1
|
Bai J, Tang R, Zhou K, Chang J, Wang H, Zhang Q, Shi J, Sun C. An asparagine metabolism-based classification reveals the metabolic and immune heterogeneity of hepatocellular carcinoma. BMC Med Genomics 2022; 15:222. [PMID: 36284275 PMCID: PMC9594908 DOI: 10.1186/s12920-022-01380-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 10/20/2022] [Indexed: 11/28/2022] Open
Abstract
Introduction and objectives hepatocellular carcinoma (HCC) is the major form of liver cancer with a poor prognosis. Amino acid metabolism has been found to alter in cancers and contributes to malignant progression. However, the asparagine metabolism status and relevant mechanism in HCC were barely understood. Methods By conducting consensus clustering and the least absolute shrinkage and selection operator regression of HCC samples from three cohorts, we classified the HCC patients into two subtypes based on asparagine metabolism level. The Gene Ontology, Kyoto Encyclopedia of Genes and Genomes analyses and Gene Set Enrichment Analysis of the differentially expressed genes between two subgroups were conducted. Immune cell infiltration was evaluated using CIBERSORT algorithm. The prognostic values of genes were analyzed by univariate and multivariate cox regression, ROC curve and Kaplan–Meier survival estimate analyses. Cell types of sing-cell RNA sequencing (scRNA-seq) data were clustered utilizing UMAP method.
Results HCC patients with higher asparagine metabolism level have worse prognoses. Moreover, we found the distinct energy metabolism patterns, DNA damage response (DDR) pathway activating levels, drug sensitivities to DDR inhibitors, immune cell compositions in the tumor microenvironment and responses to immune therapy between two subgroups. Further, we identified a potential target gene, glutamic-oxaloacetic transaminase 2 (GOT2). GOT2 downregulation was associated with worse HCC prognosis and increased infiltration of T regulatory cells (Tregs). ScRNA-seq revealed the GOT2 downregulation in cancer stem cells compared with HCC cells. Conclusions Taken together, HCC subtype which is more reliant on asparagine and glutamine metabolism has a worse prognosis, and a core gene of asparagine metabolism GOT2 is a potential prognostic marker and therapeutic target of HCC. Our study promotes the precision therapy of HCC and may improve patient outcomes. Supplementary Information The online version contains supplementary material available at 10.1186/s12920-022-01380-z.
Collapse
Affiliation(s)
- Jianguo Bai
- Department of Hepatobiliary Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Ruifeng Tang
- Department of Hepatobiliary Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Keyu Zhou
- Department of Hepatobiliary Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jialei Chang
- Department of Hepatobiliary Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Hongyue Wang
- Department of Hepatobiliary Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Qixin Zhang
- Department of Hepatobiliary Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jiahui Shi
- Department of Hepatobiliary Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Chao Sun
- Department of Hepatobiliary Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China.
| |
Collapse
|
2
|
Protein Regulator of Cytokinesis 1 (PRC1) Upregulation Promotes Immune Suppression in Liver Hepatocellular Carcinoma. J Immunol Res 2022; 2022:7073472. [PMID: 35983074 PMCID: PMC9381293 DOI: 10.1155/2022/7073472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/23/2022] [Accepted: 05/30/2022] [Indexed: 11/30/2022] Open
Abstract
Liver hepatocellular carcinoma (LIHC) is a malignant cancer with widespread prevalence. The suppressive immune environment causes largely refractory to current treatment. The protein regulator of cytokinesis 1 (PRC1) is an essential gene for cytokinesis and is involved in cancer pathogenesis. However, the functions of PRC1 have been barely clarified, especially in LIHC. Here, we investigated the expression, prognostic value, and functions of PRC1 in LIHC. Pan-cancer analysis revealed the overexpression of PRC1 in the Cancer Genome Atlas (TCGA) database. Four LIHC datasets from the Gene Expression Omnibus (GEO) database confirmed the PRC1 overexpression in LIHC. The mRNA and protein levels of PRC1 in LIHC cells were higher than in normal liver cells. The overexpression of PRC1 predicted progressed clinical stage and poor prognosis of LIHC. We further investigated the functions of PRC1 by performing the Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses, and Gene Set Enrichment Analysis (GSEA) of its coexpressing genes. High PRC1 expression was associated with increased genome instability of LIHC. Moreover, PRC1 was positively correlated with the infiltration of suppressive immune cells like T regulatory cells (Tregs) and polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs) and was negatively correlated with the effector immune cells' infiltration, including B cells and CD8+ T cells. In addition, PRC1 was positively correlated with the expression of tumor immune checkpoint molecules. Taken together, PRC1 overexpression contributes to the genome instability and the suppressive immune microenvironment of LIHC. Thus, PRC1 has the potential to be a prognostic marker and therapeutic target of LIHC.
Collapse
|
3
|
Analysis of the expression, function and signaling of glycogen phosphorylase isoforms in hepatocellular carcinoma. Oncol Lett 2022; 24:244. [PMID: 35761940 PMCID: PMC9214699 DOI: 10.3892/ol.2022.13364] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 05/11/2022] [Indexed: 11/23/2022] Open
Abstract
Glycogen phosphorylase (GP) is an essential enzyme for glycolysis via the glycogen degradation pathway. It consists of three isoforms: PYGB (brain form), PYGL (liver form) and PYGM (muscle form). Although the abnormal expression of GP is associated with a variety of tumors, its relationship with hepatocellular carcinoma (HCC) and whether it can be used as a prognostic marker of HCC remains unclear. In the present study, the expression levels of PYGB, PYGL and PYGM were analyzed. It was found that the expression levels of PYGB in tumor tissues were higher than those in normal tissues, particularly in HCC. The high expression of PYGB (hazard ratios=1.801; 95% confidence interval: 1.266-2.562) could predict the poor prognosis of HCC patients but not PYGL and PYGM. Inhibition of PYGB with GP inhibitor CP91149 significantly suppressed the HCC cell proliferation in the HCC cell model. In addition, combination treatment with sorafenib, a standard treatment for HCC, showed a great inhibition on tumor growth and angiogenesis. These findings suggested that PYGB may be used as a therapeutic and prognostic indicator for HCC.
Collapse
|
4
|
Castven D, Czauderna C, Becker D, Pereira S, Schmitt J, Weinmann A, Shah V, Hajduk J, Keggenhoff F, Binder H, Keck T, Heilmann-Heimbach S, Wörns MA, Thorgeirsson SS, Breuhahn K, Galle PR, Marquardt JU. Acquired Resistance to Antiangiogenic Therapies in Hepatocellular Carcinoma Is Mediated by Yes-Associated Protein 1 Activation and Transient Expansion of Stem-Like Cancer Cells. Hepatol Commun 2022; 6:1140-1156. [PMID: 34817932 PMCID: PMC9035566 DOI: 10.1002/hep4.1869] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 09/30/2021] [Accepted: 10/25/2021] [Indexed: 01/10/2023] Open
Abstract
Induction of neoangiogenesis is a hallmark feature during disease progression of hepatocellular carcinoma (HCC). Antiangiogenetic compounds represent a mainstay of therapeutic approaches; however, development of chemoresistance is observed in the majority of patients. Recent findings suggest that tumor-initiating cells (TICs) may play a key role in acquisition of resistance, but the exact relevance for HCC in this process remains to be defined. Primary and established hepatoma cell lines were exposed to long-term sorafenib treatment to model acquisition of resistance. Treatment effects on TICs were estimated by sphere-forming capacity in vitro, tumorigenicity in vivo, and flow cytometry. Adaptive molecular changes were assessed by whole transcriptome analyses. Compensatory mechanisms of resistance were identified and directly evaluated. Sustained antiproliferative effect following sorafenib treatment was observed in three of six HCC cell lines and was followed by rapid regrowth, thereby mimicking responses observed in patients. Resistant cells showed induction in sphere forming in vitro and tumor-initiating capacity in vivo as well as increased number of side population and epithelial cell adhesion molecule-positive cells. Conversely, sensitive cell lines showed consistent reduction of TIC properties. Gene sets associated with resistance and poor prognosis, including Hippo/yes-associated protein (YAP), were identified. Western blot and immunohistochemistry confirmed increased levels of YAP. Combined treatment of sorafenib and specific YAP inhibitor consistently revealed synergistic antioncogenic effects in resistant cell lines. Conclusion: Resistance to antiangiogenic therapy might be driven by transient expansion of TICs and activation of compensatory pro-oncogenic signaling pathways, including YAP. Specific targeting of TICs might be an effective therapeutic strategy to overcome resistance in HCC.
Collapse
Affiliation(s)
- Darko Castven
- Department of Medicine ILichtenberg Research Group for Molecular HepatocarcinogenesisUniversity Medical Center Schleswig HolsteinLuebeckGermany.,Department of Medicine IUniversity Medical CenterMainzGermany
| | - Carolin Czauderna
- Department of Medicine ILichtenberg Research Group for Molecular HepatocarcinogenesisUniversity Medical Center Schleswig HolsteinLuebeckGermany.,Department of Medicine IUniversity Medical CenterMainzGermany
| | - Diana Becker
- Department of Medicine IUniversity Medical CenterMainzGermany
| | - Sharon Pereira
- Department of Medicine IUniversity Medical CenterMainzGermany
| | - Jennifer Schmitt
- Institute of PathologyUniversity Hospital HeidelbergHeidelbergGermany
| | - Arndt Weinmann
- Department of Medicine IUniversity Medical CenterMainzGermany
| | - Viral Shah
- Department of HematologyMedical Oncology, and PneumologyUniversity Medical CenterMainzGermany
| | - Jovana Hajduk
- Department of Medicine ILichtenberg Research Group for Molecular HepatocarcinogenesisUniversity Medical Center Schleswig HolsteinLuebeckGermany.,Department of Medicine IUniversity Medical CenterMainzGermany
| | | | - Harald Binder
- Institute for Medical Biometry and StatisticsFaculty of MedicineUniversity of FreiburgFreiburgGermany
| | - Tobias Keck
- Clinic for SurgeryUniversity Medical Center Schleswig HolsteinLuebeckGermany
| | - Stefanie Heilmann-Heimbach
- Institute of Human GeneticsUniversity of Bonn School of MedicineUniversity of BonnBonnGermany.,Department of GenomicsLife and Brain CenterUniversity of BonnBonnGermany
| | - Marcus A Wörns
- Department of Medicine IUniversity Medical CenterMainzGermany
| | - Snorri S Thorgeirsson
- Laboratory of Human CarcinogenesisCenter for Cancer ResearchNational Cancer InstituteNational Institutes of HealthBethesdaMDUSA
| | - Kai Breuhahn
- Institute of PathologyUniversity Hospital HeidelbergHeidelbergGermany
| | - Peter R Galle
- Department of Medicine IUniversity Medical CenterMainzGermany
| | - Jens U Marquardt
- Department of Medicine ILichtenberg Research Group for Molecular HepatocarcinogenesisUniversity Medical Center Schleswig HolsteinLuebeckGermany.,Department of Medicine IUniversity Medical CenterMainzGermany
| |
Collapse
|
5
|
Li S, Saviano A, Erstad DJ, Hoshida Y, Fuchs BC, Baumert T, Tanabe KK. Risk Factors, Pathogenesis, and Strategies for Hepatocellular Carcinoma Prevention: Emphasis on Secondary Prevention and Its Translational Challenges. J Clin Med 2020; 9:E3817. [PMID: 33255794 PMCID: PMC7760293 DOI: 10.3390/jcm9123817] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 11/11/2020] [Accepted: 11/17/2020] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a leading cause of cancer-associated mortality globally. Given the limited therapeutic efficacy in advanced HCC, prevention of HCC carcinogenesis could serve as an effective strategy. Patients with chronic fibrosis due to viral or metabolic etiologies are at a high risk of developing HCC. Primary prevention seeks to eliminate cancer predisposing risk factors while tertiary prevention aims to prevent HCC recurrence. Secondary prevention targets patients with baseline chronic liver disease. Various epidemiological and experimental studies have identified candidates for secondary prevention-both etiology-specific and generic prevention strategies-including statins, aspirin, and anti-diabetic drugs. The introduction of multi-cell based omics analysis along with better characterization of the hepatic microenvironment will further facilitate the identification of targets for prevention. In this review, we will summarize HCC risk factors, pathogenesis, and discuss strategies of HCC prevention. We will focus on secondary prevention and also discuss current challenges in translating experimental work into clinical practice.
Collapse
Affiliation(s)
- Shen Li
- Division of Surgical Oncology, Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, MA 02114, USA; (S.L.); (D.J.E.); (B.C.F.)
| | - Antonio Saviano
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Université de Strasbourg, 67000 Strasbourg, France;
| | - Derek J. Erstad
- Division of Surgical Oncology, Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, MA 02114, USA; (S.L.); (D.J.E.); (B.C.F.)
| | - Yujin Hoshida
- Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Department of Internal Medicine, Dallas, TX 75390, USA;
| | - Bryan C. Fuchs
- Division of Surgical Oncology, Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, MA 02114, USA; (S.L.); (D.J.E.); (B.C.F.)
| | - Thomas Baumert
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Université de Strasbourg, 67000 Strasbourg, France;
| | - Kenneth K. Tanabe
- Division of Surgical Oncology, Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, MA 02114, USA; (S.L.); (D.J.E.); (B.C.F.)
| |
Collapse
|
6
|
Funk K, Czauderna C, Klesse R, Becker D, Hajduk J, Oelgeklaus A, Reichenbach F, Fimm-Todt F, Lauterwasser J, Galle PR, Marquardt JU, Edlich F. BAX Redistribution Induces Apoptosis Resistance and Selective Stress Sensitivity in Human HCC. Cancers (Basel) 2020; 12:cancers12061437. [PMID: 32486514 PMCID: PMC7352885 DOI: 10.3390/cancers12061437] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 05/27/2020] [Indexed: 12/23/2022] Open
Abstract
Cancer therapies induce differential cell responses, ranging from efficient cell death to complete stress resistance. The BCL-2 proteins BAX and BAK govern the cellular decision between survival and mitochondrial apoptosis. Therefore, the status of BAX/BAK regulation can predict the cellular apoptosis predisposition. Relative BAX/BAK localization was analyzed in tumor and corresponding non-tumor samples from 34 hepatocellular carcinoma (HCC) patients. Key transcriptome changes and gene expression profiles related to the status of BAX regulation were applied to two independent cohorts including over 500 HCC patients. The prediction of apoptotic response was tested using cell lines and polyclonal tumor isolates. Cellular protection from BAX was confirmed by challenging cells with mitochondrial BAX. We discovered a subgroup of HCC with selective protection from BAX-dependent apoptosis. BAX-protected tumors showed enrichment of signaling pathways associated with oxidative stress response and DNA repair as well as increased genetic heterogeneity. Gene expression profiles characteristic to BAX-specific protection are enriched in poorly differentiated HCCs and show significant association to the overall survival of HCC patients. Consistently, addiction to DNA repair of BAX-protected cancer cells caused selective sensitivity to PARP inhibition. Molecular characteristics of BAX-protected HCC were enriched in cells challenged with mitochondrial BAX. Our results demonstrate that predisposition to BAX activation impairs tumor biology in HCC. Selective BAX inhibition or lack thereof delineates distinct subgroups of HCC patients with molecular features and differential response pattern to apoptotic stimuli and inhibition of DNA repair mechanisms.
Collapse
Affiliation(s)
- Kathrin Funk
- Institute for Biochemistry and Molecular Biology, University of Freiburg, 79104 Freiburg, Germany; (K.F.); (R.K.); (A.O.); (F.R.); (F.F.-T.); (J.L.)
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Carolin Czauderna
- Department of Medicine, Lichtenberg Research Group, University Mainz, 55116 Mainz, Germany; (C.C.); (D.B.); (J.H.); (P.R.G.)
| | - Ramona Klesse
- Institute for Biochemistry and Molecular Biology, University of Freiburg, 79104 Freiburg, Germany; (K.F.); (R.K.); (A.O.); (F.R.); (F.F.-T.); (J.L.)
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Diana Becker
- Department of Medicine, Lichtenberg Research Group, University Mainz, 55116 Mainz, Germany; (C.C.); (D.B.); (J.H.); (P.R.G.)
| | - Jovana Hajduk
- Department of Medicine, Lichtenberg Research Group, University Mainz, 55116 Mainz, Germany; (C.C.); (D.B.); (J.H.); (P.R.G.)
| | - Aline Oelgeklaus
- Institute for Biochemistry and Molecular Biology, University of Freiburg, 79104 Freiburg, Germany; (K.F.); (R.K.); (A.O.); (F.R.); (F.F.-T.); (J.L.)
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, 79104 Freiburg, Germany
| | - Frank Reichenbach
- Institute for Biochemistry and Molecular Biology, University of Freiburg, 79104 Freiburg, Germany; (K.F.); (R.K.); (A.O.); (F.R.); (F.F.-T.); (J.L.)
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, 79104 Freiburg, Germany
| | - Franziska Fimm-Todt
- Institute for Biochemistry and Molecular Biology, University of Freiburg, 79104 Freiburg, Germany; (K.F.); (R.K.); (A.O.); (F.R.); (F.F.-T.); (J.L.)
| | - Joachim Lauterwasser
- Institute for Biochemistry and Molecular Biology, University of Freiburg, 79104 Freiburg, Germany; (K.F.); (R.K.); (A.O.); (F.R.); (F.F.-T.); (J.L.)
| | - Peter R. Galle
- Department of Medicine, Lichtenberg Research Group, University Mainz, 55116 Mainz, Germany; (C.C.); (D.B.); (J.H.); (P.R.G.)
| | - Jens U. Marquardt
- Department of Medicine I, University Hospital Schleswig-Holstein, Ratzeburger Allee 160, 23562 Lübeck, Germany
- Correspondence: (J.U.M.); (F.E.)
| | - Frank Edlich
- Institute for Biochemistry and Molecular Biology, University of Freiburg, 79104 Freiburg, Germany; (K.F.); (R.K.); (A.O.); (F.R.); (F.F.-T.); (J.L.)
- CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
- Correspondence: (J.U.M.); (F.E.)
| |
Collapse
|
7
|
Marquardt JU, Edlich F. Predisposition to Apoptosis in Hepatocellular Carcinoma: From Mechanistic Insights to Therapeutic Strategies. Front Oncol 2019; 9:1421. [PMID: 31921676 PMCID: PMC6923252 DOI: 10.3389/fonc.2019.01421] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 11/29/2019] [Indexed: 12/24/2022] Open
Abstract
Hepatocellular carcinoma (HCC) ranks among the most rapidly evolving cancers in the Western world. The majority of HCCs develop on the basis of a chronic inflammatory liver damage that predisposes liver cancer development and leads to deregulation of multiple cellular signaling pathways. The resulting dysbalance between uncontrolled proliferation and impaired predisposition to cell death with consecutive failure to clear inflammatory damage is a key driver of malignant transformation. Therefore, resistance to death signaling accompanied by metabolic changes as well as failed immunological clearance of damaged pre-neoplastic hepatocytes are considered hallmarks of hepatocarcinogenesis. Hereby, the underlying liver disease, the type of liver damage and individual predisposition to apoptosis determines the natural course of the disease as well as the therapeutic response. Here, we will review common and individual aspects of cell death pathways in hepatocarcinogenesis with a particular emphasis on regulatory networks and key molecular alterations. We will further delineate the potential of targeting cell death-related signaling as a viable therapeutic strategy to improve the outcome of HCC patients.
Collapse
Affiliation(s)
- Jens U Marquardt
- Department of Medicine I, University Medical Center Schleswig-Holstein, Lübeck, Germany.,Department of Medicine, Lichtenberg Research Group, University Mainz, Mainz, Germany
| | - Frank Edlich
- Heisenberg Research Group "Regulation von Bcl-2-Proteinen Durch Konformationelle Flexibilität," Institute for Biochemistry and Molecular Biology, University of Freiburg, Freiburg, Germany.,CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| |
Collapse
|
8
|
Czauderna C, Castven D, Mahn FL, Marquardt JU. Context-Dependent Role of NF-κB Signaling in Primary Liver Cancer-from Tumor Development to Therapeutic Implications. Cancers (Basel) 2019; 11:cancers11081053. [PMID: 31349670 PMCID: PMC6721782 DOI: 10.3390/cancers11081053] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 07/19/2019] [Accepted: 07/23/2019] [Indexed: 02/07/2023] Open
Abstract
Chronic inflammatory cell death is a major risk factor for the development of diverse cancers including liver cancer. Herein, disruption of the hepatic microenvironment as well as the immune cell composition are major determinants of malignant transformation and progression in hepatocellular carcinomas (HCC). Considerable research efforts have focused on the identification of predisposing factors that promote induction of an oncogenic field effect within the inflammatory liver microenvironment. Among the most prominent factors involved in this so-called inflammation-fibrosis-cancer axis is the NF-κB pathway. The dominant role of this pathway for malignant transformation and progression in HCC is well documented. Pathway activation is significantly linked to poor prognostic traits as well as stemness characteristics, which places modulation of NF-κB signaling in the focus of therapeutic interventions. However, it is well recognized that the mechanistic importance of the pathway for HCC is highly context and cell type dependent. While constitutive pathway activation in an inflammatory etiological background can significantly promote HCC development and progression, absence of NF-κB signaling in differentiated liver cells also significantly enhances liver cancer development. Thus, therapeutic targeting of NF-κB as well as associated family members may not only exert beneficial effects but also negatively impact viability of healthy hepatocytes and/or cholangiocytes, respectively. The review presented here aims to decipher the complexity and paradoxical functions of NF-κB signaling in primary liver and non-parenchymal cells, as well as the induced molecular alterations that drive HCC development and progression with a particular focus on (immune-) therapeutic interventions.
Collapse
Affiliation(s)
- Carolin Czauderna
- Department of Medicine I, Lichtenberg Research Group for Molecular Hepatocarcinogenesis, University Medical Center of the Johannes Gutenberg University of Mainz, 55131 Mainz, Germany
| | - Darko Castven
- Department of Medicine I, Lichtenberg Research Group for Molecular Hepatocarcinogenesis, University Medical Center of the Johannes Gutenberg University of Mainz, 55131 Mainz, Germany
| | - Friederike L Mahn
- Department of Medicine I, Lichtenberg Research Group for Molecular Hepatocarcinogenesis, University Medical Center of the Johannes Gutenberg University of Mainz, 55131 Mainz, Germany
| | - Jens U Marquardt
- Department of Medicine I, Lichtenberg Research Group for Molecular Hepatocarcinogenesis, University Medical Center of the Johannes Gutenberg University of Mainz, 55131 Mainz, Germany.
| |
Collapse
|
9
|
Castven D, Becker D, Czauderna C, Wilhelm D, Andersen JB, Strand S, Hartmann M, Heilmann‐Heimbach S, Roth W, Hartmann N, Straub BK, Mahn FL, Franck S, Pereira S, Haupts A, Vogel A, Wörns MA, Weinmann A, Heinrich S, Lang H, Thorgeirsson SS, Galle PR, Marquardt JU. Application of patient‐derived liver cancer cells for phenotypic characterization and therapeutic target identification. Int J Cancer 2018; 144:2782-2794. [DOI: 10.1002/ijc.32026] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 10/18/2018] [Accepted: 11/07/2018] [Indexed: 01/07/2023]
Affiliation(s)
- Darko Castven
- Department of Medicine I, Lichtenberg Research GroupJohannes Gutenberg University Mainz Germany
| | - Diana Becker
- Department of Medicine I, Lichtenberg Research GroupJohannes Gutenberg University Mainz Germany
| | - Carolin Czauderna
- Department of Medicine I, Lichtenberg Research GroupJohannes Gutenberg University Mainz Germany
| | - Diana Wilhelm
- Department of Medicine I, Lichtenberg Research GroupJohannes Gutenberg University Mainz Germany
| | - Jesper B. Andersen
- Biotech Research and Innovation Centre (BRIC), Department of Health and Medical ScienceUniversity of Copenhagen Copenhagen Denmark
| | - Susanne Strand
- Department of Medicine I, Lichtenberg Research GroupJohannes Gutenberg University Mainz Germany
| | - Monika Hartmann
- Department of Medicine I, Lichtenberg Research GroupJohannes Gutenberg University Mainz Germany
| | - Stefanie Heilmann‐Heimbach
- Institute of Human Genetics, University of Bonn School of Medicine & University Hospital of Bonn Department of Genomics, Life & Brain CenterUniversity of Bonn Bonn Germany
- Department of Genomics, Life & Brain CenterUniversity of Bonn Bonn Germany
| | - Wilfried Roth
- Institute of PathologyJohannes Gutenberg University Mainz Germany
| | - Nils Hartmann
- Institute of PathologyJohannes Gutenberg University Mainz Germany
| | - Beate K. Straub
- Institute of PathologyJohannes Gutenberg University Mainz Germany
| | - Friederike L. Mahn
- Department of Medicine I, Lichtenberg Research GroupJohannes Gutenberg University Mainz Germany
| | - Sophia Franck
- Department of Medicine I, Lichtenberg Research GroupJohannes Gutenberg University Mainz Germany
| | - Sharon Pereira
- Department of Medicine I, Lichtenberg Research GroupJohannes Gutenberg University Mainz Germany
| | - Anna Haupts
- Institute of PathologyJohannes Gutenberg University Mainz Germany
| | - Arndt Vogel
- Department of Gastroenterology, Hepatology and EndocrinologyHannover Medical School Hannover Germany
| | - Marcus A. Wörns
- Department of Medicine I, Lichtenberg Research GroupJohannes Gutenberg University Mainz Germany
| | - Arndt Weinmann
- Department of Medicine I, Lichtenberg Research GroupJohannes Gutenberg University Mainz Germany
| | - Stefan Heinrich
- Department of SurgeryJohannes Gutenberg University Mainz Germany
| | - Hauke Lang
- Department of SurgeryJohannes Gutenberg University Mainz Germany
| | - Snorri S. Thorgeirsson
- Laboratory of Human Carcinogenesis (LHC), Center for Cancer ResearchNational Cancer Institute, NIH Bethesda MD USA
| | - Peter R. Galle
- Department of Medicine I, Lichtenberg Research GroupJohannes Gutenberg University Mainz Germany
| | - Jens U. Marquardt
- Department of Medicine I, Lichtenberg Research GroupJohannes Gutenberg University Mainz Germany
| |
Collapse
|
10
|
The role of molecular enrichment on future therapies in hepatocellular carcinoma. J Hepatol 2018; 69:237-247. [PMID: 29505843 DOI: 10.1016/j.jhep.2018.02.016] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 02/15/2018] [Accepted: 02/24/2018] [Indexed: 12/20/2022]
Abstract
Hepatocellular carcinomas (HCCs) are characterised by considerable phenotypic and molecular heterogeneity. Treating HCC and designing clinical trials are particularly challenging because co-existing liver disease, present in most patients, limits aggressive therapeutic options. Positive results in recent phase III clinical trials have confirmed the high value of anti-angiogenic therapies for HCC in both first (sorafenib and lenvatinib) and second line (regorafenib and cabozantinib) treatment modalities. However, failure of several large randomised controlled clinical trials over the last 10 years underlines the necessity for innovative treatment strategies and implementation of translational findings to overcome the unmet clinical need. Furthermore, the promising results from novel immunotherapies are likely to complement the landscape of active compounds for HCC and will require a completely different approach to patients, as well as the development of prognostic/predictive biomarkers. Given our increasing understanding of the most abundant molecular alterations in HCC, effective enrichment of patients based on clinical and molecular biomarkers, as well as adaptive clinical trials, are now feasible and should be implemented. Herein, we aim to review important aspects of precision medicine approaches in HCC that might contribute to improving the molecular subclassification of patients in a clinical trial setting and pave the way for novel therapeutic strategies.
Collapse
|
11
|
Abstract
Therapeutics that block kinases, transcriptional modifiers, immune checkpoints and other biological vulnerabilities are transforming cancer treatment. As a result, many patients achieve dramatic responses, including complete radiographical or pathological remission, yet retain minimal residual disease (MRD), which results in relapse. New functional approaches can characterize clonal heterogeneity and predict therapeutic sensitivity of MRD at a single-cell level. Preliminary evidence suggests that iterative detection, profiling and targeting of MRD would meaningfully improve outcomes and may even lead to cure.
Collapse
Affiliation(s)
- Marlise R. Luskin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA,
| | - Mark A. Murakami
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA,
| | - Scott R. Manalis
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA
- Corresponding authors: (S. R. M.) and (D. M. W.)
| | - David M. Weinstock
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA,
- Broad Institute of MIT and Harvard University, Cambridge, Massachusetts, 02142, USA
- Corresponding authors: (S. R. M.) and (D. M. W.)
| |
Collapse
|
12
|
Xiao P, Long X, Zhang L, Ye Y, Guo J, Liu P, Zhang R, Ning J, Yu W, Wei F, Yu J. Neurotensin/IL-8 pathway orchestrates local inflammatory response and tumor invasion by inducing M2 polarization of Tumor-Associated macrophages and epithelial-mesenchymal transition of hepatocellular carcinoma cells. Oncoimmunology 2018; 7:e1440166. [PMID: 29900041 DOI: 10.1080/2162402x.2018.1440166] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 01/31/2018] [Accepted: 02/06/2018] [Indexed: 12/12/2022] Open
Abstract
We previously demonstrated that neurotensin (NTS) induces local inflammation and promotes tumor invasion in hepatocellular carcinoma (HCC). However, the underlying molecular mechanisms are not clear. In this study, positive correlations between NTS and interleukin (IL)-8 were identified at both the mRNA and protein levels in 71 fresh HCC tissues and 100 paraffin-embedded HCC tissues. Furthermore, significant correlations were determined among the co-expression of NTS and IL-8, infiltration of inflammatory cells and enhanced epithelial-mesenchymal transition (EMT) of HCC cells. NTS-induced IL-8 production was associated with activation of the mitogen-activated protein kinase (MAPK) and nuclear factor-kappa B (NF-κB) pathways rather than the protein kinase C (PKC) and phosphoinositide-3 kinase (PI3K) pathways, whose specific antagonists significantly inhibited activation of the NTS/IL-8 pathway. IL-8, which promoted EMT and HCC invasion both in vitro and in vivo, was produced by NTS-induced HCC cells and was effectively attenuated by blocking IL-8 receptors in vitro. Moreover, HCC-derived IL-8 attracted more CD68+ tumor-associated macrophages (TAMs) and CD66b+ polymorphonuclear neutrophils (PMNs) to the local microenvironment, displaying enhanced cytokine secretion and phagocytosis. IL-8 stimulated the M2 polarization of TAMs, which promoted the EMT and invasive potential of HCC cells. Blockage of the IL-8 receptor, NTR1 receptor or both significantly reduced HCC metastases in tumor-bearing mouse models via inhibiting EMT. In summary, aberrant activation of the NTS/IL-8 pathway in HCC dramatically stimulated the invasive potential of HCC cells. HCC-derived IL-8 promoted a pro-oncogenic inflammatory microenvironment by inducing M2-type TAMs and indirectly promoting EMT, which might be a valuable therapeutic target to prevent tumor progression.
Collapse
Affiliation(s)
- Pei Xiao
- Cancer Molecular Diagnostics Core, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center of Caner, Key Laboratory of Cancer Prevention and Therapy, Tianjin, P. R. China.,Department of Immunology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center of Caner, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, P. R. China
| | - Xinxin Long
- Department of Oncology, Tengzhou Central People's Hospital, Tengzhou, Shandong, P.R. China
| | - Lijie Zhang
- Cancer Molecular Diagnostics Core, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center of Caner, Key Laboratory of Cancer Prevention and Therapy, Tianjin, P. R. China.,Department of Immunology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center of Caner, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, P. R. China
| | - Yingnan Ye
- Cancer Molecular Diagnostics Core, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center of Caner, Key Laboratory of Cancer Prevention and Therapy, Tianjin, P. R. China
| | - Jincheng Guo
- Bioinformatics Research Group & Health Big-Data, Institute of Computing Technology, Chinese Academy of Sciences, Beijing, P.R. China
| | - Pengpeng Liu
- Cancer Molecular Diagnostics Core, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center of Caner, Key Laboratory of Cancer Prevention and Therapy, Tianjin, P. R. China
| | - Rui Zhang
- Cancer Molecular Diagnostics Core, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center of Caner, Key Laboratory of Cancer Prevention and Therapy, Tianjin, P. R. China
| | - Junya Ning
- Cancer Molecular Diagnostics Core, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center of Caner, Key Laboratory of Cancer Prevention and Therapy, Tianjin, P. R. China.,Department of Immunology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center of Caner, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, P. R. China
| | - Wenwen Yu
- Department of Immunology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center of Caner, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, P. R. China
| | - Feng Wei
- Department of Immunology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center of Caner, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, P. R. China
| | - Jinpu Yu
- Cancer Molecular Diagnostics Core, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center of Caner, Key Laboratory of Cancer Prevention and Therapy, Tianjin, P. R. China.,Department of Immunology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center of Caner, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, P. R. China
| |
Collapse
|
13
|
Abstract
Hepatocellular carcinoma (HCC), the most common primary liver cancer, is one of the dreaded complications of chronic liver disease. Recent experimental and clinical studies have revealed that the alteration of gut-liver axis plays a pivotal role in the onset of chronic liver diseases, including HCC. Altered gut microbiota and endotoxemia are increasingly recognized as critical components in promoting the progression of chronic liver diseases to HCC. Probiotics have been suggested as a novel, safe and cost-effective approach to prevent or treat HCC. Mechanisms by which probiotics exerts their anti-cancer effects include their ability to bind carcinogens, modulation of gut microbiota, improvement of intestinal barrier function, and immunomodulation. This review summarizes the literature findings of the changes in gut microbiota linked to HCC, and discusses the possible therapeutic implications of probiotics for HCC.
Collapse
Affiliation(s)
- Murphy L Y Wan
- School of Biological Sciences, Faculty of Science, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Hani El-Nezami
- School of Biological Sciences, Faculty of Science, The University of Hong Kong, Pokfulam, Hong Kong, China.,Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
14
|
Sollazzo M, Genchi C, Paglia S, Di Giacomo S, Pession A, de Biase D, Grifoni D. High MYC Levels Favour Multifocal Carcinogenesis. Front Genet 2018; 9:612. [PMID: 30619451 PMCID: PMC6297171 DOI: 10.3389/fgene.2018.00612] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Accepted: 11/20/2018] [Indexed: 02/05/2023] Open
Abstract
The term "field cancerisation" describes the formation of tissue sub-areas highly susceptible to multifocal tumourigenesis. In the earlier stages of cancer, cells may indeed display a series of molecular alterations that allow them to proliferate faster, eventually occupying discrete tissue regions with irrelevant morphological anomalies. This behaviour recalls cell competition, a process based on a reciprocal fitness comparison: when cells with a growth advantage arise in a tissue, they are able to commit wild-type neighbours to death and to proliferate at their expense. It is known that cells expressing high MYC levels behave as super-competitors, able to kill and replace less performant adjacent cells; given MYC upregulation in most human cancers, MYC-mediated cell competition is likely to pioneer field cancerisation. Here we show that MYC overexpression in a sub-territory of the larval wing epithelium of Drosophila is sufficient to trigger a number of cellular responses specific to mammalian pre-malignant tissues. Moreover, following induction of different second mutations, high MYC-expressing epithelia were found to be susceptible to multifocal growth, a hallmark of mammalian pre-cancerous fields. In summary, our study identified an early molecular alteration implicated in field cancerisation and established a genetically amenable model which may help study the molecular basis of early carcinogenesis.
Collapse
|