1
|
Sun R, Fei F, Wang M, Jiang J, Yang G, Yang N, Jin D, Xu Z, Cao B, Li J. Integration of metabolomics and machine learning revealed tryptophan metabolites are sensitive biomarkers of pemetrexed efficacy in non-small cell lung cancer. Cancer Med 2023; 12:19245-19259. [PMID: 37605514 PMCID: PMC10557891 DOI: 10.1002/cam4.6446] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 06/25/2023] [Accepted: 08/02/2023] [Indexed: 08/23/2023] Open
Abstract
BACKGROUND Anti-folate drug pemetrexed is a vital chemotherapy medication for non-small cell lung cancer (NSCLC). Its response varies widely and often develops resistance to the treatment. Therefore, it is urgent to identify biomarkers and establish models for drug efficacy evaluation and prediction for rational drug use. METHODS A total of 360 subjects were screened and 323 subjects were recruited. Using metabolomics in combination with machine learning methods, we are trying to select potential biomarkers to diagnose NSCLC and evaluate the efficacy of pemetrexed in treating NSCLC. Furtherly, we measured the concentration of eight metabolites in the tryptophan metabolism pathway in the validation set containing 201 subjects using a targeted metabolomics method with UPLC-MS/MS. RESULTS In the discovery set containing 122 subjects, the metabolic profile of healthy controls (H), newly diagnosed NSCLC patients (ND), patients who responded well to pemetrexed treatment (S) and pemetrexed-resistant patients (R) differed significantly on the PLS-DA scores plot. Pathway analysis showed that glycine, serine and threonine metabolism occurred in every two group comparisons. TCA cycle, pyruvate metabolism and glycerolipid metabolism are the most significantly changed pathways between ND and H group, pyruvate metabolism was the most altered pathway between S and ND group, and tryptophan metabolism was the most changed pathway between S and R group. We found Random forest method had the maximum area under the curve (AUC) and can be easily interpreted. The AUC is 0.981 for diagnosing patients with NSCLC and 0.954 for evaluating pemetrexed efficiency. CONCLUSION We compared eight mathematical models to evaluate pemetrexed efficiency for treating NSCLC. The Random forest model established with metabolic markers tryptophan, kynurenine and xanthurenic acidcan accurately diagnose NSCLC and evaluate the response of pemetrexed.
Collapse
Affiliation(s)
- Runbin Sun
- Phase I Clinical Trials UnitNanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing UniversityNanjingChina
| | - Fei Fei
- Phase I Clinical Trials UnitNanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing UniversityNanjingChina
| | - Min Wang
- Department of PharmacyNanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing UniversityNanjingChina
| | - Junyi Jiang
- Phase I Clinical Trials UnitNanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing UniversityNanjingChina
| | - Guangyu Yang
- General Medical DepartmentNanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing UniversityNanjingChina
| | - Na Yang
- Department of PharmacyNanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing UniversityNanjingChina
| | - Dandan Jin
- Phase I Clinical Trials UnitNanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing UniversityNanjingChina
| | - Zhi Xu
- Phase I Clinical Trials UnitNanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing UniversityNanjingChina
| | - Bei Cao
- Phase I Clinical Trials UnitNanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing UniversityNanjingChina
| | - Juan Li
- Phase I Clinical Trials UnitNanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing UniversityNanjingChina
| |
Collapse
|
2
|
Hager T, Borchert S, Wessolly M, Mathilakathu A, Mairinger E, Kollmeier J, Mairinger T, Hegedus B, Greimelmaier K, Wohlschlaeger J, Herrmann K, Mairinger FD. One Third of Malignant Pleural Mesothelioma Shows High Immunohistochemical Expression of MSLN or CXCR4 Which Indicates Potent Candidates for Endo-Radiotherapy. Int J Mol Sci 2023; 24:ijms24076356. [PMID: 37047331 PMCID: PMC10094643 DOI: 10.3390/ijms24076356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 03/23/2023] [Indexed: 03/30/2023] Open
Abstract
Malignant pleural mesothelioma (MPM) is a mainly asbestos-related tumour associated with a very poor prognosis. Therapeutic approaches include multimodal therapy and chemotherapeutics, with cisplatin being the drug of choice, but response rates of only up to 14% indicate very poor outcomes. Effective treatment options are lacking. Besides the diagnostic usage of radioligands in positron emission tomography (PET)/computed tomography (CT), the endo-radioligand therapy with Lu177 has been proven as a powerful tool in cancer therapy. Mesothelin (MSLN) and C-XC chemokine receptor 4 (CXCR4) are membrane-bound proteins, expressed in certain cancers, and thus are promising targets for endo-radiotherapy. A significant portion of high MSLN- or CXCR4-expressing tumors within the MPM may open the field for this sophisticated treatment approach in the near future. Formalin-fixed, paraffin-embedded (FFPE) tumour specimens from 105 patients suffering from MPM and treated at the Lung Cancer Centre of Essen and at the Helios Klinikum Emil von Behring Berlin were screened. The tumour samples were arranged in tissue microarrays. We immunohistochemically stained the tumour samples against MSLN and CXCR4. The protein expressions of the stainings were scored by a pathologist by using a semiquantitative method. The data obtained were correlated with the clinical outcome. Overall, 77.1% of the analysed tumours showed CXCR4 protein expression (25.7% of them at high expression level (Score 3)). 48.6% of all samples showed an overall strong staining (Score ≥ 2), 59% of the investigated tumours showed MSLN protein expression (10.5% of them at high expression (Score 3)), and 36.2% of all samples showed an overall strong staining (Score ≥ 2). Our results show significant tissue expression levels, for both CXCR4 and MSLN protein, in a major portion of clinical MPM samples. One-third of patients showed outstanding immunoexpression of at least one of these markers, making them interesting candidates for radioligand-based PET/CT diagnostics and follow-up and furthermore may profit from endo-radiotherapy.
Collapse
|
3
|
Urso L, Cavallari I, Sharova E, Ciccarese F, Pasello G, Ciminale V. Metabolic rewiring and redox alterations in malignant pleural mesothelioma. Br J Cancer 2020; 122:52-61. [PMID: 31819191 PMCID: PMC6964675 DOI: 10.1038/s41416-019-0661-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 10/21/2019] [Accepted: 11/04/2019] [Indexed: 02/08/2023] Open
Abstract
Malignant pleural mesothelioma (MPM) is a rare malignancy of mesothelial cells with increasing incidence, and in many cases, dismal prognosis due to its aggressiveness and lack of effective therapies. Environmental and occupational exposure to asbestos is considered the main aetiological factor for MPM. Inhaled asbestos fibres accumulate in the lungs and induce the generation of reactive oxygen species (ROS) due to the presence of iron associated with the fibrous silicates and to the activation of macrophages and inflammation. Chronic inflammation and a ROS-enriched microenvironment can foster the malignant transformation of mesothelial cells. In addition, MPM cells have a highly glycolytic metabolic profile and are positive in 18F-FDG PET analysis. Loss-of-function mutations of BRCA-associated protein 1 (BAP1) are a major contributor to the metabolic rewiring of MPM cells. A subset of MPM tumours show loss of the methyladenosine phosphorylase (MTAP) locus, resulting in profound alterations in polyamine metabolism, ATP and methionine salvage pathways, as well as changes in epigenetic control of gene expression. This review provides an overview of the perturbations in metabolism and ROS homoeostasis of MPM cells and the role of these alterations in malignant transformation and tumour progression.
Collapse
Affiliation(s)
- Loredana Urso
- Department of Surgery, Oncology and Gastroenterology, University of Padua, Padua, Italy
| | | | | | | | | | - Vincenzo Ciminale
- Department of Surgery, Oncology and Gastroenterology, University of Padua, Padua, Italy.
- Veneto Institute of Oncology IOV - IRCCS, Padua, Italy.
| |
Collapse
|
4
|
Pippa R, Boffo S, Odero MD, Giordano A. Data mining analysis of the PP2A cell cycle axis in mesothelioma patients. J Cell Physiol 2019; 235:5284-5292. [PMID: 31858592 DOI: 10.1002/jcp.29414] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Accepted: 12/04/2019] [Indexed: 12/15/2022]
Abstract
Mesothelioma is an aggressive tumor that affects thousands of people every year. The therapeutic options for patients are limited; hence, a better understanding of mesothelioma biology is crucial to improve patient survival. To find new molecular targets and therapeutic strategies related to the protein phosphatase 2A (PP2A) network, we analyzed the gene expression of known PP2A inhibitors in mesothelioma patient samples. Our analysis disclosed a general overexpression of all PP2A-negative regulators in mesothelioma patients. Moreover, the expression of ANP32E and CIP2A genes, increased in 16% and 11% of cases, positively correlates with the ones of all the other PP2A regulators and the ones of the main cyclins and CDKs, suggesting the existence of a feed-forward loop that might contribute to the mesothelioma progression via PP2A inactivation. Overall, our study indicates the existence of a strategic and targetable axis between PP2A inhibitors (ANP32E and CIP2A) and cell cycle regulators (cyclin B2/CDK1) and provides a valuable rationale for using a personalized combinational therapy approach to improve mesothelioma patient survival.
Collapse
Affiliation(s)
- Raffaella Pippa
- Hematology/Oncology Program, Centro de Investigación Médica Aplicada (CIMA), University of Navarra, Pamplona, Spain
| | - Silvia Boffo
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, Pennsylvania
| | - Maria D Odero
- University of Navarra, Centro de Investigación Médica Aplicada (CIMA), Pamplona, Spain.,CIBERONC Instituto de Salud Carlos III, Madrid, Spain.,Biochemistry and Genetics Department, University of Navarra, Pamplona, Spain.,IdiSNA, Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
| | - Antonio Giordano
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, Pennsylvania.,Department of Medical Biotechnology University of Siena, Siena, Italy
| |
Collapse
|
5
|
Sato Y, Matsuda S, Maruyama A, Nakayama J, Miyashita T, Udagawa H, Umemura S, Yanagihara K, Ochiai A, Tomita M, Soga T, Tsuchihara K, Makinoshima H. Metabolic Characterization of Antifolate Responsiveness and Non-responsiveness in Malignant Pleural Mesothelioma Cells. Front Pharmacol 2018; 9:1129. [PMID: 30369878 PMCID: PMC6194193 DOI: 10.3389/fphar.2018.01129] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 09/18/2018] [Indexed: 12/22/2022] Open
Abstract
Antifolates are a class of drugs effective for treating malignant pleural mesothelioma (MPM). The majority of antifolates inhibit enzymes involved in purine and pyrimidine synthesis such as dihydrofolate reductase (DHFR), thymidylate synthase (TYMS), and glycinamide ribonucleotide formyltransferase (GART). In order to select the most suitable patients for effective therapy with drugs targeting specific metabolic pathways, there is a need for better predictive metabolic biomarkers. Antifolates can alter global metabolic pathways in MPM cells, yet the metabolic profile of treated cells has not yet been clearly elucidated. Here we found that MPM cell lines could be categorized into two groups according to their sensitivity or resistance to pemetrexed treatment. We show that pemetrexed susceptibility could be reversed and DNA synthesis rescued in drug-treated cells by the exogenous addition of the nucleotide precursors hypoxanthine and thymidine (HT). We observed that the expression of pemetrexed-targeted enzymes in resistant MPM cells was quantitatively lower than that seen in pemetrexed-sensitive cells. Metabolomic analysis revealed that glycine and choline, which are involved in one-carbon metabolism, were altered after drug treatment in pemetrexed-sensitive but not resistant MPM cells. The addition of HT upregulated the concentration of inosine monophosphate (IMP) in pemetrexed-sensitive MPM cells, indicating that the nucleic acid biosynthesis pathway is important for predicting the efficacy of pemetrexed in MPM cells. Our data provide evidence that may link therapeutic response to the regulation of metabolism, and points to potential biomarkers for informing clinical decisions regarding the most effective therapies for patients with MPM.
Collapse
Affiliation(s)
- Yuzo Sato
- Tsuruoka Metabolomics Laboratory, National Cancer Center, Tsuruoka, Japan.,Shonai Regional Industry Promotion Center, Tsuruoka, Japan.,Systems Biology Program, Graduate School of Media and Governance, Keio University, Fujisawa, Japan.,Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan
| | - Shiori Matsuda
- Tsuruoka Metabolomics Laboratory, National Cancer Center, Tsuruoka, Japan.,Shonai Regional Industry Promotion Center, Tsuruoka, Japan.,Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan
| | - Ami Maruyama
- Tsuruoka Metabolomics Laboratory, National Cancer Center, Tsuruoka, Japan.,Shonai Regional Industry Promotion Center, Tsuruoka, Japan
| | - Joji Nakayama
- Tsuruoka Metabolomics Laboratory, National Cancer Center, Tsuruoka, Japan.,Shonai Regional Industry Promotion Center, Tsuruoka, Japan.,Division of Translational Research, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Japan
| | - Tomoyuki Miyashita
- Tsuruoka Metabolomics Laboratory, National Cancer Center, Tsuruoka, Japan.,Shonai Regional Industry Promotion Center, Tsuruoka, Japan.,Division of Translational Research, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Japan
| | - Hibiki Udagawa
- Department of Thoracic Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Shigeki Umemura
- Department of Thoracic Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Kazuyoshi Yanagihara
- Division of Biomarker Discovery, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Japan
| | - Atsushi Ochiai
- Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Japan
| | - Masaru Tomita
- Systems Biology Program, Graduate School of Media and Governance, Keio University, Fujisawa, Japan.,Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan
| | - Tomoyoshi Soga
- Systems Biology Program, Graduate School of Media and Governance, Keio University, Fujisawa, Japan.,Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan
| | - Katsuya Tsuchihara
- Division of Translational Research, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Japan
| | - Hideki Makinoshima
- Tsuruoka Metabolomics Laboratory, National Cancer Center, Tsuruoka, Japan.,Division of Translational Research, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Japan
| |
Collapse
|
6
|
Inhibition of MDM2 via Nutlin-3A: A Potential Therapeutic Approach for Pleural Mesotheliomas with MDM2-Induced Inactivation of Wild-Type P53. JOURNAL OF ONCOLOGY 2018; 2018:1986982. [PMID: 30112000 PMCID: PMC6077509 DOI: 10.1155/2018/1986982] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 05/23/2018] [Accepted: 06/11/2018] [Indexed: 12/12/2022]
Abstract
Previously, our group demonstrated that nuclear expression of E3 ubiquitin ligase (MDM2) in malignant pleural mesothelioma (MPM) is significantly associated with decreased overall survival. A possible explanation may be that overexpression of MDM2 leads to a proteasomal degradation of TP53 that eventually results in a loss of TP53-induced apoptosis and senescence. It is well known from other tumor entities that restoration of TP53 activity, e.g., by MDM2 inhibition, results in an instant TP53-induced stress and/or DNA damage response of cancer cells. Nutlin-3A (a cis-imidazoline analogue) has been described as a potent and selective MDM2 inhibitor preventing MDM2-TP53-interaction by specific binding to the hydrophobic TP53-binding pocket of MDM2. In the present study, the effects of MDM2 inhibition in MPM via Nutlin-3A and standard platinum based chemotherapeutic agents were comparatively tested in three MPM cell lines (NCI-H2052, MSTO-211H, and NCI-H2452) showing different expression profiles of TP53, MDM2, and its physiological inhibitor of MDM2—P14/ARF. Our in vitro experiments on MPM cell lines revealed that Nutlin-3A in combination with cisplatin resulted in up to 9.75 times higher induction of senescence (p=0.0050) and up to 5 times higher apoptosis rate (p=0.0067) compared to the commonly applied cisplatin and pemetrexed regimens. Thus Nutlin-3A, a potent inhibitor of MDM2, is associated with a significant induction of senescence and apoptosis in MPM cell lines, making Nutlin-3A a promising substance for a targeted therapy in the subgroup of MPM showing MDM2 overexpression.
Collapse
|
7
|
Mairinger FD, Schmeller J, Borchert S, Wessolly M, Mairinger E, Kollmeier J, Hager T, Mairinger T, Christoph DC, Walter RFH, Eberhardt WEE, Plönes T, Wohlschlaeger J, Jasani B, Schmid KW, Bankfalvi A. Immunohistochemically detectable metallothionein expression in malignant pleural mesotheliomas is strongly associated with early failure to platin-based chemotherapy. Oncotarget 2018; 9:22254-22268. [PMID: 29854276 PMCID: PMC5976462 DOI: 10.18632/oncotarget.24962] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 03/11/2018] [Indexed: 12/13/2022] Open
Abstract
Background Malignant pleural mesothelioma (MPM) is a biologically highly aggressive tumor arising from the pleura with a dismal prognosis. Cisplatin is the drug of choice for the treatment of MPM, and carboplatin seems to have comparable efficacy. Nevertheless, cisplatin treatment results in a response rate of merely 14% and a median survival of less than seven months. Due to their role in many cellular processes, methallothioneins (MTs) have been widely studied in various cancers. The known heavy metal detoxifying effect of MT-I and MT-II may be the reason for heavy metal drug resistance of various cancers including MPM. Methods 105 patients were retrospectively analyzed immunohistochemically for their MT expression levels. Survival analysis was done by Cox-regression, and statistical significance determined using likelihood ratio, Wald test and Score (logrank) tests. Results Cox-regression analyses were done in a linear and logarithmic scale revealing a significant association between expression of MT and shortened overall survival (OS) in a linear (p=0.0009) and logarithmic scale (p=0.0003). Reduced progression free survival (PFS) was also observed for MT expressing tumors (linear: p=0.0134, log: p=0.0152). Conclusion Since both, overall survival and progression-free survival are negatively correlated with detectable MT expression in MPM, our results indicate a possible resistance to platin-based chemotherapy associated with MT expression upregulation, found exclusively in progressive MPM samples. Initial cell culture studies suggest promoter DNA hypomethylation and expression of miRNA-566 a direct regulator of copper transporter SLC31A1 and a putative regulator of MT1A and MT2A gene expression, to be responsible for the drug resistance.
Collapse
Affiliation(s)
- Fabian D Mairinger
- Institute of Pathology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Jan Schmeller
- Institute of Pathology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Sabrina Borchert
- Institute of Pathology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Michael Wessolly
- Institute of Pathology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Elena Mairinger
- Institute of Pathology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Jens Kollmeier
- Department of Pneumology, Helios Klinikum Emil von Behring, Berlin, Germany
| | - Thomas Hager
- Institute of Pathology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Thomas Mairinger
- Department of Pathology, Helios Klinikum Emil von Behring, Berlin, Germany
| | - Daniel C Christoph
- Department of Medical Oncology, West German Cancer Center, University Hospital Essen, University of Duisburg-Essen, Essen, Germany.,Department of Internistic Oncology, Kliniken Essen Mitte, Essen, Germany
| | - Robert F H Walter
- Institute of Pathology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany.,Ruhrlandklinik, West German Lung Centre, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Wilfried E E Eberhardt
- Department of Medical Oncology, West German Cancer Center, University Hospital Essen, University of Duisburg-Essen, Essen, Germany.,Ruhrlandklinik, West German Lung Centre, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Till Plönes
- Department of Thoracic Surgery and Thoracical Endoscopy, Ruhrlandklinik, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Jeremias Wohlschlaeger
- Institute of Pathology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany.,Department of Pathology, Diakonissenkrankenhaus Flensburg, Flensburg, Germany
| | - Bharat Jasani
- Department of Pathology, Targos Molecular Pathology GmbH, Kassel, Germany
| | - Kurt Werner Schmid
- Institute of Pathology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Agnes Bankfalvi
- Institute of Pathology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
8
|
Rossini M, Rizzo P, Bononi I, Clementz A, Ferrari R, Martini F, Tognon MG. New Perspectives on Diagnosis and Therapy of Malignant Pleural Mesothelioma. Front Oncol 2018; 8:91. [PMID: 29666782 PMCID: PMC5891579 DOI: 10.3389/fonc.2018.00091] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 03/15/2018] [Indexed: 12/24/2022] Open
Abstract
Malignant pleural mesothelioma (MPM) is a rare, but severe form of cancer, with an incidence that varies significantly within and among different countries around the world. It develops in about one to two persons per million of the general population, leading to thousands of deaths every year worldwide. To date, the MPM is mostly associated with occupational asbestos exposure. Asbestos represents the predominant etiological factor, with approximately 70% of cases of MPM with well-documented occupational exposure to asbestos, with the exposure time, on average greater than 40 years. Environmental exposure to asbestos is increasingly becoming recognized as a cause of mesothelioma, together with gene mutations. The possible roles of other cofactors, such as viral infection and radiation exposure, are still debated. MPM is a fatal tumor. This cancer arises during its early phase without clinical signs. Consequently, its diagnosis occurs at advanced stages. Standard clinical therapeutic approaches include surgery, chemo- and radiotherapies. Preclinical and clinical researches are making great strides in the field of this deadly disease, identifying new biomarkers and innovative therapeutic approaches. Among the newly identified markers and potential therapeutic targets, circulating microRNAs and the Notch pathway represent promising avenues that could result in the early detection of the tumor and novel therapeutic approaches.
Collapse
Affiliation(s)
- Marika Rossini
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, School of Medicine, University of Ferrara, Ferrara, Italy
| | - Paola Rizzo
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, School of Medicine, University of Ferrara, Ferrara, Italy
| | - Ilaria Bononi
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, School of Medicine, University of Ferrara, Ferrara, Italy
| | - Anthony Clementz
- Department of Natural Sciences and Geography, Concordia University Chicago, River Forest, IL, United States
| | - Roberto Ferrari
- Department of Medical Sciences, Section of Internal Medicine and Cardiorespiratory, School of Medicine, University of Ferrara, Ferrara, Italy.,E.S. Health Science Foundation, GVM Care & Research, Maria Cecilia Hospital, Cotignola, Italy
| | - Fernanda Martini
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, School of Medicine, University of Ferrara, Ferrara, Italy
| | - Mauro G Tognon
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, School of Medicine, University of Ferrara, Ferrara, Italy
| |
Collapse
|