1
|
张 瑶, 郭 金, 战 世, 洪 恩, 杨 慧, 贾 安, 常 艳, 郭 永, 张 璇. [Role and mechanism of cysteine and glycine-rich protein 2 in the malignant progression of neuroblastoma]. BEIJING DA XUE XUE BAO. YI XUE BAN = JOURNAL OF PEKING UNIVERSITY. HEALTH SCIENCES 2024; 56:495-504. [PMID: 38864136 PMCID: PMC11167550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Indexed: 06/13/2024]
Abstract
OBJECTIVE To investigate the function and underlying mechanism of cysteine and glycine-rich protein 2 (CSRP2) in neuroblastoma (NB). METHODS The correlation between the expression level of CSRP2 mRNA and the prognosis of NB children in NB clinical samples was analyzed in R2 Genomics Analysis and Visualization Platform. The small interfering RNA (siRNA) targeting CSRP2 or CSRP2 plasmid were transfected to NB cell lines SK-N-BE(2) and SH-SY5Y. Cell proliferation was observed by crystal violet staining and real-time cellular analysis. The ability of colony formation of NB cells was observed by colony-forming unit assay. Immunofluorescence assay was used to detect the expression of the proliferation marker Ki-67. Flow cytometry analysis for cell cycle proportion was used with cells stained by propidium iodide (PI). Annexin V/7AAD was used to stain cells and analyze the percentage of cell apoptosis. The ability of cell migration was determined by cell wound-healing assay. The level of protein and mRNA expression of CSRP2 in NB primary tumor and NB cell lines were detected by Western blot and quantitative real-time PCR (RT-qPCR). RESULTS By analyzing the NB clinical sample databases, it was found that the expression levels of CSRP2 in high-risk NB with 3/4 stages in international neuroblastoma staging system (INSS) were significantly higher than that in low-risk NB with 1/2 INSS stages. The NB patients with high expression levels of CSRP2 were shown lower overall survival rate than those with low expression levels of CSRP2. We detected the protein levels of CSRP2 in the NB samples by Western blot, and found that the protein level of CSRP2 in 3/4 INSS stages was significantly higher than that in 1/2 INSS stages. Knockdown of CSRP2 inhibited cell viability and proliferation of NB cells. Overexpression of CSRP2 increased the proliferation of NB cells. Flow cytometry showed that the proportion of sub-G1, G0/G1 and S phase cells and Annexin V positive cells were increased after CSRP2 deficiency. In the cell wound-healing assay, the healing rate of NB cells was significantly attenuated after knockdown of CSRP2. Further mechanism studies showed that the proportion of the proliferation marker Ki-67 and the phosphorylation levels of extracellular signal-regulated kinases 1/2 (ERK1/2) were significantly decreased after CSRP2 knockdown. CONCLUSION CSRP2 is highly expressed in high-risk NB with 3/4 INSS stages, and the expression levels of CSRP2 are negatively correlated with the overall survival of NB patients. CSRP2 significantly increased the proliferation and cell migration of NB cells and inhibited cell apoptosis via the activation of ERK1/2. All these results indicate that CSRP2 promotes the progression of NB by activating ERK1/2, and this study will provide a potential target for high-risk NB therapy.
Collapse
Affiliation(s)
- 瑶 张
- />国家儿童医学中心, 首都医科大学附属北京儿童医院, 儿科重大疾病研究教育部重点实验室, 北京市儿科研究所, 儿童耳鼻咽喉头颈外科疾病北京市重点实验室, 北京 100045National Center for Children's Health; Beijing Children's Hospital, Capital Medical University; Key Laboratory of Major Diseases in Children, Ministry of Education; Beijing Pediatric Research Institute; Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery; Beijing 100045, China
| | - 金鑫 郭
- />国家儿童医学中心, 首都医科大学附属北京儿童医院, 儿科重大疾病研究教育部重点实验室, 北京市儿科研究所, 儿童耳鼻咽喉头颈外科疾病北京市重点实验室, 北京 100045National Center for Children's Health; Beijing Children's Hospital, Capital Medical University; Key Laboratory of Major Diseases in Children, Ministry of Education; Beijing Pediatric Research Institute; Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery; Beijing 100045, China
| | - 世佳 战
- />国家儿童医学中心, 首都医科大学附属北京儿童医院, 儿科重大疾病研究教育部重点实验室, 北京市儿科研究所, 儿童耳鼻咽喉头颈外科疾病北京市重点实验室, 北京 100045National Center for Children's Health; Beijing Children's Hospital, Capital Medical University; Key Laboratory of Major Diseases in Children, Ministry of Education; Beijing Pediatric Research Institute; Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery; Beijing 100045, China
| | - 恩宇 洪
- />国家儿童医学中心, 首都医科大学附属北京儿童医院, 儿科重大疾病研究教育部重点实验室, 北京市儿科研究所, 儿童耳鼻咽喉头颈外科疾病北京市重点实验室, 北京 100045National Center for Children's Health; Beijing Children's Hospital, Capital Medical University; Key Laboratory of Major Diseases in Children, Ministry of Education; Beijing Pediatric Research Institute; Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery; Beijing 100045, China
| | - 慧 杨
- />国家儿童医学中心, 首都医科大学附属北京儿童医院, 儿科重大疾病研究教育部重点实验室, 北京市儿科研究所, 儿童耳鼻咽喉头颈外科疾病北京市重点实验室, 北京 100045National Center for Children's Health; Beijing Children's Hospital, Capital Medical University; Key Laboratory of Major Diseases in Children, Ministry of Education; Beijing Pediatric Research Institute; Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery; Beijing 100045, China
| | - 安娜 贾
- />国家儿童医学中心, 首都医科大学附属北京儿童医院, 儿科重大疾病研究教育部重点实验室, 北京市儿科研究所, 儿童耳鼻咽喉头颈外科疾病北京市重点实验室, 北京 100045National Center for Children's Health; Beijing Children's Hospital, Capital Medical University; Key Laboratory of Major Diseases in Children, Ministry of Education; Beijing Pediatric Research Institute; Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery; Beijing 100045, China
| | - 艳 常
- />国家儿童医学中心, 首都医科大学附属北京儿童医院, 儿科重大疾病研究教育部重点实验室, 北京市儿科研究所, 儿童耳鼻咽喉头颈外科疾病北京市重点实验室, 北京 100045National Center for Children's Health; Beijing Children's Hospital, Capital Medical University; Key Laboratory of Major Diseases in Children, Ministry of Education; Beijing Pediatric Research Institute; Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery; Beijing 100045, China
| | - 永丽 郭
- />国家儿童医学中心, 首都医科大学附属北京儿童医院, 儿科重大疾病研究教育部重点实验室, 北京市儿科研究所, 儿童耳鼻咽喉头颈外科疾病北京市重点实验室, 北京 100045National Center for Children's Health; Beijing Children's Hospital, Capital Medical University; Key Laboratory of Major Diseases in Children, Ministry of Education; Beijing Pediatric Research Institute; Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery; Beijing 100045, China
| | - 璇 张
- />国家儿童医学中心, 首都医科大学附属北京儿童医院, 儿科重大疾病研究教育部重点实验室, 北京市儿科研究所, 儿童耳鼻咽喉头颈外科疾病北京市重点实验室, 北京 100045National Center for Children's Health; Beijing Children's Hospital, Capital Medical University; Key Laboratory of Major Diseases in Children, Ministry of Education; Beijing Pediatric Research Institute; Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery; Beijing 100045, China
| |
Collapse
|
2
|
Liu L, Li F, Zhang L, Cheng Y, Wu L, Tie R, Jiang X, Gao W, Liu B, Wei Y, Chang P, Xu J, Zhao H, Zhang L. Cysteine and glycine-rich protein 2 is crucial for maintaining the malignant phenotypes of gliomas through its action on Notch signalling cascade. Toxicol Appl Pharmacol 2024; 487:116969. [PMID: 38744347 DOI: 10.1016/j.taap.2024.116969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 05/08/2024] [Accepted: 05/09/2024] [Indexed: 05/16/2024]
Abstract
Cysteine and glycine-rich protein 2 (CSRP2) is expressed differently in numerous cancers and plays a key role in carcinogenesis. However, the role of CSRP2 in glioma is unknown. This study sought to determine the expression profile and clinical significance of CSRP2 in glioma and explore its biological functions and mechanisms via lentivirus-mediated CSRP2 silencing experiments. Increased CSRP2 was frequently observed in gliomas, which was associated with clinicopathological characteristics and an unfavourable prognosis. Decreasing CSRP2 led to the suppression of malignant proliferation, metastasis and stemness in glioma cells while causing hypersensitivity to chemotherapeutic drugs. Mechanistic investigations revealed that CSRP2 plays a role in mediating the Notch signalling cascade. Silencing CSRP2 decreased the levels of Notch1, cleaved Notch1, HES1 and HEY1, suppressing the Notch signalling cascade. Reactivation of Notch markedly diminished the tumour-inhibiting effects of CSRP2 silencing on the malignant phenotypes of glioma cells. Notably, CSRP2-silencing glioma cells exhibited reduced potential in the formation of xenografts in nude mice in vivo, which was associated with an impaired Notch signalling cascade. These results showed that CSRP2 is overexpressed in glioma and has a crucial role in sustaining the malignant phenotypes of glioma, suggesting that targeting CSRP2 could be a promising strategy for glioma treatment.
Collapse
Affiliation(s)
- Lingtong Liu
- Department of Neurosurgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, No.32 West Second Section First Ring Road, Chengdu 610072, China
| | - Fei Li
- Department of Neurosurgery, Second Affiliated Hospital of Xi'an Medical University, No. 167 Fangdong Street, Xi'an 710038, China
| | - Lingxue Zhang
- Department of Neurosurgery, Second Affiliated Hospital of Xi'an Medical University, No. 167 Fangdong Street, Xi'an 710038, China
| | - Yingying Cheng
- Department of Neurosurgery, Second Affiliated Hospital of Xi'an Medical University, No. 167 Fangdong Street, Xi'an 710038, China
| | - Lin Wu
- Central Laboratory, Second Affiliated Hospital of Xi'an Medical University, No. 167 Fangdong Street, Xi'an 710038, China
| | - Ru Tie
- Central Laboratory, Second Affiliated Hospital of Xi'an Medical University, No. 167 Fangdong Street, Xi'an 710038, China
| | - Xiaobing Jiang
- Department of Neurosurgery, Second Affiliated Hospital of Xi'an Medical University, No. 167 Fangdong Street, Xi'an 710038, China
| | - Wenwen Gao
- Department of Neurosurgery, Second Affiliated Hospital of Xi'an Medical University, No. 167 Fangdong Street, Xi'an 710038, China
| | - Bochuan Liu
- Department of Neurosurgery, Second Affiliated Hospital of Xi'an Medical University, No. 167 Fangdong Street, Xi'an 710038, China
| | - Yao Wei
- Department of Neurosurgery, Second Affiliated Hospital of Xi'an Medical University, No. 167 Fangdong Street, Xi'an 710038, China
| | - Pan Chang
- Central Laboratory, Second Affiliated Hospital of Xi'an Medical University, No. 167 Fangdong Street, Xi'an 710038, China
| | - Jun Xu
- Department of Neurosurgery, Xi'an Daxing Hospital, No. 353 Laodong North Road, Lianhu District, Xi'an 710016, China
| | - Haikang Zhao
- Department of Neurosurgery, Second Affiliated Hospital of Xi'an Medical University, No. 167 Fangdong Street, Xi'an 710038, China.
| | - Liang Zhang
- Department of Neurosurgery, Second Affiliated Hospital of Xi'an Medical University, No. 167 Fangdong Street, Xi'an 710038, China; Department of Neurosurgery, Xi'an Daxing Hospital, No. 353 Laodong North Road, Lianhu District, Xi'an 710016, China; Northwest University, No. 1 Xuefu Street, Guodu Education and Technology Industrial Zone, Chang'an District, Xi'an 710127, China.
| |
Collapse
|
3
|
Hao Q, Liu Y, Liu Y, Shi L, Chen Y, Yang L, Jiang Z, Liu Y, Wang C, Wang S, Sun L. Cysteine- and glycine-rich protein 1 predicts prognosis and therapy response in patients with acute myeloid leukemia. Clin Exp Med 2024; 24:57. [PMID: 38546813 PMCID: PMC10978675 DOI: 10.1007/s10238-023-01269-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 12/01/2023] [Indexed: 04/01/2024]
Abstract
Acute myeloid leukemia (AML) is a heterogeneous disease with a poor prognosis. The current risk stratification system is essential but remains insufficient to select the best schedules. Cysteine-rich protein 1 (CSRP1) is a member of the CSRP family and associated with poor clinicopathological features in many tumors. This study aimed to explore the clinical significance and molecular mechanisms of cysteine- and glycine-rich protein 1 (CSRP1) in AML. RT-qPCR was used to detect the relative expression of CSRP1 in our clinical cohort. Functional enrichment analysis of CSRP1-related differentially expressed genes was carried out by GO/KEGG enrichment analysis, immune cell infiltration analysis, and protein-protein interaction (PPI) network. The OncoPredict algorithm was implemented to explore correlations between CSRP1 and drug resistance. CSRP1 was highly expressed in AML compared with normal samples. High CSRP1 expression was an independent poor prognostic factor. Functional enrichment analysis showed neutrophil activation and apoptosis were associated with CSRP1. In the PPI network, 19 genes were present in the most significant module, and 9 of them were correlated with AML prognosis. The high CSRP1 patients showed higher sensitivity to 5-fluorouracil, gemcitabine, rapamycin, cisplatin and lower sensitivity to fludarabine. CSRP1 may serve as a potential prognostic marker and a therapeutic target for AML in the future.
Collapse
Affiliation(s)
- Qianqian Hao
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450052, China
| | - Yu Liu
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450052, China
| | - Yajun Liu
- Department of Orthopaedics, Warren Alpert Medical School/Rhode Island Hospital, Brown University, Rhode Island, USA
| | - Luyao Shi
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450052, China
| | - Yufei Chen
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450052, China
| | - Lu Yang
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450052, China
| | - Zhongxing Jiang
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450052, China
| | - Yanfang Liu
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450052, China
| | - Chong Wang
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450052, China
| | - Shujuan Wang
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450052, China.
| | - Ling Sun
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450052, China.
| |
Collapse
|
4
|
Luo J, Huang Y, Wu J, Dai L, Dong M, Cheng B. A novel hypoxia-associated gene signature for prognosis prediction in head and neck squamous cell carcinoma. BMC Oral Health 2023; 23:864. [PMID: 37964257 PMCID: PMC10647095 DOI: 10.1186/s12903-023-03489-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 10/04/2023] [Indexed: 11/16/2023] Open
Abstract
BACKGROUND Head and neck squamous cell carcinoma (HNSCC) is the most common malignant tumor of head and neck, which seriously threatens human life and health. However, the mechanism of hypoxia-associated genes (HAGs) in HNSCC remains unelucidated. This study aims to establish a hypoxia-associated gene signature and the nomogram for predicting the prognosis of patients with HNSCC. METHODS Previous literature reports provided a list of HAGs. The TCGA database provided genetic and clinical information on HNSCC patients. First, a hypoxia-associated gene risk model was constructed for predicting overall survival (OS) in HNSCC patients and externally validated in four GEO datasets (GSE27020, GSE41613, GSE42743, and GSE117973). Then, immune status and metabolic pathways were analyzed. A nomogram was constructed and assessed the predictive value. Finally, experimental validation of the core genes was performed by qRT-PCR. RESULTS A HNSCC prognostic model was constructed based on 8 HAGs. This risk model was validated in four external datasets and exhibited high predictive value in various clinical subgroups. Significant differences in immune cell infiltration levels and metabolic pathways were found between high and low risk subgroups. The nomogram was highly accurate for predicting OS in HNSCC patients. CONCLUSIONS The 8 hypoxia-associated gene signature can serve as novel independent prognostic indicators in HNSCC patients. The nomogram combining the risk score and clinical stage enhanced predictive performance in predicting OS compared to the risk model and clinical characteristics alone.
Collapse
Affiliation(s)
- Jingyi Luo
- Department of Stomatology, Zhongnan Hospital of Wuhan University, No. 169 Donghu Road, Wuchang District, Wuhan, 430071, China
| | - Yuejiao Huang
- School of Laboratory Medicine, Youjiang Medical College for Nationalities, No. 98 Chengxiang Road, Youjiang District, Baise, 533000, China
| | - Jiahe Wu
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Lin Dai
- Department of Stomatology, Wuhan No. 1 Hospital, No. 215 Zhongshan Road, Qiaokou District, Wuhan, 430030, China.
| | - Mingyou Dong
- School of Laboratory Medicine, Youjiang Medical College for Nationalities, No. 98 Chengxiang Road, Youjiang District, Baise, 533000, China.
| | - Bo Cheng
- Department of Stomatology, Zhongnan Hospital of Wuhan University, No. 169 Donghu Road, Wuchang District, Wuhan, 430071, China.
| |
Collapse
|
5
|
Cao LM, Zhou YL, Gale RP, Qin YZ, Wu LX, Zhao MY, Zhao XS, Chen YH, Wang Y, Jiang H, Jiang Q, Chang YJ, Liu YR, Xu LP, Zhang XH, Huang XJ, Ruan GR. CSRP2 transcript levels after consolidation therapy increase prognostic prediction ability in B-cell acute lymphoblastic leukaemia. BIOMOLECULES & BIOMEDICINE 2023; 23:1079-1088. [PMID: 37183704 PMCID: PMC10655882 DOI: 10.17305/bb.2023.9034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/07/2023] [Accepted: 05/07/2023] [Indexed: 05/16/2023]
Abstract
Quantification of measurable residual disease (MRD) correlates with the risk of leukemia recurrence in adults with B-cell acute lymphoblastic leukemia (ALL). However, it remains unknown whether collecting data on cysteine and glycine-rich protein 2 (CSRP2) transcript levels, after completing the second course of consolidation, improves prognosis prediction accuracy. A total of 204 subjects with B-cell ALL were tested for CSPR2 transcripts after completing the second course of consolidation using quantitative real-time polymerase chain reaction (qRT-PCR) and divided into high (N = 32) and low (N = 172) CSRP2 expression cohorts. In multivariable analyses, subjects with high expression of CSRP2 had a higher 5-year cumulative incidence of relapse (CIR) (hazard ratio [HR] = 2.57, 95% confidence interval [CI] 1.38-4.76; P = 0.003), lower 5-year relapse-free survival (RFS) (HR = 3.22, 95% CI 1.75-5.93; P < 0.001), and overall survival (OS) (HR = 4.59, 95% CI 2.64-7.99; P < 0.001) in the whole cohort, as well as in the multi-parameter flow cytometry (MPFC) MRD-negative cohort (for CIR, HR = 2.70, 95% CI 1.19-6.12; for RFS, HR = 4.37, 95% CI 1.94-9.85; for OS, HR = 4.90, 95% CI 2.43-9.90; all P < 0.05). Prognostic analysis showed that allogeneic hematopoietic stem cell transplantation (allo-HSCT) could significantly improve the prognosis of patients with high CSRP2 expression (allo-HSCT vs chemotherapy: 5-year CIR, 52% vs 91%; RFS, 41% vs 9%; OS, 38% vs 20%; all P < 0.05). Our data indicate that incorporating data from CSPR2 transcript levels to the MRD-testing at the end of the second course of consolidation therapy enhances prognosis prediction accuracy in adults with B-cell ALL.
Collapse
Affiliation(s)
- Lei-Ming Cao
- Peking University Institute of Hematology, Peking University People’s Hospital, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Ya-Lan Zhou
- Peking University Institute of Hematology, Peking University People’s Hospital, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Robert Peter Gale
- Department of Immunology and Inflammation, Centre for Haematology, Imperial College of Science, Technology and Medicine, London, UK
| | - Ya-Zhen Qin
- Peking University Institute of Hematology, Peking University People’s Hospital, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Li-Xin Wu
- Peking University Institute of Hematology, Peking University People’s Hospital, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Ming-Yue Zhao
- Peking University Institute of Hematology, Peking University People’s Hospital, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Xiao-Su Zhao
- Peking University Institute of Hematology, Peking University People’s Hospital, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Yu-Hong Chen
- Peking University Institute of Hematology, Peking University People’s Hospital, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Yu Wang
- Peking University Institute of Hematology, Peking University People’s Hospital, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Hao Jiang
- Peking University Institute of Hematology, Peking University People’s Hospital, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Qian Jiang
- Peking University Institute of Hematology, Peking University People’s Hospital, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Ying-Jun Chang
- Peking University Institute of Hematology, Peking University People’s Hospital, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Yan-Rong Liu
- Peking University Institute of Hematology, Peking University People’s Hospital, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Lan-Ping Xu
- Peking University Institute of Hematology, Peking University People’s Hospital, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Xiao-Hui Zhang
- Peking University Institute of Hematology, Peking University People’s Hospital, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Xiao-Jun Huang
- Peking University Institute of Hematology, Peking University People’s Hospital, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
- Academy for Advanced Interdisciplinary Studies, Peking–Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Guo-Rui Ruan
- Peking University Institute of Hematology, Peking University People’s Hospital, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| |
Collapse
|
6
|
Zhang MJ, Liu J, Wan SC, Li JX, Wang S, Fidele NB, Huang CF, Sun ZJ. CSRP2 promotes cell stemness in head and neck squamous cell carcinoma. Head Neck 2023; 45:2161-2172. [PMID: 37466293 DOI: 10.1002/hed.27464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/17/2023] [Accepted: 07/07/2023] [Indexed: 07/20/2023] Open
Abstract
BACKGROUND Cysteine-rich protein 2 (CSRP2) is discovered as oncogene. The study aims to investigate the clinical significance and potential mechanism of CSRP2 in head and neck squamous cell carcinoma (HNSCC). METHODS CSRP2 expression was explored by immunohistochemistry tissue microarrays and Western blotting in HNSCC. The effect of CSRP2 on the cancer stemness and epithelial-to-mesenchymal transition (EMT) of HNSCC cells was investigated by sphere formation, wound healing, and transwell assays. The vitro and vivo experiments revealed that CSRP2 modulated cancer stemness and EMT phenotypes in HNSCC. RESULTS CSRP2 was overexpressed in HNSCC patients and presented poor prognosis. CSRP2 knockdown inhibited the migration and invasion ability of the HNSCC cells. And CSRP2 expression was closely associated with CSCs markers, EMT-transcription factor, new oncoprotein, and immune checkpoint. CONCLUSION The overexpression of CSRP2 indicates poor prognosis and plays a key role in maintaining the cancer cell stemness and EMT.
Collapse
Affiliation(s)
- Meng-Jie Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Jie Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Shu-Cheng Wan
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Jia-Xing Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Shuo Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Nyimi Bushabu Fidele
- The National keys laboratory of Basic Sciences of Stomatology of Kinshasa University, School of Medical University of Kinshasa, Kinshasa, Democratic Republic of Congo
| | - Cong-Fa Huang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Zhi-Jun Sun
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Oral and Maxillofacial Head Neck Oncology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| |
Collapse
|
7
|
Chauhan PK, Sowdhamini R. Computational analysis of the flexibility in the disordered linker region connecting LIM domains in cysteine–glycine-rich protein. Front Genet 2023; 14:1134509. [PMID: 37065494 PMCID: PMC10090389 DOI: 10.3389/fgene.2023.1134509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 03/06/2023] [Indexed: 03/31/2023] Open
Abstract
One of the key proteins that are present in the Z-disc of cardiac tissues, CSRP3, has been implicated in dilated and hypertrophic cardiomyopathy leading to heart failure. Although multiple cardiomyopathy-related mutations have been reported to reside on the two LIM domains and the disordered regions connecting the domains in this protein, the exact role of the disordered linker region is not clear. The linker harbors a few post-translational modification sites and is expected to be a regulatory site. We have carried out evolutionary studies on 5614 homologs spanning across taxa. We also performed molecular dynamics simulations of full-length CSRP3 to show that the length variations and conformational flexibility of the disordered linker could provide additional levels of functional modulation. Finally, we show that the CSRP3 homologs with widely different lengths of the linker regions could display diversity in their functional specifications. The present study provides a useful perspective to our understanding of the evolution of the disordered region between CSRP3 LIM domains.
Collapse
Affiliation(s)
- Pankaj Kumar Chauhan
- National Centre for Biological Sciences Tata Institute of Fundamental Research, Bangalore Karnataka, India
| | - R. Sowdhamini
- National Centre for Biological Sciences Tata Institute of Fundamental Research, Bangalore Karnataka, India
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
- Institute of Bioinformatics and Applied Biotechnology, Bangalore, India
- *Correspondence: R. Sowdhamini,
| |
Collapse
|
8
|
Liu Y, Chen Y, Liu Y, Li M, Zhang Y, Shi L, Yang L, Li T, Li Y, Jiang Z, Liu Y, Wang C, Wang S. Downregulation of SMIM3 inhibits growth of leukemia via PI3K-AKT signaling pathway and correlates with prognosis of adult acute myeloid leukemia with normal karyotype. J Transl Med 2022; 20:612. [PMID: 36550462 PMCID: PMC9783723 DOI: 10.1186/s12967-022-03831-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Acute myeloid leukemia (AML) patients with normal karyotype (NK-AML) have significant variabilities in outcomes. The European Leukemia Net stratification system and some prognostic models have been used to evaluate risk stratification. However, these common standards still have some limitations. The biological functions and mechanisms of Small Integral Membrane Protein 3 (SMIM3) have seldomly been investigated. To this date, the prognostic value of SMIM3 in AML has not been reported. This study aimed to explore the clinical significance, biological effects and molecular mechanisms of SMIM3 in AML. METHODS RT-qPCR was applied to detect the expression level of SMIM3 in bone marrow specimens from 236 newly diagnosed adult AML patients and 23 healthy volunteers. AML cell lines, Kasumi-1 and THP-1, were used for lentiviral transfection. CCK8 and colony formation assays were used to detect cell proliferation. Cell cycle and apoptosis were analyzed by flow cytometry. Western blot was performed to explore relevant signaling pathways. The biological functions of SMIM3 in vivo were validated by xenograft tumor mouse model. Survival rate was evaluated by Log-Rank test and Kaplan-Meier. Cox regression model was used to analyze multivariate analysis. The correlations between SMIM3 and drug resistance were also explored. RESULTS Through multiple datasets and our clinical group, SMIM3 was shown to be significantly upregulated in adult AML compared to healthy subjects. SMIM3 overexpression conferred a worse prognosis and was identified as an independent prognostic factor in 95 adult NK-AML patients. Knockdown of SMIM3 inhibited cell proliferation and cell cycle progression, and induced cell apoptosis in AML cells. The reduced SMIM3 expression significantly suppressed tumor growth in the xenograft mouse model. Western blot analysis showed downregulation of p-PI3K and p-AKT in SMIM3-knockdown AML cell lines. SMIM3 may also be associated with some PI3K-AKT and first-line targeted drugs. CONCLUSIONS SMIM3 was highly expressed in adult AML, and such high-level expression of SMIM3 was associated with a poor prognosis in adult AML. Knockdown of SMIM3 inhibited the proliferation of AML through regulation of the PI3K-AKT signaling pathway. SMIM3 may serve as a potential prognostic marker and a therapeutic target for AML in the future.
Collapse
Affiliation(s)
- Yu Liu
- grid.412633.10000 0004 1799 0733Department of Hematology, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450052 China
| | - Yufei Chen
- grid.412633.10000 0004 1799 0733Department of Hematology, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450052 China
| | - Yajun Liu
- grid.40263.330000 0004 1936 9094Department of Orthopaedics, Warren Alpert Medical School/Rhode Island Hospital, Brown University, Providence, Rhode Island USA
| | - Mengya Li
- grid.412633.10000 0004 1799 0733Department of Hematology, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450052 China
| | - Yu Zhang
- grid.412633.10000 0004 1799 0733Department of Hematology, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450052 China
| | - Luyao Shi
- grid.412633.10000 0004 1799 0733Department of Hematology, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450052 China
| | - Lu Yang
- grid.412633.10000 0004 1799 0733Department of Hematology, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450052 China
| | - Tao Li
- grid.412633.10000 0004 1799 0733Department of Hematology, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450052 China
| | - Yafei Li
- grid.412633.10000 0004 1799 0733Department of Hematology, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450052 China
| | - Zhongxing Jiang
- grid.412633.10000 0004 1799 0733Department of Hematology, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450052 China
| | - Yanfang Liu
- grid.412633.10000 0004 1799 0733Department of Hematology, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450052 China
| | - Chong Wang
- grid.412633.10000 0004 1799 0733Department of Hematology, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450052 China
| | - Shujuan Wang
- grid.412633.10000 0004 1799 0733Department of Hematology, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450052 China
| |
Collapse
|
9
|
Chen X, Wei X, Ma S, Xie H, Huang S, Yao M, Zhang L. Cysteine and glycine rich protein 2 exacerbates vascular fibrosis in pulmonary hypertension through the nuclear translocation of yes-associated protein and transcriptional coactivator with PDZ-binding motif. Toxicol Appl Pharmacol 2022; 457:116319. [PMID: 36414118 DOI: 10.1016/j.taap.2022.116319] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 11/13/2022] [Accepted: 11/14/2022] [Indexed: 11/21/2022]
Abstract
Pulmonary hypertension (PH) is a serious cardiovascular disease with a poor prognosis and high mortality. The pathogenesis of PH is complex, and the main pathological changes in PH are abnormal hypertrophy and vessel stiffness. Cysteine and glycine rich protein 2 (Csrp2), a member of the LIM-only family plays a key role in the response to vascular injury. However, its roles in vascular fibrosis and PH have not been clarified. Therefore, this study aimed to investigate whether Csrp2 can promote vascular fibrosis and to further explore the possible mechanisms. Csrp2 expression was increased in both the pulmonary vasculature of rats with PH and hypoxic pulmonary vascular smooth muscle cells (PASMCs). Hypoxia activated TGF-β1 and its downstream effector, SP1. Additionally, hypoxia activated the ROCK pathway and inhibited KLF4 expression. Silencing SP1 and overexpressing KLF4 reversed the hypoxia-induced increase in Csrp2 expression. Csrp2 knockdown decreased the expression of extracellular matrix (ECM) proteins and inhibited the nuclear translocation and expression of YAP/TAZ in hypoxic PASMCs. These results indicate that hypoxia induces Csrp2 expression through the TGF-β1/SP1 and ROCK/KLF4 pathways. Elevated Csrp2 promoted the nuclear translocation and expression of YAP/TAZ, leading to vascular fibrosis and the development of PH.
Collapse
Affiliation(s)
- Xinghe Chen
- Department of Cardiac Surgery, Fujian Medical University Union Hospital, Fuzhou, China; Department of Pediatric Surgery, The First Affiliated Hospital of Fujian Medical University, Fujian Medical University, Fuzhou, China
| | - Xiaozhen Wei
- Department of Cardiac Surgery, Fujian Medical University Union Hospital, Fuzhou, China; The Key Laboratory of Fujian Province Universities on Ion Channel and Signal Transduction in Cardiovascular Diseases, Department of Physiology and Pathophysiology, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Saijie Ma
- The Key Laboratory of Fujian Province Universities on Ion Channel and Signal Transduction in Cardiovascular Diseases, Department of Physiology and Pathophysiology, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Huating Xie
- The Key Laboratory of Fujian Province Universities on Ion Channel and Signal Transduction in Cardiovascular Diseases, Department of Physiology and Pathophysiology, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Sirui Huang
- The Key Laboratory of Fujian Province Universities on Ion Channel and Signal Transduction in Cardiovascular Diseases, Department of Physiology and Pathophysiology, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Mengge Yao
- Department of Cardiac Surgery, Fujian Medical University Union Hospital, Fuzhou, China; The Key Laboratory of Fujian Province Universities on Ion Channel and Signal Transduction in Cardiovascular Diseases, Department of Physiology and Pathophysiology, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Li Zhang
- Department of Cardiac Surgery, Fujian Medical University Union Hospital, Fuzhou, China; The Key Laboratory of Fujian Province Universities on Ion Channel and Signal Transduction in Cardiovascular Diseases, Department of Physiology and Pathophysiology, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China.
| |
Collapse
|
10
|
Tang L, Wang N, Wei X, Huang S, Wang P, Zheng Y, Chen L, Zhang L. Cysteine and glycine-rich protein 2 promotes hypoxic pulmonary vascular smooth muscle cell proliferation through the Wnt3α-β-catenin/lymphoid enhancer-binding factor 1 pathway. J Biochem Mol Toxicol 2022; 36:e23122. [PMID: 35695329 DOI: 10.1002/jbt.23122] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 03/29/2022] [Accepted: 05/29/2022] [Indexed: 11/07/2022]
Abstract
Pulmonary hypertension (PH) is mainly characterized by abnormal pulmonary vascular hyperplasia and vascular remodeling, but its mechanism is complicated and currently unclear. Cysteine and glycine-rich protein 2 (Csrp2) has been reported to promote cell proliferation and migration, and affect cell cycle progression. As a new invasive actin-binding factor, Csrp2 increased the invasion and even metastasis of some cancer cells. It was associated with tumor recurrence and chemotherapy resistance. However, the role of Csrp2 in PH remains unknown. We found that Csrp2 expression was increased both in pulmonary arteries (PAs) and smooth muscle cells (PASMCs) in PH. Csrp2 enhanced PASMC proliferation and phenotypic transition. The Wnt3α-β-catenin/lymphoid enhancer-binding factor 1 (LEF1) pathway is involved in cell proliferation and phenotypic transition regulated by Csrp2 expression. These results suggest that hypoxia downregulates YinYang-1 (YY1) and then increases Csrp2 expression. Increased Csrp2 promotes PASMC proliferation and phenotypic transition by activating the Wnt3α-β-catenin/LEF1 pathways, which leads to pulmonary vascular remodeling and even provides a new theoretical basis for studying the pathogenesis and therapeutic targets of PH.
Collapse
Affiliation(s)
- Liyu Tang
- Department of Cardiac Surgery, Fujian Medical University Union Hospital, Fuzhou, China.,Department of Physiology and Pathophysiology, The Key Laboratory of Fujian Province Universities on Ion Channel and Signal Transduction in Cardiovascular Diseases, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Nan Wang
- Department of Cardiac Surgery, Fujian Medical University Union Hospital, Fuzhou, China.,Department of Physiology and Pathophysiology, The Key Laboratory of Fujian Province Universities on Ion Channel and Signal Transduction in Cardiovascular Diseases, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Xiaozhen Wei
- Department of Physiology and Pathophysiology, The Key Laboratory of Fujian Province Universities on Ion Channel and Signal Transduction in Cardiovascular Diseases, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Sirui Huang
- Department of Physiology and Pathophysiology, The Key Laboratory of Fujian Province Universities on Ion Channel and Signal Transduction in Cardiovascular Diseases, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Pan Wang
- Department of Physiology and Pathophysiology, The Key Laboratory of Fujian Province Universities on Ion Channel and Signal Transduction in Cardiovascular Diseases, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Yameng Zheng
- Department of Physiology and Pathophysiology, The Key Laboratory of Fujian Province Universities on Ion Channel and Signal Transduction in Cardiovascular Diseases, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Liangwan Chen
- Department of Cardiac Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Li Zhang
- Department of Cardiac Surgery, Fujian Medical University Union Hospital, Fuzhou, China.,Department of Physiology and Pathophysiology, The Key Laboratory of Fujian Province Universities on Ion Channel and Signal Transduction in Cardiovascular Diseases, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| |
Collapse
|
11
|
Li M, Liu Y, Liu Y, Yang L, Xu Y, Wang W, Jiang Z, Liu Y, Wang S, Wang C. Downregulation of GNA15 Inhibits Cell Proliferation via P38 MAPK Pathway and Correlates with Prognosis of Adult Acute Myeloid Leukemia With Normal Karyotype. Front Oncol 2021; 11:724435. [PMID: 34552875 PMCID: PMC8451478 DOI: 10.3389/fonc.2021.724435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Accepted: 08/17/2021] [Indexed: 11/13/2022] Open
Abstract
Background The prognosis of acute myeloid leukemia (AML) with a normal karyotype is highly heterogonous, and the current risk stratification is still insufficient to differentiate patients from high-risk to standard-risk. Changes in some genetic profiles may contribute to the poor prognosis of AML. Although the prognostic value of G protein subunit alpha 15 (GNA15) in AML has been reported based on the GEO (Gene Expression Omnibus) database, the prognostic significance of GNA15 has not been verified in clinical samples. The biological functions of GNA15 in AML development remain open to investigation. This study explored the clinical significance, biological effects and molecular mechanism of GNA15 in AML. Methods Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) was used to detect the mRNA expression level of GNA15 in blasts of bone marrow specimens from 154 newly diagnosed adult AML patients and 26 healthy volunteers. AML cell lines, Kasumi-1 and SKNO-1, were used for lentiviral transfection. Cell Counting Kit-8 (CCK8) and colony formation assays were used to determine cell proliferation. Cell cycle and apoptosis were analyzed by flow cytometry. The relevant signaling pathways were evaluated by Western blot. The Log-Rank test and Kaplan-Meier were used to evaluate survival rate, and the Cox regression model was used to analyze multivariate analysis. Xenograft tumor mouse model was used for in vivo experiments. Results The expression of GNA15 in adult AML was significantly higher than that in healthy individuals. Subjects with high GNA15 expression showed lower overall survival and relapse-free survival in adult AML with normal karyotype. High GNA15 expression was independently correlated with a worse prognosis in multivariate analysis. Knockdown of GNA15 inhibited cell proliferation and cell cycle progression, and induced cell apoptosis in AML cells. GNA15-knockdown induced down-regulation of p-P38 MAPK and its downstream p-MAPKAPK2 and p-CREB. Rescue assays confirmed that P38 MAPK signaling pathway was involved in the inhibition of proliferation mediated by GNA15 knockdown. Conclusions In summary, GNA15 was highly expressed in adult AML, and high GNA15 expression was independently correlated with a worse prognosis in adult AML with normal karyotype. Knockdown of GNA15 inhibited the proliferation of AML regulated by the P38 MAPK signaling pathway. Therefore, GNA15 may serve as a potential prognostic marker and a therapeutic target for AML in the future.
Collapse
Affiliation(s)
- Mengya Li
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yu Liu
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yajun Liu
- Department of Orthopaedics, Rhode Island Hospital, Warren Alpert Medical School, Brown University, Providence, RI, United States
| | - Lu Yang
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yan Xu
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Weiqiong Wang
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhongxing Jiang
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yanfang Liu
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shujuan Wang
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Chong Wang
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
12
|
Cross-reactivity of a pathogenic autoantibody to a tumor antigen in GABA A receptor encephalitis. Proc Natl Acad Sci U S A 2021; 118:1916337118. [PMID: 33619082 DOI: 10.1073/pnas.1916337118] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Encephalitis associated with antibodies against the neuronal gamma-aminobutyric acid A receptor (GABAA-R) is a rare form of autoimmune encephalitis. The pathogenesis is still unknown but autoimmune mechanisms were surmised. Here we identified a strongly expanded B cell clone in the cerebrospinal fluid of a patient with GABAA-R encephalitis. We expressed the antibody produced by it and showed by enzyme-linked immunosorbent assay (ELISA) and immunohistochemistry that it recognizes the GABAA-R. Patch-clamp recordings revealed that it tones down inhibitory synaptic transmission and causes increased excitability of hippocampal CA1 pyramidal neurons. Thus, the antibody likely contributed to clinical disease symptoms. Hybridization to a protein array revealed the cross-reactive protein LIM-domain-only protein 5 (LMO5), which is related to cell-cycle regulation and tumor growth. We confirmed LMO5 recognition by immunoprecipitation and ELISA and showed that cerebrospinal fluid samples from two other patients with GABAA-R encephalitis also recognized LMO5. This suggests that cross-reactivity between GABAA-R and LMO5 is frequent in GABAA-R encephalitis and supports the hypothesis of a paraneoplastic etiology.
Collapse
|
13
|
Lu RQ, Wu LX, Zhang J, Qin YZ, Liu YR, Lai YY, Jiang H, Chang YJ, Ruan GR, Huang XJ. Prognostic value of RASD1 transcript levels in adult Philadelphia-negative B-cell acute lymphoblastic leukemia. ACTA ACUST UNITED AC 2021; 26:9-15. [PMID: 33357137 DOI: 10.1080/16078454.2020.1860359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
OBJECTIVES Ras-related dexamethasone-induced 1 (RASD1) is abnormally expressed in many solid cancers. However, its potential role in adults with B-cell acute lymphoblastic leukemia (B-ALL) is unclear. Therefore, we aim to clarify the abnormal expression of the tumor-associated biomarker, RASD1, as a potential target for diagnosis and prognosis in adult Philadelphia-negative B-ALL. METHODS The expression of RASD1 was detected with RT-qPCR in 92 adults with de novo Ph-negative B-ALL and 40 healthy controls. The correlation between RASD1 transcript levels and relapse was assessed. RESULTS RASD1 transcript levels in patients with Ph-negative B-ALL (median 81.76%, range 0.22%-1824.52%) were significantly higher than those in healthy controls (7.59%, 0.46%-38.66%; P<0.0001). Patients with low RASD1 transcript levels had a lower 5-year relapse-free survival (RFS, 47.5% [32.9%, 62.1%] vs. 63.1% [49.0%, 77.2%]; P = 0.012) and a higher 5-year cumulative incidence of relapse (CIR, 52.0% [37.4%, 66.6%] vs. 36.2% [22.2%, 50.2%]; P = 0.013) especially in patients receiving chemotherapy only. Multivariate analysis showed that a low RASD1 transcript level was an independent risk factor for RFS (HR = 2.938 [1.427, 6.047], P = 0.003) and CIR (HR = 3.367 [1.668, 6.796], P = 0.001) in patients with Ph-negative B-ALL. CONCLUSIONS RASD1 transcript levels were significantly higher in patients with Ph-negative B-ALL and a low RASD1 transcript level was independently correlated with increased relapse risk.
Collapse
Affiliation(s)
- Run-Qing Lu
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, People's Republic of China
| | - Li-Xin Wu
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, People's Republic of China
| | - Jing Zhang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, People's Republic of China
| | - Ya-Zhen Qin
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, People's Republic of China
| | - Yan-Rong Liu
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, People's Republic of China
| | - Yue-Yun Lai
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, People's Republic of China
| | - Hao Jiang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, People's Republic of China
| | - Ying-Jun Chang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, People's Republic of China
| | - Guo-Rui Ruan
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, People's Republic of China
| | - Xiao-Jun Huang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, People's Republic of China
| |
Collapse
|
14
|
Wang S, Zhang Y, Liu Y, Zheng R, Wu Z, Fan Y, Li M, Li M, Li T, Li Y, Jiang Z, Wang C, Liu Y. Inhibition of CSRP2 Promotes Leukemia Cell Proliferation and Correlates with Relapse in Adults with Acute Myeloid Leukemia. Onco Targets Ther 2020; 13:12549-12560. [PMID: 33324073 PMCID: PMC7733086 DOI: 10.2147/ott.s281802] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 11/25/2020] [Indexed: 12/23/2022] Open
Abstract
Background Relapse is a major obstacle in the treatment of acute myeloid leukemia (AML). Refinement of risk stratification may aid the identification of patients who are likely to relapse. Abnormal cysteine and glycine-rich protein 2 (CSRP2) has been implicated in various cancers, but its function remains unclear. The purpose of this study was to explore the role of CSRP2 in predicting adult AML recurrence. Methods RT-PCR was used to detect the expression of CSRP2 in 193 newly diagnosed adult AML patients and 44 healthy controls. The competitive risk model was used to calculate the cumulative incidence of relapse rate (CIR), Kaplan-Meier to calculate the relapse-free survival rate (RFS), and the Cox regression model to perform multivariate analysis. Viral transfection was used to construct AML cell lines with stable knockdown of CSRP2, CCK8 to detect proliferation and drug resistance, flow cytometry to detect cell cycle and apoptosis, and Western blot to detect key molecules in signaling pathways. Results CSRP2 transcript levels were higher in 193 adult AML compared with 44 healthy controls. In 149 patients who achieved complete remission, those with high CSRP2 transcript levels displayed a lower 2-year CIR and higher 2-year RFS, especially when receiving only chemotherapy. In multivariate analysis, a high CSRP2 transcript level was independently associated with a better RFS. Knockdown of CSRP2 promoted proliferation and cell cycle progression, and reduced chemosensitivity. Western blot analysis showed upregulation of p-AKT and p-CREB in CSRP2-knockdown AML cell lines. Inhibition assays suggested these two signaling pathways participated in the CSRP2-mediated proliferation effects in AML cell lines. Conclusion In summary, CSRP2 correlates with relapse in adult AML. Down-regulation of CSRP2 could promote the proliferation of AML cell lines by regulating the AKT and CREB signaling pathways. Therefore, CSRP2 may provide prognostic significance and potential therapeutic targets in the management of AML.
Collapse
Affiliation(s)
- Shujuan Wang
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Yu Zhang
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Yajun Liu
- Department of Orthopaedics, Brown University, Warren Alpert Medical School/Rhode Island Hospital, Rhode Island, RI, USA
| | - Ruyue Zheng
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Zhenzhen Wu
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Yi Fan
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Mengya Li
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Menglin Li
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Tao Li
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Yafei Li
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Zhongxing Jiang
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Chong Wang
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Yanfang Liu
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| |
Collapse
|
15
|
Wang H, Wu Y, Fang R, Sa J, Li Z, Cao H, Cui Y. Time-Varying Gene Network Analysis of Human Prefrontal Cortex Development. Front Genet 2020; 11:574543. [PMID: 33304381 PMCID: PMC7701309 DOI: 10.3389/fgene.2020.574543] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 10/19/2020] [Indexed: 11/13/2022] Open
Abstract
The prefrontal cortex (PFC) constitutes a large part of the human central nervous system and is essential for the normal social affection and executive function of humans and other primates. Despite ongoing research in this region, the development of interactions between PFC genes over the lifespan is still unknown. To investigate the conversion of PFC gene interaction networks and further identify hub genes, we obtained time-series gene expression data of human PFC tissues from the Gene Expression Omnibus (GEO) database. A statistical model, loggle, was used to construct time-varying networks and several common network attributes were used to explore the development of PFC gene networks with age. Network similarity analysis showed that the development of human PFC is divided into three stages, namely, fast development period, deceleration to stationary period, and recession period. We identified some genes related to PFC development at these different stages, including genes involved in neuronal differentiation or synapse formation, genes involved in nerve impulse transmission, and genes involved in the development of myelin around neurons. Some of these genes are consistent with findings in previous reports. At the same time, we explored the development of several known KEGG pathways in PFC and corresponding hub genes. This study clarified the development trajectory of the interaction between PFC genes, and proposed a set of candidate genes related to PFC development, which helps further study of human brain development at the genomic level supplemental to regular anatomical analyses. The analytical process used in this study, involving the loggle model, similarity analysis, and central analysis, provides a comprehensive strategy to gain novel insights into the evolution and development of brain networks in other organisms.
Collapse
Affiliation(s)
- Huihui Wang
- Division of Health Statistics, School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Yongqing Wu
- Division of Health Statistics, School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Ruiling Fang
- Division of Health Statistics, School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Jian Sa
- Division of Health Statistics, School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Zhi Li
- Department of Hematology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, China
| | - Hongyan Cao
- Division of Health Statistics, School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Yuehua Cui
- Department of Statistics and Probability, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
16
|
Park H, Kim D, Kim D, Park J, Koh Y, Yoon SS. Truncation of MYH8 tail in AML: a novel prognostic marker with increase cell migration and epithelial-mesenchymal transition utilizing RAF/MAPK pathway. Carcinogenesis 2020; 41:817-827. [PMID: 31430364 DOI: 10.1093/carcin/bgz146] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 07/29/2019] [Accepted: 08/18/2019] [Indexed: 12/20/2022] Open
Abstract
MYH8 is an actin-based motor protin involved in integrin-mediated cell adhesion and migration. Heretofore, the association of MYH8 mutation and cancer is unclear. In this study, we investigated the biologic significance of novel MYH8 tail truncation mutation, R1292X, in acute myeloid leukemia (AML) which was discovered by whole-exome sequencing and targeted re-sequencing of 209 AML patients. The patients harboring the mutation all relapsed within 3.8-20.9 months. To explore the functional consequence of the mutation in AML progress, we established knock-in cell lines using CRISPR-Cas9 genome editing. Using the established mutant model, we assessed traits of cancer progress. The mutant cells had improved motility, which was confirmed by immunofluorescence staining, wound healing, transwell migration and adhesion assay. The cell morphology and cell cycle were altered to be accessible to migration and epithelial-to-mesenchymal transition (EMT) transcription factors were also increased. The Raf and p44/42 MAPK pathway was a major regulator of these characteristics proved by a screening of signal transduction and inhibitor assay. Further, a public cancer genome database (cBioPortal) shows that MYH8 tail truncation mutations occurring near the R1292 position of the genome may have a significant function in cancer. In conclusion, truncation of MYH8 could be a novel prognostic marker related to poor prognosis by inducing cell migration and EMT features, and inhibition of the Raf/MAPK pathway would be a therapeutic strategy for AML patients with MYH8 tail truncation.
Collapse
Affiliation(s)
- Hyejoo Park
- Cancer Research Institute, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Daeyoon Kim
- Cancer Research Institute, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Dongchan Kim
- Cancer Research Institute, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Jihyun Park
- Cancer Research Institute, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Youngil Koh
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul National University Hospital, 101, Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea
| | - Sung-Soo Yoon
- Cancer Research Institute, Seoul National University College of Medicine, Seoul 03080, Republic of Korea.,Department of Internal Medicine, Seoul National University College of Medicine, Seoul National University Hospital, 101, Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea
| |
Collapse
|
17
|
Chen L, Long X, Duan S, Liu X, Chen J, Lan J, Liu X, Huang W, Geng J, Zhou J. CSRP2 suppresses colorectal cancer progression via p130Cas/Rac1 axis-meditated ERK, PAK, and HIPPO signaling pathways. Am J Cancer Res 2020; 10:11063-11079. [PMID: 33042270 PMCID: PMC7532686 DOI: 10.7150/thno.45674] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 08/21/2020] [Indexed: 12/13/2022] Open
Abstract
Metastasis is a major cause of death in patients with colorectal cancer (CRC). Cysteine-rich protein 2 (CSRP2) has been recently implicated in the progression and metastasis of a variety of cancers. However, the biological functions and underlying mechanisms of CSRP2 in the regulation of CRC progression are largely unknown. Methods: Immunohistochemistry, quantitative real-time polymerase chain reaction (qPCR) and Western blotting (WB) were used to detect the expression of CSRP2 in CRC tissues and paracancerous tissues. CSRP2 function in CRC was determined by a series of functional tests in vivo and in vitro. WB and immunofluorescence were used to determine the relation between CSRP2 and epithelial-mesenchymal transition (EMT). Co-immunoprecipitation and scanning electron microscopy were used to study the molecular mechanism of CSRP2 in CRC. Results: The CSRP2 expression level in CRC tissues was lower than in adjacent normal tissues and indicated poor prognosis in CRC patients. Functionally, CSRP2 could suppress the proliferation, migration, and invasion of CRC cells in vitro and inhibit CRC tumorigenesis and metastasis in vivo. Mechanistic investigations revealed a physical interaction between CSRP2 and p130Cas. CSRP2 could inhibit the activation of Rac1 by preventing the phosphorylation of p130Cas, thus activating the Hippo signaling pathway, and simultaneously inhibiting the ERK and PAK/LIMK/cortactin signaling pathways, thereby inhibiting the EMT and metastasis of CRC. Rescue experiments showed that blocking the p130Cas and Rac1 activation could inhibit EMT induced by CSRP2 silencing. Conclusion: Our results suggest that the CSRP2/p130Cas/Rac1 axis can inhibit CRC aggressiveness and metastasis through the Hippo, ERK, and PAK signaling pathways. Therefore, CSRP2 may be a potential therapeutic target for CRC.
Collapse
|
18
|
Wang S, Wang C, Li T, Wang W, Hao Q, Xie X, Wan D, Jiang Z, Liu Y. WT1 overexpression predicted good outcomes in adult B-cell acute lymphoblastic leukemia patients receiving chemotherapy. ACTA ACUST UNITED AC 2020; 25:118-124. [PMID: 32122281 DOI: 10.1080/16078454.2020.1735670] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Objectives: The prognostic role of WT1 in acute lymphoblastic leukemia (ALL) is still controversial. No study has focused on the prognostic role of WT1 expression in adult B-ALL patients receiving chemotherapy only.Methods: Using TaqMan-based real time quantitative PCR (RQ-PCR), we detected the WT1 transcript levels of 162 de-novo adult B-ALL patients at the time of diagnosis and analysed their clinical features.Results: WT1 overexpression was defined as a transcript level higher than 0.50%, which is the upper limit in normal bone marrow. WT1 overexpression was identified in 66.0% of the patients and was an independent positive prognostic factor for CIR, RFS and OS in patients who received chemotherapy only (CIR: HR = 0.236 [95% confidence interval 0.094-0.592]; P = 0.002; RFS: HR = 0.223 [0.092-0.543]; P = 0.001; OS: HR = 0.409 [0.214-0.783]; P = 0.007) and in patients who did not have BCR-ABL fusion or KMT2A rearrangements (CIR: HR = 0.431 [0.201-0.921]; P = 0.030; RFS: HR = 0.449 [0.224-0.899]; P = 0.024; OS: HR = 0.521 [0.278-0.977]; P = 0.042). However, WT1 overexpression had no prognostic value in patients who received allogenic hematopoietic stem cell transplantation (allo-HSCT). Furthermore, allo-HSCT could improve the prognosis of patients with low WT1 expression.Conclusion: Therefore, testing for WT1 expression at the time of diagnosis may predict outcomes in adult B-ALL patients who receive only chemotherapy and who do not have the BCR-ABL fusion gene or KMT2A rearrangements. Allo-HSCT may improve the prognosis of patients with low WT1 transcript levels.
Collapse
Affiliation(s)
- Shujuan Wang
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Chong Wang
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Tao Li
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Weiqiong Wang
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Qianqian Hao
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Xinsheng Xie
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Dingming Wan
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Zhongxing Jiang
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Yanfang Liu
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| |
Collapse
|
19
|
Zhang J, Xu Y, Gale RP, Wu L, Zhang J, Feng Y, Qin Y, Jiang H, Jiang Q, Jiang B, Liu Y, Chen Y, Wang Y, Zhang X, Xu L, Huang X, Liu K, Ruan G. DPEP1 expression promotes proliferation and survival of leukaemia cells and correlates with relapse in adults with common B cell acute lymphoblastic leukaemia. Br J Haematol 2020; 190:67-78. [PMID: 32068254 DOI: 10.1111/bjh.16505] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 12/29/2019] [Indexed: 12/18/2022]
Affiliation(s)
- Jia‐Min Zhang
- National Clinical Research Center for Hematologic Disease Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation Collaborative Innovation Center of Hematology Peking University People's Hospital Peking University Institute of Hematology Beijing China
| | - Yan Xu
- National Clinical Research Center for Hematologic Disease Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation Collaborative Innovation Center of Hematology Peking University People's Hospital Peking University Institute of Hematology Beijing China
| | - Robert P. Gale
- Haematology Research Center Division of Experimental Medicine Department of Medicine Imperial College London London UK
| | - Li‐Xin Wu
- National Clinical Research Center for Hematologic Disease Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation Collaborative Innovation Center of Hematology Peking University People's Hospital Peking University Institute of Hematology Beijing China
| | - Jing Zhang
- National Clinical Research Center for Hematologic Disease Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation Collaborative Innovation Center of Hematology Peking University People's Hospital Peking University Institute of Hematology Beijing China
| | - Yong‐Huai Feng
- National Clinical Research Center for Hematologic Disease Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation Collaborative Innovation Center of Hematology Peking University People's Hospital Peking University Institute of Hematology Beijing China
| | - Ya‐Zhen Qin
- National Clinical Research Center for Hematologic Disease Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation Collaborative Innovation Center of Hematology Peking University People's Hospital Peking University Institute of Hematology Beijing China
| | - Hao Jiang
- National Clinical Research Center for Hematologic Disease Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation Collaborative Innovation Center of Hematology Peking University People's Hospital Peking University Institute of Hematology Beijing China
| | - Qian Jiang
- National Clinical Research Center for Hematologic Disease Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation Collaborative Innovation Center of Hematology Peking University People's Hospital Peking University Institute of Hematology Beijing China
| | - Bin Jiang
- National Clinical Research Center for Hematologic Disease Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation Collaborative Innovation Center of Hematology Peking University People's Hospital Peking University Institute of Hematology Beijing China
| | - Yan‐Rong Liu
- National Clinical Research Center for Hematologic Disease Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation Collaborative Innovation Center of Hematology Peking University People's Hospital Peking University Institute of Hematology Beijing China
| | - Yu‐Hong Chen
- National Clinical Research Center for Hematologic Disease Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation Collaborative Innovation Center of Hematology Peking University People's Hospital Peking University Institute of Hematology Beijing China
| | - Yu Wang
- National Clinical Research Center for Hematologic Disease Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation Collaborative Innovation Center of Hematology Peking University People's Hospital Peking University Institute of Hematology Beijing China
| | - Xiao‐Hui Zhang
- National Clinical Research Center for Hematologic Disease Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation Collaborative Innovation Center of Hematology Peking University People's Hospital Peking University Institute of Hematology Beijing China
| | - Lan‐Ping Xu
- National Clinical Research Center for Hematologic Disease Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation Collaborative Innovation Center of Hematology Peking University People's Hospital Peking University Institute of Hematology Beijing China
| | - Xiao‐Jun Huang
- National Clinical Research Center for Hematologic Disease Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation Collaborative Innovation Center of Hematology Peking University People's Hospital Peking University Institute of Hematology Beijing China
- Peking‐Tsinghua Center for Life Sciences Academy for Advanced Interdisciplinary StudiesPeking University Beijing China
| | - Kai‐Yan Liu
- National Clinical Research Center for Hematologic Disease Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation Collaborative Innovation Center of Hematology Peking University People's Hospital Peking University Institute of Hematology Beijing China
| | - Guo‐Rui Ruan
- National Clinical Research Center for Hematologic Disease Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation Collaborative Innovation Center of Hematology Peking University People's Hospital Peking University Institute of Hematology Beijing China
| |
Collapse
|
20
|
Wang S, Wang C, Wang W, Hao Q, Liu Y. High RASD1 transcript levels at diagnosis predicted poor survival in adult B-cell acute lymphoblastic leukemia patients. Leuk Res 2019; 80:26-32. [DOI: 10.1016/j.leukres.2019.03.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 03/06/2019] [Accepted: 03/19/2019] [Indexed: 10/27/2022]
|
21
|
Hypoxia promotes breast cancer cell invasion through HIF-1α-mediated up-regulation of the invadopodial actin bundling protein CSRP2. Sci Rep 2018; 8:10191. [PMID: 29976963 PMCID: PMC6033879 DOI: 10.1038/s41598-018-28637-x] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 06/13/2018] [Indexed: 12/20/2022] Open
Abstract
Hypoxia is a common feature of solid tumours that promotes invasion and metastatic dissemination. Invadopodia are actin-rich membrane protrusions that direct extracellular matrix proteolysis and facilitate tumour cell invasion. Here, we show that CSRP2, an invadopodial actin bundling protein, is upregulated by hypoxia in various breast cancer cell lines, as well as in pre-clinical and clinical breast tumour specimens. We functionally characterized two hypoxia responsive elements within the proximal promoter of CSRP2 gene which are targeted by hypoxia-inducible factor-1 (HIF-1) and required for promoter transactivation in response to hypoxia. Remarkably, CSRP2 knockdown significantly inhibits hypoxia-stimulated invadopodium formation, ECM degradation and invasion in MDA-MB-231 cells, while CSRP2 forced expression was sufficient to enhance the invasive capacity of HIF-1α-depleted cells under hypoxia. In MCF-7 cells, CSRP2 upregulation was required for hypoxia-induced formation of invadopodium precursors that were unable to promote ECM degradation. Collectively, our data support that CSRP2 is a novel and direct cytoskeletal target of HIF-1 which facilitates hypoxia-induced breast cancer cell invasion by promoting invadopodia formation.
Collapse
|