
- Department of Bone and Soft Tissue Tumor Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning Province, China
| | - Yi Pei
- Department of Bone and Soft Tissue Tumor Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning Province, China
| | - Wei Wang
- Department of Bone and Soft Tissue Tumor Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning Province, China
| | - Fei Liu
- Department of Bone and Soft Tissue Tumor Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning Province, China
| | - Ke Zheng
- Department of Bone and Soft Tissue Tumor Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning Province, China
| | - Xiaojing Zhang
- Department of Bone and Soft Tissue Tumor Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning Province, China
| |
Collapse
|
32
|
Liu L, Liu FB, Huang M, Xie K, Xie QS, Liu CH, Shen MJ, Huang Q. Circular RNA ciRS-7 promotes the proliferation and metastasis of pancreatic cancer by regulating miR-7-mediated EGFR/STAT3 signaling pathway. Hepatobiliary Pancreat Dis Int 2019; 18:580-586. [PMID: 30898507 DOI: 10.1016/j.hbpd.2019.03.003] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 03/01/2019] [Indexed: 02/05/2023]
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) is the most deadly type of tumor, and its pathogenesis remains unknown. Circular RNAs (circRNAs) may be functional and bind to microRNAs and consequently, influence the activity of targeted mRNAs. Recent researches indicate that one circRNA, ciRS-7, acts as a sponge of miR-7 and thus, inhibits its activity. It is well known that miR-7 is a cancer suppressor in many cancers. However, the relationship between ciRS-7 and miR-7, and the role of ciRS-7 in PDAC, remains to be elucidated. METHODS miR-7 and ciRS-7 expression in 41 pairs of PDAC tumors and their paracancerous tissues were detected by quantitative reverse transcription polymerase chain reaction (qRT-PCR). The relationships between their expression levels and clinicopathological features in PDAC tissues were assessed. The relationship between miR-7 and ciRS-7 was also assessed by Spearman's correlation. We also used cell lines to evaluate the role of ciRS-7 in cell line behavior. The ciRS-7 interfere RNA (siRNA) and its empty vector were transfected into PDAC cells. PDAC cells proliferation and invasion abilities were detected by MTT assay and invasion analysis. The expression of proteins was assessed by Western blotting. RESULTS ciRS-7 expression was significantly higher in PDAC tissues than paracancerous tissues (P = 0.002). However, miR-7 expression showed the opposite trend (P = 0.048). Moreover, ciRS-7 expression was inversely correlated with miR-7 in PDAC (rs = -0.353, P = 0.023). ciRS-7 expression was also significantly elevated in venous invasion (3.72 ± 2.93 vs. 2.14 ± 1.26; P = 0.028) and lymph node metastasis (4.19 ± 2.75 vs. 2.32 ± 1.90; P = 0.016) in PDAC patients. Furthermore, ciRS-7 knockdown suppressed cell proliferation and invasion of PDAC cells (P < 0.05), and the downregulation of ciRS-7 resulted in miR-7 overexpression and subsequent inhibition of epidermal growth factor receptor (EGFR) and signal transducer and activator of transcription 3 (STAT3). CONCLUSIONS Circular RNA ciRS-7 plays an oncogene role in PDAC, partly by targeting miR-7 and regulating the EGFR/STAT3 signaling pathway.
Collapse
Affiliation(s)
- Lei Liu
- Clinical Medical College, Shandong University, Jinan 250012, China; Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Fu-Bao Liu
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Mei Huang
- Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Hefei 230001, China
| | - Kun Xie
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Qing-Song Xie
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Chen-Hai Liu
- Department of General Surgery, Anhui Provincial Hospital, Hefei 230001, China
| | - Min-Jing Shen
- Department of General Surgery, Anhui Provincial Hospital, Hefei 230001, China
| | - Qiang Huang
- Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Hefei 230001, China; Department of General Surgery, Anhui Provincial Hospital, Hefei 230001, China.
| |
Collapse
|
33
|
Zhang Z, Zhao M, Wang G. Hsa_circ_0051079 functions as an oncogene by regulating miR-26a-5p/TGF-β1 in osteosarcoma. Cell Biosci 2019; 9:94. [PMID: 31798828 PMCID: PMC6883546 DOI: 10.1186/s13578-019-0355-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 11/09/2019] [Indexed: 12/23/2022] Open
Abstract
Background Osteosarcoma is a most common bone malignant tumor which threatens children and adolescents. Circular RNAs (circRNAs) fundamentally play essential roles in the progress and development of human cancers by sponging with microRNAs (miRNAs). However, the role of circRNAs in osteosarcoma is not clear. The aim of the study was to investigate the roles and molecular mechanism of circRNAs in osteosarcoma. Results The data from qRT-PCR showed that circ_0051079 expression was higher in osteosarcoma cells and tissues compared to their normal controls. Meanwhile, bioinformatic analysis indicated that circ_0051079 was a sponge of miR-26a-5p, which was verified by luciferase activity assay. Subsequently, TGF-β1 was verified as a putative target mRNA of miR-26a-5p by luciferase assay. Cellular function assays were conducted and the findings revealed that circ_0051079/miR-26a-5p/TGF-β1 regulated osteosarcoma proliferation and metastasis. Conclusion The study demonstrated that circ_0051079 could act as an oncogene via regulating miR-26a-5p/TGF-β1 and a potential biomarker for osteosarcoma diagnose.
Collapse
Affiliation(s)
- Zuojun Zhang
- Upper Limb Injury Treatment Center, Luoyang Orthopedic Hospital of Henan Province, Luoyang, China.,Luoyang Orthopedic Hospital of Henan Province, Orthopedic Hospital of Henan Province, 82 Qiming South Road, Chanhe District, Luoyang, 122400 Henan China
| | - Ming Zhao
- Upper Limb Injury Treatment Center, Luoyang Orthopedic Hospital of Henan Province, Luoyang, China
| | - Guojie Wang
- Upper Limb Injury Treatment Center, Luoyang Orthopedic Hospital of Henan Province, Luoyang, China
| |
Collapse
|
34
|
Chen L, Luo W, Zhang W, Chu H, Wang J, Dai X, Cheng Y, Zhu T, Chao J. circDLPAG4/HECTD1 mediates ischaemia/reperfusion injury in endothelial cells via ER stress. RNA Biol 2019; 17:240-253. [PMID: 31607223 DOI: 10.1080/15476286.2019.1676114] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Background: Vascular endothelial cell dysfunction, characterized by cell apoptosis and migration, plays a crucial role in ischaemia/reperfusion (I/R) injury, a common aspect of cardiovascular diseases. Recent studies have suggested that non-coding RNAs, such as circular RNAs (circRNA), play a role in cell dysfunction in I/R injury, although the detailed mechanism is unclear.Methods: Human umbilical vein endothelial cells (HUVECs) were used for in vitro I/R model. Protein expression was detected by western blotting (WB) and immunocytochemistry. The CRISPR/Cas9 system, WB, cell viability assays, Hoechst staining and a 3D migration model were used to explore functional changes. RNA expression was evaluated using quantitative real-time PCR and a FISH assay combined with lentivirus transfection regulating circRNAs and miRNAs. A mouse myocardial I/R model using C57 mice was established to confirm the in vitro findings.Results: In HUVECs, I/R induced a significant time-dependent decrease in HECTD1 associated with an approximately 45% decrease in cell viability and increases in cell apoptosis and migration, which were attenuated by HECTD1 overexpression. I/R-induced upregulation of endoplasmic reticulum stress was also attenuated HECTD1 overexpression. Moreover, miR-143 mimics inhibited HECTD1 expression, which was restored by circDLGAP4 overexpression, providing insight as to the molecular mechanism of I/R-induced HECTD1 in endothelial cell dysfunction.Conclusion: Our results suggest a critical role for circDLGAP4 and HECTD1 in endothelial cell dysfunction induced by I/R, providing novel insight into potential therapeutic targets for the treatment of myocardial ischaemia.
Collapse
Affiliation(s)
- Lulu Chen
- Department of Physiology, Medical School of Southeast University, Nanjing, Jiangsu, China.,Department of Cardiology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Wei Luo
- Department of Physiology, Medical School of Southeast University, Nanjing, Jiangsu, China
| | - Wei Zhang
- Department of Physiology, Medical School of Southeast University, Nanjing, Jiangsu, China
| | - Han Chu
- Department of Physiology, Medical School of Southeast University, Nanjing, Jiangsu, China
| | - Jing Wang
- Department of Physiology, Medical School of Southeast University, Nanjing, Jiangsu, China
| | - Xiaoniu Dai
- Department of Physiology, Medical School of Southeast University, Nanjing, Jiangsu, China
| | - Yusi Cheng
- Department of Physiology, Medical School of Southeast University, Nanjing, Jiangsu, China
| | - Tiebing Zhu
- Department of Cardiology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jie Chao
- Department of Physiology, Medical School of Southeast University, Nanjing, Jiangsu, China.,Key Laboratory of Developmental Genes and Human Disease, Institute of Life Sciences, Southeast University, Nanjing, Jiangsu, China.,Department of Respiration, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| |
Collapse
|
35
|
Abi A, Farahani N, Molavi G, Gheibi Hayat SM. Circular RNAs: epigenetic regulators in cancerous and noncancerous skin diseases. Cancer Gene Ther 2019; 27:280-293. [PMID: 31477805 DOI: 10.1038/s41417-019-0130-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 05/25/2019] [Accepted: 06/01/2019] [Indexed: 12/11/2022]
Abstract
The most frequent kind of malignancy in the universe is skin cancer, which has been categorized into non-melanoma and melanoma skin cancer. There are no complete information of the skin carcinogenesis process. A variety of external and internal agents contribute to the non-melanoma and melanoma skin cancer pathogenesis. These factors are epigenetic changes, X-rays, genetic, arsenic compounds, UV rays, and additional chemical products. It was found that there could be a relationship between the appearing novel and more suitable therapies for participants in this class of diseases and detection of basic molecular paths. A covalently closed loop structure bond connecting the 5' and 3' ends characterizes a new group of extensively expressed endogenous regulatory RNAs, which are called circular RNAs (circRNAs). Mammals commonly express circRNAs. They are of high importance in tumorigenesis. Multiple lines evidence indicated that a variety of circular RNAs are associated with initiation and development of skin-related diseases such as skin cancers. Given that different circular RNAs (hsa_circ_0025039, hsa_circRNA006612, circRNA005537, and circANRIL) via targeting various cellular and molecular targets (e.g., CDK4, DAB2IP, ZEB1, miR-889, and let-7c-3p) exert their effects on skin cancers progression. Herein, for first time, we summarized different circular RNAs in skin cancers and noncancerous diseases. Moreover, we highlighted crosstalk between circular RNAs and ceRNAs in cancerous conditions.
Collapse
Affiliation(s)
- Abbas Abi
- Department of Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Najmeh Farahani
- Department of Genetics and Molecular Biology, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ghader Molavi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Seyed Mohammad Gheibi Hayat
- Department of Medical Genetics, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| |
Collapse
|
36
|
Shabaninejad Z, Vafadar A, Movahedpour A, Ghasemi Y, Namdar A, Fathizadeh H, Pourhanifeh MH, Savardashtaki A, Mirzaei H. Circular RNAs in cancer: new insights into functions and implications in ovarian cancer. J Ovarian Res 2019; 12:84. [PMID: 31481095 PMCID: PMC6724287 DOI: 10.1186/s13048-019-0558-5] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 08/20/2019] [Indexed: 02/07/2023] Open
Abstract
Circular RNAs (circRNAs) are a class of long non-coding RNAs (lncRNAs) which have a circular and closed loop structure. They are ubiquitous, stable, conserved and diverse RNA molecules with a range of activities such as translation and splicing regulation, which are able to interacting with RNA-binding proteins and specially miRNA sponge. The expression patterns of the circRNAs exhibited tissue specificity and also, step and stage specificity. Accumulating evidences approved the critical role of circular RNAs in many cancers such as ovarian cancer. Given that these molecules exert their effects through multiple cellular and molecular mechanisms (i.e., angiogenesis, apoptosis, growth, and metastasis) which are involved in cancer pathogenesis, circular RNAs, in particular, act by controlling cell proliferation in ovarian cancer, so that, it has been shown that the deregulation of these molecules is associated with initiation and progression of ovarian cancer. Therefore, they are attractive molecules which have introduced them as cancer biomarkers. Moreover, they could be used as new therapeutic candidates for developing novel treatment strategies. Here, for first time, we have provided a comprehensive review on the recent knowledge of circular RNAs and their pathological roles in the ovarian cancer.
Collapse
Affiliation(s)
- Zahra Shabaninejad
- Department of Nanobiotechnology, School of Basic Sciences, Tarbiat Modares University, Tehran, Iran.,Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Asma Vafadar
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ahmad Movahedpour
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran.,Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Younes Ghasemi
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran.,Department of Pharmaceutical Biotechnology, School of Pharmacy and Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Afshin Namdar
- Department of Dentistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| | - Hadis Fathizadeh
- Department of Microbiology and Immunology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammad Hossein Pourhanifeh
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Amir Savardashtaki
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran. .,Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
37
|
Abstract
Osteosarcoma is a malignant tumor that occurs most commonly in the metaphysis of the long bones in the limbs in children and adolescents. Even with surgery and neoadjuvant chemotherapy, the therapeutic effect has reached a peak with 60-70% survival rates. Therefore, new biological targets or molecular mechanisms that enhance the efficacy of osteosarcoma treatments are needed. Circular RNAs (circRNAs) are useful biomarkers that have recently been recognized clinically and in medical research and have been of interest due to the use of next-generation sequencing and bioinformatics analysis. CircRNAs are involved in many diseases, including cancer. Therefore, this review aims to summarize the roles of circRNA in the diagnosis, progression, and prognosis of osteosarcoma.
Collapse
Affiliation(s)
- Yong Zhang
- Department of Orthopedics, The Second Hospital of Anhui Medical University, Hefei, Anhui, China (mainland)
| | - Jiale Li
- Department of Orthopedics, The Second Hospital of Anhui Medical University, Hefei, Anhui, China (mainland)
| | - Yinsheng Wang
- Department of Orthopedics, The Second Hospital of Anhui Medical University, Hefei, Anhui, China (mainland)
| | - Juehua Jing
- Department of Orthopedics, The Second Hospital of Anhui Medical University, Hefei, Anhui, China (mainland)
| | - Jun Li
- Department of Orthopedics, The Second Hospital of Anhui Medical University, Hefei, Anhui, China (mainland)
| |
Collapse
|
38
|
Reinventing the Wheel: Synthetic Circular RNAs for Mammalian Cell Engineering. Trends Biotechnol 2019; 38:217-230. [PMID: 31421856 DOI: 10.1016/j.tibtech.2019.07.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 07/18/2019] [Accepted: 07/19/2019] [Indexed: 12/28/2022]
Abstract
The circular RNA renaissance is upon us. Recent reports demonstrate applications of synthetic circular RNA molecules as gene therapies and in the production of biologics from cell-based expression systems. Circular RNAs are covalently closed loop RNA species that are formed naturally through noncolinear splicing of pre-mRNA. Although once thought to be noncoding artefacts from splicing errors, it is now accepted that circular RNAs are abundant and have diverse functions in gene regulation and protein coding in eukaryotes. Numerous reports have investigated circular RNAs in various diseases, but the promise of synthetic circular RNAs in the production of recombinant proteins and as RNA-based therapies is only now coming into focus. This review highlights reported uses of synthetic circular RNAs and describes methods for generating these molecules.
Collapse
|
39
|
CircRNA-104718 acts as competing endogenous RNA and promotes hepatocellular carcinoma progression through microRNA-218-5p/TXNDC5 signaling pathway. Clin Sci (Lond) 2019; 133:1487-1503. [PMID: 31278132 DOI: 10.1042/cs20190394] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 06/24/2019] [Accepted: 07/05/2019] [Indexed: 12/15/2022]
Abstract
AbstractAccumulating evidences indicate that circular RNAs (circRNAs) play a vital role in diverse cancer biology. However, the contributions of circRNAs to hepatocellular carcinoma (HCC) and their underlying mechanism remain largely unknown. The present study aims at investigating the role of circRNA-104718 in HCC progression, which has been observed to be significantly up-regulated in HCC tissues. We found that, higher expression of circRNA-104718 also leds to a poor prognosis in HCC patients. Using luciferase binding assays and RNA immunoprecipitation studies, we identified circRNA-104718 is physically associated and co-expressed with microRNA (miR)-218-5p in HCC. Mechanistically, we demonstrated that circRNA-104718 functions as a competing endogenous RNAs (ceRNAs) and competes with thioredoxin domain-containing protein 5 (TXNDC5) mRNA and directly binds to miR-218-5p. Functionally, we found that ectopically expressed circRNA-104718 accelerated cell proliferation, migration, invasion, and inhibited apoptosis. In vivo studies on a nude mice model showed that circRNA-104718 overexpression could increase the tumor size and the rate of metastasis. Silencing of circRNA-104718 could decrease both the tumor size and metastasis significantly. Conversely, we also observed overexpression of miR-218-5p could in turn decrease the proliferation, migration, invasion, and increase apoptosis. Furthermore, circRNA-104718 could relieve the suppression of miR-218-5p target TXNDC5 and thereby cause an inhibition of miR’s functions. In summary, our results indicate that circRNA-104718 acts as a ceRNA and promotes HCC progression through the targeting of miR-218-5p/TXNDC5 signaling pathway. Thus, we propose that circRNA-104718 would be a promising target for HCC diagnosis and therapy.
Collapse
|
40
|
Bach DH, Lee SK, Sood AK. Circular RNAs in Cancer. MOLECULAR THERAPY. NUCLEIC ACIDS 2019; 16:118-129. [PMID: 30861414 PMCID: PMC6411617 DOI: 10.1016/j.omtn.2019.02.005] [Citation(s) in RCA: 312] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 02/11/2019] [Accepted: 02/11/2019] [Indexed: 02/07/2023]
Abstract
Circular RNAs (circRNAs) are a class of single-stranded closed RNA molecules that are formed by precursor mRNA back-splicing or skipping events of thousands of genes in eukaryotes as covalently closed continuous loops. High-throughput sequencing and bioinformatics approaches have uncovered the broad expression of circRNAs across species. Their high stability, abundance, and evolutionary conservation among species points to their distinct properties and diverse cellular functions as efficient microRNAs and protein sponges; they also play important roles in modulating transcription and splicing. Additionally, most circRNAs are aberrantly expressed in pathological conditions and in a tissue-specific manner such as development and progression of cancer. Herein, we highlight the characteristics, functions, and mechanisms of action of circRNAs in cancer; we also provide an overview of recent progress in the circRNA field and future application of circRNAs as cancer biomarkers and novel therapeutic targets.
Collapse
Affiliation(s)
- Duc-Hiep Bach
- College of Pharmacy, Natural Products Research Institute, Seoul National University, Seoul 08826, Korea; Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Sang Kook Lee
- College of Pharmacy, Natural Products Research Institute, Seoul National University, Seoul 08826, Korea.
| | - Anil K Sood
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
41
|
Li S, Pei Y, Wang W, Liu F, Zheng K, Zhang X. Circular RNA 0001785 regulates the pathogenesis of osteosarcoma as a ceRNA by sponging miR-1200 to upregulate HOXB2. Cell Cycle 2019; 18:1281-1291. [PMID: 31116090 DOI: 10.1080/15384101.2019.1618127] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Circular RNAs (circRNAs) are recently emerged to be promising therapeutic targets of tumors. Osteosarcoma is the most prevalent primary bone tumor and the third most prevalent cancer in children and adolescents. This study firstly analyzed circRNA microarray of osteosarcoma and selected circ-0001785 as the study object. We aimed to comprehensively investigate the expression pattern and biological function of circ-0001785 in the progression of osteosarcoma. Relative levels of circ-0001785 and miR-1200 in the normal human osteoblast cell line and osteosarcoma cell lines were determined. Bioinformatics analyses predicted the binding relationship between miR-1200 to HOXB2 and circ-0001785, while dual-luciferase reporter gene assay further verified this relationship. Flow cytometry and EdU assay were used for evaluating the regulatory effects of circ-0001785/miR-1200/HOXB2 axis on osteosarcoma cells. Consistent with the microarray analysis, circ-0001785 was highly expressed in osteosarcoma cell lines. Knockdown of circ-0001785 attenuated proliferative ability, but induced the apoptosis of osteosarcoma cells. Furthermore, we confirmed that circ-0001785 competitively bound to miR-1200, thus up-regulating its target gene HOXB2. Western blot analyses revealed that circ-0001785 regulated the PI3K/Akt signaling and Bcl-2 family pathway in osteosarcoma. In conclusion, circ-0001785 regulates the pathogenesis of osteosarcoma by sponging miR-1200 to up-regulate HOXB2 expression.
Collapse
Affiliation(s)
- Shenglong Li
- a Department of Bone and Soft Tissue Tumor Surgery , Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute , Shenyang , Liaoning Province , China
| | - Yi Pei
- a Department of Bone and Soft Tissue Tumor Surgery , Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute , Shenyang , Liaoning Province , China
| | - Wei Wang
- a Department of Bone and Soft Tissue Tumor Surgery , Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute , Shenyang , Liaoning Province , China
| | - Fei Liu
- a Department of Bone and Soft Tissue Tumor Surgery , Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute , Shenyang , Liaoning Province , China
| | - Ke Zheng
- a Department of Bone and Soft Tissue Tumor Surgery , Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute , Shenyang , Liaoning Province , China
| | - Xiaojing Zhang
- a Department of Bone and Soft Tissue Tumor Surgery , Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute , Shenyang , Liaoning Province , China
| |
Collapse
|
42
|
Li HM, Dai YW, Yu JY, Duan P, Ma XL, Dong WW, Li N, Li HG. Comprehensive circRNA/miRNA/mRNA analysis reveals circRNAs protect against toxicity induced by BPA in GC-2 cells. Epigenomics 2019; 11:935-949. [PMID: 31020848 DOI: 10.2217/epi-2018-0217] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: To identify the circRNAs expression pattern and roles in bisphenol A (BPA) induced germ cell apoptosis. Materials & methods: We performed circRNA/miRNA/mRNA-Seq in 120 μM BPA treated and nontreated GC-2 cells. Bioinformatic analysis, qPCR, apoptosis assays, luciferase report were done in the function analysis. Results: A large number of apoptosis related circRNAs/miRNAs/mRNAs were differentially expressed with competing endogenous RNA network constructed. Interestingly, most investigated upregulated circRNAs, including circDcbld2, circMapk1, circMpp6 and circTbc1d20 showed protective effects in antagonizing BPA toxicity, with the effects individually and synergistically observed. CircMapk1 may take its role by sponging miR-214-3p. Conclusion: circRNAs can play protective roles via sponging miRNAs in toxicity. Some circRNAs may serve as novel targets for BPA toxicity intervention or as biomarkers.
Collapse
Affiliation(s)
- Hui-Min Li
- Family Planning Research Institute/Center of Reproductive Medicine, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430030, PR China
| | - Yu-Wan Dai
- Family Planning Research Institute/Center of Reproductive Medicine, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430030, PR China
| | - Jiang-Yu Yu
- Family Planning Research Institute/Center of Reproductive Medicine, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430030, PR China
| | - Peng Duan
- Family Planning Research Institute/Center of Reproductive Medicine, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430030, PR China
| | - Xiu-Lan Ma
- Family Planning Research Institute/Center of Reproductive Medicine, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430030, PR China
| | - Wei-Wei Dong
- Family Planning Research Institute/Center of Reproductive Medicine, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430030, PR China
| | - Na Li
- Family Planning Research Institute/Center of Reproductive Medicine, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430030, PR China
| | - Hong-Gang Li
- Family Planning Research Institute/Center of Reproductive Medicine, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430030, PR China.,Wuhan Tongji Reproductive Medicine Hospital, Wuhan, 430030, PR China
| |
Collapse
|
43
|
Abstract
Although the investigation into biomarkers specific for pulmonary metastasis within osteosarcoma (OS) has recently expanded, their usage within the clinic remains sparse. The current screening protocol after any OS diagnosis includes a chest CT scan; however, metastatic lung nodules frequently go undetected and remain the primary cause of death in OS. Recently, screening technologies such as liquid biopsy and next-generation sequencing have revealed a promising array of biomarkers with predictive and diagnostic value for the pulmonary metastasis associated with OS. These biomarkers draw from genomics, transcriptomics, epigenetics, and metabolomics. When assessed in concert, their utility is most promising as OS is a highly heterogeneous cancer. Accordingly, there has been an expansion of clinical trials not only aimed at further demonstrating the significance of these individual biomarkers but to also reveal which therapies resolve the pulmonary metastasis once detected. This review will focus on the recently discovered and novel metastatic biomarkers within OS, their molecular and cellular mechanisms, the expansion of humanized OS mouse models amenable to their testing, and the associated clinical trials aimed at managing the metastatic phase of OS.
Collapse
|
44
|
Wang H, Feng C, Wang M, Yang S, Wei F. Circular RNAs: Diversity of Functions and a Regulatory Nova in Oral Medicine: A Pilot Review. Cell Transplant 2019; 28:819-830. [PMID: 30945569 PMCID: PMC6719493 DOI: 10.1177/0963689719837917] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Oral diseases, such as cancers, inflammation, loss of bone/tooth/soft tissues, are serious threats to human health since some can cause systemic disease and effective treatments are limited. Thus, discovering promising biomarkers for physiological and pathological processes in oral medicine, and identifying novel targets for therapy have become a most critical issue. Recently, circular RNAs (circRNAs), which were once thought to be a class of non-coding RNAs (ncRNAs), are found to be of coding potential. CircRNAs are highly present in the cytoplasm of eukaryotic cells and are key elements in the physiological and biological processes of various pathological conditions, and are also reflected in oral development and progress. Previous studies have indicated that circRNAs are involved in the initiation and development of different types of diseases and tissues (e.g., cancers, cardiovascular diseases, neural development, growth and development, wood healing, liver regeneration). Moreover, growing evidence demonstrates that circRNAs play vital roles in oral cancers and osteogenic differentiation of periodontal ligament stem cells (PDLSCs). Here, we focus on the biological characteristics of circRNAs, beginning with an overview of previous studies on the functional roles of circRNAs as diagnostic biomarkers and therapeutic targets in oral medicine. We hope this will give us a promising new comprehension of the underlying mechanisms occurring during related biological and pathological progress, and contribute to the development of effective diagnostic biomarkers and therapeutic targets for oral diseases.
Collapse
Affiliation(s)
- Hong Wang
- 1 Shandong Provincial Key Laboratory of Oral Tissue Regeneration, School of Stomatology, Shandong University, Jinan, People's Republic of China.,2 Department of Orthodontics, School of Stomatology, Shandong University, Jinan, People's Republic of China.,* Both authors contributed equally
| | - Cheng Feng
- 3 Jinan Hospital of Traditional Chinese Medicine, Jinan, People's Republic of China.,* Both authors contributed equally
| | - Meng Wang
- 1 Shandong Provincial Key Laboratory of Oral Tissue Regeneration, School of Stomatology, Shandong University, Jinan, People's Republic of China.,2 Department of Orthodontics, School of Stomatology, Shandong University, Jinan, People's Republic of China
| | - Shuangyan Yang
- 1 Shandong Provincial Key Laboratory of Oral Tissue Regeneration, School of Stomatology, Shandong University, Jinan, People's Republic of China.,2 Department of Orthodontics, School of Stomatology, Shandong University, Jinan, People's Republic of China
| | - Fulan Wei
- 1 Shandong Provincial Key Laboratory of Oral Tissue Regeneration, School of Stomatology, Shandong University, Jinan, People's Republic of China.,2 Department of Orthodontics, School of Stomatology, Shandong University, Jinan, People's Republic of China
| |
Collapse
|
45
|
Shen B, Wang Z, Li Z, Song H, Ding X. Circular RNAs: an emerging landscape in tumor metastasis. Am J Cancer Res 2019; 9:630-643. [PMID: 31105992 PMCID: PMC6511637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 03/01/2019] [Indexed: 06/09/2023] Open
Abstract
Circular RNAs (CircRNAs), the endogenous long noncoding RNAs, unlike linear RNAs, are structurally continuous, covalently closed loops without 5' cap or 3' polyadenylated tail. High-throughput RNA sequencing has enabled the discovery of several endogenous circRNAs in different species and tissues. The circRNAs mainly act as sponges to cytoplasmic microRNA, aid in protein translation, or interact with RNA-binding proteins to generate RNA-protein complexes which control transcription. Recently, circRNAs have been reported to participate in cancer pathogenesis, particularly tumor metastasis in humans, mainly due to their frequent aberrant expression in cancers. However, the detail molecular mechanism of circRNAs activity in tumor metastasis is still elusive. Some specifically expressed circRNAs can potentially be used as biomarkers and therapeutic targets for tumor treatment. Further understanding of the network interactions and regulation of circRNAs is paving the way for the identification of better therapeutic strategies in tumor metastasis. In this mini review, we have summarized the current state of research on functions and mechanisms of novel circRNAs that regulate tumorigenesis and have evaluated the relationship between dysregulation of circRNAs and tumor metastasis.
Collapse
Affiliation(s)
- Baile Shen
- The Medical School of Ningbo UniversityNingbo, Zhejiang, China
- The Gastroenterology Department of Ningbo First HospitalNingbo, Zhejiang, China
| | - Zheng Wang
- The Medical School of Zhejiang UniversityHangzhou, Zhejiang, China
- The Gastroenterology Department of Ningbo First HospitalNingbo, Zhejiang, China
| | - Zhuoya Li
- The Medical School of Ningbo UniversityNingbo, Zhejiang, China
- The Gastroenterology Department of Ningbo First HospitalNingbo, Zhejiang, China
| | - Haojun Song
- The Gastroenterology Department of Ningbo First HospitalNingbo, Zhejiang, China
| | - Xiaoyun Ding
- The Gastroenterology Department of Ningbo First HospitalNingbo, Zhejiang, China
| |
Collapse
|
46
|
Yao Y, Hua Q, Zhou Y, Shen H. CircRNA has_circ_0001946 promotes cell growth in lung adenocarcinoma by regulating miR-135a-5p/SIRT1 axis and activating Wnt/β-catenin signaling pathway. Biomed Pharmacother 2019; 111:1367-1375. [DOI: 10.1016/j.biopha.2018.12.120] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 12/29/2018] [Accepted: 12/30/2018] [Indexed: 12/14/2022] Open
|
47
|
Wang C, Ren M, Zhao X, Wang A, Wang J. Emerging Roles of Circular RNAs in Osteosarcoma. Med Sci Monit 2018; 24:7043-7050. [PMID: 30282962 PMCID: PMC6183101 DOI: 10.12659/msm.912092] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Osteosarcoma (OS) is a primary malignant bone tumor in early adolescence with high metastasis and death rates. Although the combination of polychemotherapy and surgical excision increased the survival rates up to 60%, the prognosis remains poor for most patients with metastatic or recurrent osteosarcoma. However, the exact pathogenic mechanism and pivotal elements regulating tumor invasion and metastasis are largely unknown. Circular RNAs (circRNAs) are novel endogenous non-coding RNA (ncRNA) molecules that generate the cyclic structure from back splicing. An increasing number of studies show that circRNAs can regulate transcriptional or posttranscriptional gene expression by acting as microRNA (miRNA) sponges and are involved in regulation of many important biological processes. The deregulation of some circRNAs was demonstrated in osteosarcoma. Furthermore, some circRNAs were identified to play essential roles in osteosarcoma occurrence, invasion, and metastasis. This review summarizes the regulatory effect of circRNAs in the occurrence and development of osteosarcoma, concentrating on deregulation, regulatory mechanisms, and functions of circRNAs and their potential value as biomarkers and therapy.
Collapse
Affiliation(s)
- Chenyu Wang
- Hallym University, Chuncheon, Gangwon, South Korea.,Department of Orthopedics, Second Hospital of Jilin University, Changchun, Jilin, China (mainland)
| | - Ming Ren
- Department of Orthopedics, Second Hospital of Jilin University, Changchun, Jilin, China (mainland)
| | - Xin Zhao
- Department of Orthopedics, Second Hospital of Jilin University, Changchun, Jilin, China (mainland)
| | - Ao Wang
- Department of Orthopedics, Second Hospital of Jilin University, Changchun, Jilin, China (mainland)
| | - Jincheng Wang
- Department of Orthopedics, Second Hospital of Jilin University, Changchun, Jilin, China (mainland)
| |
Collapse
|
48
|
Kun-Peng Z, Xiao-Long M, Lei Z, Chun-Lin Z, Jian-Ping H, Tai-Cheng Z. Screening circular RNA related to chemotherapeutic resistance in osteosarcoma by RNA sequencing. Epigenomics 2018; 10:1327-1346. [PMID: 30191736 DOI: 10.2217/epi-2018-0023] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Aim: To identify circular RNAs (circRNAs) related to osteosarcoma (OS) chemoresistance. Materials & methods: CircRNA expression profile was performed in three paired human chemoresistant and chemosensitive OS cell lines by next-generation sequencing. Quantitative real-time-PCR (qRT-PCR) was used to confirm next-generation sequencing data. Bioinformatics analysis was conducted to predict their functions. Results: Eighty circRNAs were dysregulated in the chemoresistant OS cells compared with the control, after validated by qRT-PCR. Bioinformatics analysis showed that some pathways related to drug metabolism were significantly enriched. Additionally, hsa_circ_0004674 was distinctly increased in OS chemoresistant cells and tissues, related to poor prognosis. CircRNA-miRNA-mRNA pathways related to hsa_circ_0004674 were constructed by TargetScan and miRanda. Conclusion: CircRNAs may play a role in OS chemoresistance and hsa_circ_0004674 might be a candidate target.
Collapse
Affiliation(s)
- Zhu Kun-Peng
- Department of Orthopedics, Shanghai Tenth People's Hospital, Tongji University, School of Medicine, Shanghai 200072, PR China
- Institute of Bone Tumor Affiliated to Tongji University, School of Medicine, Shanghai 200072, PR China
| | - Ma Xiao-Long
- Department of Orthopedics, Shanghai Tenth People's Hospital, Tongji University, School of Medicine, Shanghai 200072, PR China
- Institute of Bone Tumor Affiliated to Tongji University, School of Medicine, Shanghai 200072, PR China
| | - Zhang Lei
- Department of Orthopedics, Shanghai Tenth People's Hospital, Tongji University, School of Medicine, Shanghai 200072, PR China
- Institute of Bone Tumor Affiliated to Tongji University, School of Medicine, Shanghai 200072, PR China
| | - Zhang Chun-Lin
- Department of Orthopedics, Shanghai Tenth People's Hospital, Tongji University, School of Medicine, Shanghai 200072, PR China
- Institute of Bone Tumor Affiliated to Tongji University, School of Medicine, Shanghai 200072, PR China
| | - Hu Jian-Ping
- Department of Orthopedics, Shanghai Tenth People's Hospital, Tongji University, School of Medicine, Shanghai 200072, PR China
- Institute of Bone Tumor Affiliated to Tongji University, School of Medicine, Shanghai 200072, PR China
| | - Zhan Tai-Cheng
- Department of Orthopedics, Shanghai Tenth People's Hospital, Tongji University, School of Medicine, Shanghai 200072, PR China
- Institute of Bone Tumor Affiliated to Tongji University, School of Medicine, Shanghai 200072, PR China
| |
Collapse
|
49
|
Zhang H, Yan J, Lang X, Zhuang Y. Expression of circ_001569 is upregulated in osteosarcoma and promotes cell proliferation and cisplatin resistance by activating the Wnt/β-catenin signaling pathway. Oncol Lett 2018; 16:5856-5862. [PMID: 30344736 PMCID: PMC6176349 DOI: 10.3892/ol.2018.9410] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 04/12/2018] [Indexed: 12/17/2022] Open
Abstract
Circular RNAs (circRNAs), a type of non-coding RNAs derived from back-splicing, have been reported to function as gene expression regulators involved in tumor development of multiple human tumors. However, the clinical significance and underlying molecular mechanisms of circ_001569 in osteosarcoma still be unknown. In the study, we found that circ_001569 expression was significantly overexpressed in osteosarcoma tissues compared with adjacent noncancerous bone tissues. Higher circ_001569 expression significantly correlated with distant metastasis and advanced tumor stage of osteosarcoma patients. Gain-function and loss-function assays showed that circ_001569 knockdown significantly inhibited osteosarcoma cell proliferation and cell colon formation capacities. Moreover, upregulation of circ_001569 significantly promoted osteosarcoma cell resistance to cisplatin by activating Wnt/β-catenin signaling pathway. Thus, these results indicated that circ_001569 represented a novel potentially therapeutic target of osteosarcoma.
Collapse
Affiliation(s)
- Hongfei Zhang
- Department of Orthopedics, Affiliated Hospital of Weifang Medical University, Kuiwen, Weifang, Shandong 261031, P.R. China
| | - Jiapeng Yan
- Department of Orthopedics, Affiliated Hospital of Weifang Medical University, Kuiwen, Weifang, Shandong 261031, P.R. China
| | - Xujian Lang
- Department of Orthopedics, Affiliated Hospital of Weifang Medical University, Kuiwen, Weifang, Shandong 261031, P.R. China
| | - Yuesheng Zhuang
- Department of Orthopedics, Affiliated Hospital of Weifang Medical University, Kuiwen, Weifang, Shandong 261031, P.R. China
| |
Collapse
|
50
|
Wang J, Wang D, Wan D, Ma Q, Liu Q, Li J, Li Z, Gao Y, Jiang G, Ma L, Liu J, Li C. Circular RNA In Invasive and Recurrent Clinical Nonfunctioning Pituitary Adenomas: Expression Profiles and Bioinformatic Analysis. World Neurosurg 2018; 117:e371-e386. [DOI: 10.1016/j.wneu.2018.06.038] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Revised: 06/04/2018] [Accepted: 06/05/2018] [Indexed: 01/28/2023]
|