1
|
Asadi M, Zarredar H, Zafari V, Soleimani Z, Saeedi H, Caner A, Shanehbandi D. Immune Features of Tumor Microenvironment: A Genetic Spotlight. Cell Biochem Biophys 2024; 82:107-118. [PMID: 37870699 DOI: 10.1007/s12013-023-01192-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 10/10/2023] [Indexed: 10/24/2023]
Abstract
A tumor represents a highly intricate tissue entity, characterized by an exceptionally complex microenvironment that starkly contrasts with the typical physiological surroundings of healthy tissues. Within this tumor microenvironment (TME), every component and factor assume paramount importance in the progression of malignancy and exerts a pivotal influence on a patient's clinical outcome. One of the remarkable aspects of the TME is its remarkable heterogeneity, not only across different types of cancers but even within the same histological category of tumors. In-depth research has illuminated the intricate interplay between specific immune cells and molecules and the dynamic characteristics of the TME. Recent investigations have yielded compelling evidence that several mutations harbored by tumor cells possess the capacity to instigate substantial alterations in the TME. These mutations, often acting as drivers of tumorigenesis, can orchestrate a cascade of events that remodel the TME, thereby influencing crucial aspects of cancer behavior, including its invasiveness, immune evasion, and response to therapies. It is within this nuanced context that the present study endeavors to provide a concise yet comprehensive summary of how specific mutations, within the genetic landscape of cancer cells, can instigate profound changes in TME features. By elucidating the intricate relationship between genetic mutations and the TME, this research aims to contribute to a deeper understanding of cancer biology. Ultimately, the knowledge gained from this study holds the potential to inform the development of more targeted and effective treatments, thereby offering new hope to patients grappling with the complexities of cancer.
Collapse
Affiliation(s)
- Milad Asadi
- Department of Basic Oncology, Health Institute of Ege University, Izmir, Turkey
| | - Habib Zarredar
- Tuberculosis and Lung Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Venus Zafari
- Department of Basic Oncology, Health Institute of Ege University, Izmir, Turkey
| | - Zahra Soleimani
- Tuberculosis and Lung Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Saeedi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ayse Caner
- Department of Basic Oncology, Health Institute of Ege University, Izmir, Turkey.
- The University of Texas, MD Anderson Cancer Center, Houston, USA.
| | - Dariush Shanehbandi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Cancer Immunology and Immunotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran.
| |
Collapse
|
2
|
Nuñez-Rios JD, Ulrich H, Díaz-Muñoz M, Lameu C, Vázquez-Cuevas FG. Purinergic system in cancer stem cells. Purinergic Signal 2023:10.1007/s11302-023-09976-5. [PMID: 37966629 DOI: 10.1007/s11302-023-09976-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 10/25/2023] [Indexed: 11/16/2023] Open
Abstract
Accumulating evidence supports the idea that cancer stem cells (CSCs) are those with the capacity to initiate tumors, generate phenotypical diversity, sustain growth, confer drug resistance, and orchestrate the spread of tumor cells. It is still controversial whether CSCs originate from normal stem cells residing in the tissue or cancer cells from the tumor bulk that have dedifferentiated to acquire stem-like characteristics. Although CSCs have been pointed out as key drivers in cancer, knowledge regarding their physiology is still blurry; thus, research focusing on CSCs is essential to designing novel and more effective therapeutics. The purinergic system has emerged as an important autocrine-paracrine messenger system with a prominent role at multiple levels of the tumor microenvironment, where it regulates cellular aspects of the tumors themselves and the stromal and immune systems. Recent findings have shown that purinergic signaling also participates in regulating the CSC phenotype. Here, we discuss updated information regarding CSCs in the purinergic system and present evidence supporting the idea that elements of the purinergic system expressed by this subpopulation of the tumor represent attractive pharmacological targets for proposing innovative anti-cancer therapies.
Collapse
Affiliation(s)
- J D Nuñez-Rios
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Boulevard Juriquilla #3001, Juriquilla Querétaro, Querétaro, CP 76230, México
| | - H Ulrich
- Department of Biochemistry, Chemistry Institute, University of São Paulo (USP), São Paulo, Brazil
| | - M Díaz-Muñoz
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Boulevard Juriquilla #3001, Juriquilla Querétaro, Querétaro, CP 76230, México
| | - C Lameu
- Department of Biochemistry, Chemistry Institute, University of São Paulo (USP), São Paulo, Brazil
| | - F G Vázquez-Cuevas
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Boulevard Juriquilla #3001, Juriquilla Querétaro, Querétaro, CP 76230, México.
| |
Collapse
|
3
|
Braun DA, Chakraborty AA. Immunobiology and Metabolic Pathways of Renal Cell Carcinoma. Hematol Oncol Clin North Am 2023; 37:827-840. [PMID: 37246090 DOI: 10.1016/j.hoc.2023.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The treatment of advanced renal cell carcinoma (RCC) has changed dramatically with immune checkpoint inhibitors, yet most patients do not have durable responses. There is consequently a tremendous need for novel therapeutic development. RCC, and particularly the most common histology clear cell RCC, is an immunobiologically and metabolically distinct tumor. An improved understanding of RCC-specific biology will be necessary for the successful identification of new treatment targets for this disease. In this review, we discuss the current understanding of RCC immune pathways and metabolic dysregulation, with a focus on topics important for future clinical development.
Collapse
Affiliation(s)
- David A Braun
- Center of Molecular and Cellular Oncology, Yale Cancer Center, Yale School of Medicine, 300 George Street (Suite 6400), New Haven, CT 06511, USA.
| | - Abhishek A Chakraborty
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinical, 9500 Euclid Avenue (NB40), Cleveland, OH 44195, USA; Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA.
| |
Collapse
|
4
|
Allard D, Cousineau I, Ma EH, Allard B, Bareche Y, Fleury H, Stagg J. The CD73 immune checkpoint promotes tumor cell metabolic fitness. eLife 2023; 12:e84508. [PMID: 37261423 PMCID: PMC10259490 DOI: 10.7554/elife.84508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 05/31/2023] [Indexed: 06/02/2023] Open
Abstract
CD73 is an ectonucleotidase overexpressed on tumor cells that suppresses anti-tumor immunity. Accordingly, several CD73 inhibitors are currently being evaluated in the clinic, including in large randomized clinical trials. Yet, the tumor cell-intrinsic impact of CD73 remain largely uncharacterized. Using metabolomics, we discovered that CD73 significantly enhances tumor cell mitochondrial respiration and aspartate biosynthesis. Importantly, rescuing aspartate biosynthesis was sufficient to restore proliferation of CD73-deficient tumors in immune deficient mice. Seahorse analysis of a large panel of mouse and human tumor cells demonstrated that CD73 enhanced oxidative phosphorylation (OXPHOS) and glycolytic reserve. Targeting CD73 decreased tumor cell metabolic fitness, increased genomic instability and suppressed poly ADP ribose polymerase (PARP) activity. Our study thus uncovered an important immune-independent function for CD73 in promoting tumor cell metabolism, and provides the rationale for previously unforeseen combination therapies incorporating CD73 inhibition.
Collapse
Affiliation(s)
- David Allard
- Centre de Recherche du Centre Hospitalier l’Université de MontréalMontrealCanada
- Faculté de Pharmacie, Université de MontréalMontrealCanada
- Institut du Cancer de MontréalMontrealCanada
| | - Isabelle Cousineau
- Centre de Recherche du Centre Hospitalier l’Université de MontréalMontrealCanada
- Institut du Cancer de MontréalMontrealCanada
| | - Eric H Ma
- McGill Goodman Cancer Research CentreMontréalCanada
| | - Bertrand Allard
- Centre de Recherche du Centre Hospitalier l’Université de MontréalMontrealCanada
- Institut du Cancer de MontréalMontrealCanada
| | - Yacine Bareche
- Centre de Recherche du Centre Hospitalier l’Université de MontréalMontrealCanada
- Faculté de Pharmacie, Université de MontréalMontrealCanada
- Institut du Cancer de MontréalMontrealCanada
| | - Hubert Fleury
- Centre de Recherche du Centre Hospitalier l’Université de MontréalMontrealCanada
- Institut du Cancer de MontréalMontrealCanada
| | - John Stagg
- Centre de Recherche du Centre Hospitalier l’Université de MontréalMontrealCanada
- Faculté de Pharmacie, Université de MontréalMontrealCanada
- Institut du Cancer de MontréalMontrealCanada
| |
Collapse
|
5
|
Sharma R, Balta S, Raza A, Escalona RM, Kannourakis G, Prithviraj P, Ahmed N. In Vitro and In Silico Analysis of Epithelial-Mesenchymal Transition and Cancer Stemness as Prognostic Markers of Clear Cell Renal Cell Carcinoma. Cancers (Basel) 2023; 15:cancers15092586. [PMID: 37174052 PMCID: PMC10177434 DOI: 10.3390/cancers15092586] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/27/2023] [Accepted: 04/28/2023] [Indexed: 05/15/2023] Open
Abstract
The process of epithelial-mesenchymal transition (EMT) involves the phenotypic transformation of cells from epithelial to mesenchymal status. The cells exhibiting EMT contain features of cancer stem cells (CSC), and the dual processes are responsible for progressive cancers. Activation of hypoxia-inducible factors (HIF) is fundamental to the pathogenesis of clear cell renal cell carcinoma (ccRCC), and their role in promoting EMT and CSCs is crucial for ccRCC tumour cell survival, disease progression, and metastatic spread. In this study, we explored the status of HIF genes and their downstream targets, EMT and CSC markers, by immunohistochemistry on in-house accrued ccRCC biopsies and adjacent non-tumorous tissues from patients undergoing partial or radical nephrectomy. In combination, we comprehensively analysed the expression of HIF genes and its downstream EMT and CSC-associated targets relevant to ccRCC by using publicly available datasets, the cancer genome atlas (TCGA) and the clinical proteome tumour analysis consortium (CPTAC). The aim was to search for novel biological prognostic markers that can stratify high-risk patients likely to experience metastatic disease. Using the above two approaches, we report the development of novel gene signatures that may help to identify patients at a high risk of developing metastatic and progressive disease.
Collapse
Affiliation(s)
- Revati Sharma
- Fiona Elsey Cancer Research Institute, Ballarat, VIC 3353, Australia
- Health Innovation and Transformation Centre, Mt Helen Campus, Federation University Australia, Ballarat, VIC 3350, Australia
| | - Showan Balta
- Dorevitch Pathology, Ballarat Base Hospital, Drummond Street, Ballarat, VIC 3350, Australia
| | - Ali Raza
- Fiona Elsey Cancer Research Institute, Ballarat, VIC 3353, Australia
- Health Innovation and Transformation Centre, Mt Helen Campus, Federation University Australia, Ballarat, VIC 3350, Australia
| | - Ruth M Escalona
- Fiona Elsey Cancer Research Institute, Ballarat, VIC 3353, Australia
- Centre for Reproductive Health, The Hudson Institute of Medical Research, 27-31 Wright Street, Clayton, VIC 3168, Australia
- Department of Molecular and Translational Science, Monash University, Clayton, VIC 3168, Australia
| | - George Kannourakis
- Fiona Elsey Cancer Research Institute, Ballarat, VIC 3353, Australia
- Health Innovation and Transformation Centre, Mt Helen Campus, Federation University Australia, Ballarat, VIC 3350, Australia
| | - Prashanth Prithviraj
- Fiona Elsey Cancer Research Institute, Ballarat, VIC 3353, Australia
- Health Innovation and Transformation Centre, Mt Helen Campus, Federation University Australia, Ballarat, VIC 3350, Australia
| | - Nuzhat Ahmed
- Fiona Elsey Cancer Research Institute, Ballarat, VIC 3353, Australia
- Health Innovation and Transformation Centre, Mt Helen Campus, Federation University Australia, Ballarat, VIC 3350, Australia
- Centre for Reproductive Health, The Hudson Institute of Medical Research, 27-31 Wright Street, Clayton, VIC 3168, Australia
- Department of Molecular and Translational Science, Monash University, Clayton, VIC 3168, Australia
- Department of Obstetrics and Gynaecology, University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
6
|
Li H, Xie P, Li P, Du Y, Zhu J, Yuan Y, Wu C, Shi Y, Huang Z, Wang X, Liu D, Liu W. CD73/NT5E is a Potential Biomarker for Cancer Prognosis and Immunotherapy for Multiple Types of Cancers. Adv Biol (Weinh) 2023; 7:e2200263. [PMID: 36480312 DOI: 10.1002/adbi.202200263] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/18/2022] [Indexed: 12/14/2022]
Abstract
Cluster of Differentiations 73 (CD73)/ecto-5'-nucleotidase (NT5E) is a novel type of immune molecular marker expressed on many tumor cells and involved in regulating the essential immune functions and affecting the prognosis of cancer patients. However, it is not clear how the NT5E is linked to the infiltration levels of the immune cells in pan-cancer patients and their final prognosis. This study explores the role of NT5E in 33 tumor types using GEPIA, TIMER, Oncomine, BioGPS databases, and several bioinformatic tools. The findings reveal that the NT5E is abnormally expressed in a majority of the types of cancers and can be used for determining the prognosis prediction ability of different cancers. Moreover, NT5E is significantly related to the infiltration status of numerous immune cells, immune-activated pathways, and immunoregulator expressions. Last, specific inhibitor molecules, like NORNICOTINE, AS-703026, and FOSTAMATINIB, which inhibit the expression of NT5E in various types of cancers, are screened with the CMap. Thus, it is proposed that NT5E can be utilized as a potential biomarker for predicting the prognosis of cancer patients and determining the infiltration of various immune cells in different types of cancers.
Collapse
Affiliation(s)
- Huisheng Li
- Department of Maxillofacial & Otorhinolaryngology Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Huanhu West Road, Hexi District, Tianjin, 300060, China
| | - Peng Xie
- Department of Senior Ward, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Huanhu West Road, Hexi District, Tianjin, 300060, China
| | - Ping Li
- Department of Maxillofacial & Otorhinolaryngology Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Huanhu West Road, Hexi District, Tianjin, 300060, China
| | - Yuheng Du
- Department of Maxillofacial & Otorhinolaryngology Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Huanhu West Road, Hexi District, Tianjin, 300060, China
| | - Jiajia Zhu
- Department of Maxillofacial & Otorhinolaryngology Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Huanhu West Road, Hexi District, Tianjin, 300060, China
| | - Yudong Yuan
- Department of Senior Ward, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Huanhu West Road, Hexi District, Tianjin, 300060, China
| | - Chao Wu
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Huanhu West Road, Hexi District, Tianjin, 300060, China
| | - Yantao Shi
- Department of Technology, Swanshine (Tianjin) Biotechnology Development Co. Ltd, Anime East Road, Airport Economic Zone, Tianjin, 300308, China
| | - Zhiyong Huang
- Department of Industrial Biosystems and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences, Xiqi Road Airport Economic Zone, Tianjin, 300308, China
| | - Xudong Wang
- Department of Maxillofacial & Otorhinolaryngology Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Huanhu West Road, Hexi District, Tianjin, 300060, China
| | - Dongying Liu
- Department of Pain Management, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Huanhu West Road, Hexi District, Tianjin, 300060, China
| | - Weishuai Liu
- Department of Pain Management, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Huanhu West Road, Hexi District, Tianjin, 300060, China
| |
Collapse
|
7
|
García‐Rocha R, Monroy‐García A, Carrera‐Martínez M, Hernández‐Montes J, Don‐López CA, Weiss‐Steider B, Monroy‐Mora KA, Ponce‐Chavero MDLÁ, Montesinos‐Montesinos JJ, Escobar‐Sánchez ML, Castillo GM, Chacón‐Salinas R, Vallejo‐Castillo L, Pérez‐Tapia SM, Mora‐García MDL. Evidence that cervical cancer cells cultured as tumorspheres maintain high CD73 expression and increase their protumor characteristics through TGF-β production. Cell Biochem Funct 2022; 40:760-772. [PMID: 36070413 PMCID: PMC9825969 DOI: 10.1002/cbf.3742] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 08/02/2022] [Accepted: 08/26/2022] [Indexed: 02/06/2023]
Abstract
Recently, a link between the biological activity of CD73 and tumorigenicity in solid tumors has been proposed. We previously reported that the generation of adenosine (Ado) by the activity of CD73 in cervical cancer (CC) cells induces transforming growth factor-beta 1 (TGF-β1) production to maintain CD73 expression. In the present study, we analyzed the participation of TGF-β1 in CD73 expression and the development of protumoral characteristics in CaSki CC cells cultured as tumorspheres (CaSki-T) and in monolayers (CaSki-M). Compared with those in CaSki-M cells, CD73 expression and Ado generation ability were significantly increased in CaSki-T cells. CaSki-T cells exhibited enrichment in the CSC-like phenotype due to increases in the expression levels of stem cell markers (CD49f, CK17, and P63; OCT4 and SOX2), greater sphere formation efficiency (SFE), and an increase in the percentage of side population (SP) cells. Interestingly, compared with CaSki-M cells, CaSki-T cells produced a greater amount of TGF-β1 and presented a marked protumor phenotype characterized by a significant decrease in the expression of major histocompatibility complex class-I (MHC-I) molecules, an increase in the expression of multidrug resistance protein-I (MRP-I) and vimentin, and an increase in the protein expression levels of Snail-1 and Twist, which was strongly reversed with TGF-β1 inhibition. These results suggest that the presence of TGF-β1-CD73-Ado feedback loop can promote protumoral characteristics in the CC tumor microenvironment.
Collapse
Affiliation(s)
- Rosario García‐Rocha
- Laboratorio de InmunobiologíaUIDCC‐UMIEZ, FES‐Zaragoza, UNAMCiudad de MéxicoMéxico,Programa de Beca Posdoctoral UNAM DGAPA‐PAPIITCiudad de MéxicoMexico
| | - Alberto Monroy‐García
- Laboratorio de InmunobiologíaUIDCC‐UMIEZ, FES‐Zaragoza, UNAMCiudad de MéxicoMéxico,Laboratorio de Inmunología y Cáncer, UIMEO, H Oncología, CMN SXXIInstituto Mexicano del Seguro SocialCiudad de MéxicoMéxico
| | - Monserrat Carrera‐Martínez
- Laboratorio de Inmunología y Cáncer, UIMEO, H Oncología, CMN SXXIInstituto Mexicano del Seguro SocialCiudad de MéxicoMéxico,Programa de Posgrado en Ciencias Biológicas, UNAMCiudad de MéxicoMéxico
| | | | | | - Benny Weiss‐Steider
- Laboratorio de InmunobiologíaUIDCC‐UMIEZ, FES‐Zaragoza, UNAMCiudad de MéxicoMéxico
| | | | - María de los Ángeles Ponce‐Chavero
- Laboratorio de InmunobiologíaUIDCC‐UMIEZ, FES‐Zaragoza, UNAMCiudad de MéxicoMéxico,Programa de Posgrado en Ciencias Biológicas, UNAMCiudad de MéxicoMéxico
| | - Juan José Montesinos‐Montesinos
- Laboratorio de Células Troncales Mesenquimales, Unidad de Investigación Médica en Enfermedades Oncológicas, CMN SXXIInstituto Mexicano del Seguro SocialCiudad de MéxicoMéxico
| | - María Luisa Escobar‐Sánchez
- Laboratorio de Microscopía Electrónica, Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de MéxicoCiudad UniversitariaCiudad de MéxicoMexico
| | - Gabriela Molina Castillo
- Laboratorio de InmunobiologíaUIDCC‐UMIEZ, FES‐Zaragoza, UNAMCiudad de MéxicoMéxico,Programa de Posgrado en Ciencias Biológicas, UNAMCiudad de MéxicoMéxico
| | - Rommel Chacón‐Salinas
- Unidad de Desarrollo e Investigación en Bioprocesos (UDIBI)Instituto Politécnico NacionalCiudad de MéxicoMexico,Departamento de Inmunología, Escuela Nacional de Ciencias BiológicasInstituto Politécnico Nacional, ENCB‐IPNCiudad de MéxicoMexico
| | - Luis Vallejo‐Castillo
- Unidad de Desarrollo e Investigación en Bioprocesos (UDIBI)Instituto Politécnico NacionalCiudad de MéxicoMexico,Departamento de Farmacología, Centro de Investigación y de Estudios Avanzados del IPN (Cinvestav‐IPN)Ciudad de MéxicoMexico
| | - Sonia Mayra Pérez‐Tapia
- Unidad de Desarrollo e Investigación en Bioprocesos (UDIBI)Instituto Politécnico NacionalCiudad de MéxicoMexico,Departamento de Inmunología, Escuela Nacional de Ciencias BiológicasInstituto Politécnico Nacional, ENCB‐IPNCiudad de MéxicoMexico,Laboratorio Nacional para Servicios Especializados de Investigacioón, Desarrollo e Innovación (I+D+i) para Farmoquímicos y Biotecnológicos (LANSEIDI‐FarBiotec‐CONACyT), Escuela Nacional de Ciencias BiológicasInstituto Politécnico NacionalMexico CityMexico
| | | |
Collapse
|
8
|
Iser IC, Vedovatto S, Oliveira FD, Beckenkamp LR, Lenz G, Wink MR. The crossroads of adenosinergic pathway and epithelial-mesenchymal plasticity in cancer. Semin Cancer Biol 2022; 86:202-213. [PMID: 35779713 DOI: 10.1016/j.semcancer.2022.06.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/24/2022] [Accepted: 06/26/2022] [Indexed: 10/31/2022]
Abstract
Epithelial-mesenchymal transition (EMT) is a key mechanism related to tumor progression, invasion, metastasis, resistance to therapy and poor prognosis in several types of cancer. However, targeting EMT or partial-EMT, as well as the molecules involved in this process, has remained a challenge. Recently, the CD73 enzyme, which hydrolyzes AMP to produce adenosine (ADO), has been linked to the EMT process. This relationship is not only due to the production of the immunosuppressant ADO but also to its role as a receptor for extracellular matrix proteins, being involved in cell adhesion and migration. This article reviews the crosstalk between the adenosinergic pathway and the EMT program and the impact of this interrelation on cancer development and progression. An in silico analysis of RNAseq datasets showed that several tumor types have a significant correlation between an EMT score and NT5E (CD73) and ENTPD1 (CD39) expressions, with the strongest correlations in prostate adenocarcinoma. Furthermore, it is evident that the cooperation between EMT and adenosinergic pathway in tumor progression is context and tumor-dependent. The increased knowledge about this topic will help broaden the view to explore new treatments and therapies for different types of cancer.
Collapse
Affiliation(s)
- Isabele Cristiana Iser
- Department of Basics Health Sciences and Laboratory of Cell Biology, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil
| | - Samlai Vedovatto
- Department of Biophysics and Center of Biotechnology, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Fernanda Dittrich Oliveira
- Department of Biophysics and Center of Biotechnology, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Liziane Raquel Beckenkamp
- Department of Basics Health Sciences and Laboratory of Cell Biology, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil
| | - Guido Lenz
- Department of Biophysics and Center of Biotechnology, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Márcia Rosângela Wink
- Department of Basics Health Sciences and Laboratory of Cell Biology, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil.
| |
Collapse
|
9
|
Kurnit KC, Draisey A, Kazen RC, Chung C, Phan LH, Harvey JB, Feng J, Xie S, Broaddus RR, Bowser JL. Loss of CD73 shifts transforming growth factor-β1 (TGF-β1) from tumor suppressor to promoter in endometrial cancer. Cancer Lett 2021; 505:75-86. [PMID: 33609609 PMCID: PMC9812391 DOI: 10.1016/j.canlet.2021.01.030] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 01/20/2021] [Accepted: 01/31/2021] [Indexed: 01/07/2023]
Abstract
In many tumors, CD73 (NT5E), a rate-limiting enzyme in adenosine biosynthesis, is upregulated by TGF-β and drives tumor progression. Conversely, CD73 is downregulated in endometrial carcinomas (EC) despite a TGF-β-rich environment. Through gene expression analyses of normal endometrium samples of the uterine cancer TCGA data set and genetic and pharmacological studies, we discovered CD73 loss shifts TGF-β1 from tumor suppressor to promoter in EC. TGF-β1 upregulated CD73 and epithelial integrity in vivo in the normal endometrium and in vitro in early stage EC cells. With loss of CD73, TGF-β1-mediated epithelial integrity was abrogated. EC cells developed TGF-β1-mediated stress fibers and macromolecule permeability, migration, and invasion increased. In human tumors, CD73 is downregulated in deeply invasive stage I EC. Consistent with shifting TGF-β1 activity, CD73 loss increased TGF-β1-mediated canonical signaling and upregulated cyclin D1 (CCND1) and downregulated p21 expression. This shift was clinically relevant, as CD73Low/CCND1High expression associated with poor tumor differentiation, increased myometrial and lymphatic/vascular space invasion, and patient death. Further loss of CD73 in CD73Low expressing advanced stage EC cells increased TGF-β-mediated stress fibers, signaling, and invasiveness, whereby adenosine A1 receptor agonist, CPA, dampened TGF-β-mediated invasion. These data identify CD73 loss as essential for shifting TGF-β activity in EC.
Collapse
Affiliation(s)
- Katherine C Kurnit
- Department of Obstetrics and Gynecology, Section of Gynecologic Oncology, University of Chicago, Chicago, IL, USA
| | - Ashley Draisey
- University of Northern Iowa, Cedar Falls, IA, USA; CPRIT/CURE Summer Research Experience, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Rebecca C Kazen
- University of Colorado at Boulder, Boulder, CO, USA; CPRIT/CURE Summer Research Experience, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Christine Chung
- Department of Gynecologic Oncology and Reproductive Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Luan H Phan
- University of Texas McGovern Medical School, Houston, TX, USA
| | | | - Jiping Feng
- Department of Gynecologic Oncology and Reproductive Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - SuSu Xie
- Department of Pathology and Laboratory Medicine, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Russell R Broaddus
- Department of Pathology and Laboratory Medicine, University of North Carolina School of Medicine, Chapel Hill, NC, USA; Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| | - Jessica L Bowser
- Department of Pathology and Laboratory Medicine, University of North Carolina School of Medicine, Chapel Hill, NC, USA; Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
10
|
Braun DA, Bakouny Z, Hirsch L, Flippot R, Van Allen EM, Wu CJ, Choueiri TK. Beyond conventional immune-checkpoint inhibition - novel immunotherapies for renal cell carcinoma. Nat Rev Clin Oncol 2021; 18:199-214. [PMID: 33437048 PMCID: PMC8317018 DOI: 10.1038/s41571-020-00455-z] [Citation(s) in RCA: 192] [Impact Index Per Article: 64.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/16/2020] [Indexed: 01/29/2023]
Abstract
The management of advanced-stage renal cell carcinoma (RCC) has been transformed by the development of immune-checkpoint inhibitors (ICIs). Nonetheless, most patients do not derive durable clinical benefit from these agents. Importantly, unlike other immunotherapy-responsive solid tumours, most RCCs have only a moderate mutational burden, and paradoxically, high levels of tumour CD8+ T cell infiltration are associated with a worse prognosis in patients with this disease. Building on the successes of antibodies targeting the PD-1 and CTLA4 immune checkpoints, multiple innovative immunotherapies are now in clinical development for the treatment of patients with RCC, including ICIs with novel targets, co-stimulatory pathway agonists, modified cytokines, metabolic pathway modulators, cell therapies and therapeutic vaccines. However, the successful development of such novel immune-based treatments and of immunotherapy-based combinations will require a disease-specific framework that incorporates a deep understanding of RCC immunobiology. In this Review, using the structure provided by the well-described cancer-immunity cycle, we outline the key steps required for a successful antitumour immune response in the context of RCC, and describe the development of promising new immunotherapies within the context of this framework. With this approach, we summarize and analyse the most encouraging targets of novel immune-based therapies within the RCC microenvironment, and review the landscape of emerging antigen-directed therapies for this disease.
Collapse
Affiliation(s)
- David A Braun
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Ziad Bakouny
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Laure Hirsch
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Department of Medical Oncology, Gustave Roussy, Villejuif, France
| | - Ronan Flippot
- Department of Medical Oncology, Gustave Roussy, Villejuif, France
| | - Eliezer M Van Allen
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Catherine J Wu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Toni K Choueiri
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
11
|
Wang C, Ding S, Wang S, Shi Z, Pandey NK, Chudal L, Wang L, Zhang Z, Wen Y, Yao H, Lin L, Chen W, Xiong L. Endogenous tumor microenvironment-responsive multifunctional nanoplatforms for precision cancer theranostics. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213529] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
12
|
Fang P, Zhou L, Lim LY, Fu H, Yuan ZX, Lin J. Targeting Strategies for Renal Cancer Stem Cell Therapy. Curr Pharm Des 2020; 26:1964-1978. [PMID: 32188377 DOI: 10.2174/1381612826666200318153106] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 02/27/2020] [Indexed: 12/24/2022]
Abstract
Renal cell carcinoma (RCC) is an intractable genitourinary malignancy that accounts for approximately 4% of adult malignancies. Currently, there is no approved targeted therapy for RCC that has yielded durable remissions, and they remain palliative in intent. Emerging evidence has indicated that renal tumorigenesis and RCC treatment-resistance may originate from renal cancer stem cells (CSCs) with tumor-initiating capacity (CSC hypothesis). A better understanding of the mechanism underlying renal CSCs will help to dissect RCC heterogeneity and drug treatment efficiency, to promote more personalized and targeted therapies. In this review, we summarized the stem cell characteristics of renal CSCs. We outlined the targeting strategies and challenges associated with developing therapies that target renal CSCs angiogenesis, immunosuppression, signaling pathways, surface biomarkers, microRNAs and nanomedicine. In conclusion, CSCs are an important role in renal carcinogenesis and represent a valid target for treatment of RCC patients.
Collapse
Affiliation(s)
- Pengchao Fang
- Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Liuting Zhou
- Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Lee Y Lim
- Department of Pharmacy, School of Medicine and Pharmacology, The University of Western Australia, Crawley WA 6009, Perth, Australia
| | - Hualin Fu
- Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zhi-Xiang Yuan
- College of Pharmacy, Southwest Minzu University, Chengdu, China
| | - Juchun Lin
- Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
13
|
Novel Therapeutic Approaches and the Evolution of Drug Development in Advanced Kidney Cancer. Cancer J 2020; 26:464-470. [DOI: 10.1097/ppo.0000000000000477] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
14
|
Mei X, Shu J, Huang R, Chu X, Tian Y. Expression of VEGF, CD73 and their relationship with clinical pathology, microvessel density, and prognosis in renal cell carcinoma. Transl Androl Urol 2020; 9:1366-1373. [PMID: 32676421 PMCID: PMC7354330 DOI: 10.21037/tau-20-904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Background Renal cell carcinoma (RCC), a tumor originating from renal tubular epithelial cells, has the second highest incidence of all adult urogenital tumors. However, in most cases, patients show no obvious symptoms in the early or even the late stages of RCC, which seriously impacts the prognosis. This study aimed to analyze the expression of vascular endothelial growth factor (VEGF) and ecto-5'-nucleotidase (CD73) and their relationship with clinical pathology, microvessel density (MVD), and prognosis in RCC. Methods The clinical data of 76 patients with RCC who underwent radical nephrectomy in our hospital between October, 2011 and October, 2013 were retrospectively analyzed. The postoperative paraffin specimens were collected; the expression levels of VEGF and CD73 in the tumor tissues were detected, and the MVD was measured. T the expression of VEGF and CD73 and their relationship with clinical pathology, MVD, and prognosis in RCC. Results The positive expression rates of VEGF and CD73 in RCC patients with grades G3–G4 were higher than those in patients with grades G1–G2 (P<0.05). The rates in RCC patients with stages III~IV were higher than those in patients with stages I–II (P<0.05). The rates in RCC patients with lymph node metastasis were higher than those in patients without lymph node metastasis (P<0.05). The MVD count of patients with positive expressions of VEGF and CD73 was higher than that of patients with negative expressions (P<0.05). The expressions of VEGF and CD73 in RCC tissues were significantly positively correlated with MVD count (P<0.05). The five-year mortality rate of patients with positive expressions of VEGF and CD73 was higher than that of patients with negative expressions (P<0.05). Conclusions The expressions of VEGF and CD73 in RCC tissues can reflect the degree of tumor malignancy, invasion, and metastasis, and are closely related to the formation of microvessels in tumor tissues and the poor prognosis of patients.
Collapse
Affiliation(s)
- Xuefeng Mei
- Department of Urology, Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jia Shu
- Department of Functional Inspection, Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ruizhen Huang
- Department of Cardiology, Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xin Chu
- Nursing Department, Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ying Tian
- Department of Urology, Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
15
|
Yoon JY, Gedye C, Paterson J, Ailles L. Stem/progenitor cell marker expression in clear cell renal cell carcinoma: a potential relationship with the immune microenvironment to be explored. BMC Cancer 2020; 20:272. [PMID: 32245446 PMCID: PMC7119074 DOI: 10.1186/s12885-020-06733-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 03/10/2020] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Clear cell renal cell carcinoma (ccRCC) is a markedly heterogeneous disease in many aspects, including the tumour microenvironment. Our previous study showed the importance of the tumour microenvironment in ccRCC xeno-transplant success rates. In order to better understand the potential relationship between TICs and the immune microenvironment, we employed a multi-modal approach, examining RNA and protein expression (flow cytometry, immunohistochemistry). METHODS We first examined the gene expression pattern of 18 stem/progenitor marker genes in the cancer genome atlas (TCGA) ccRCC cohort. Flow cytometry was next employed to examine lineage-specific expression levels of stem/progenitor markers and immune population makeup in six, disaggregated, primary ccRCC specimens. Immunohistochemistry was performed on a commercial ccRCC tissue microarray (TMA). RESULTS The 18 genes differed with respect to their correlation patterns with one another and to their prognostic significance. By flow cytometry, correlating expression frequency of 12 stem/progenitor markers and CD10 resulted in two clusters-one with CD10 (marker of proximal tubular differentiation), and second cluster containing mostly mesenchymal stem cell (MSC) markers, including CD146. In turn, these clusters differed with respect to their correlation with different CD45+ lineage markers and their expression of immune checkpoint pathway proteins. To confirm these findings, four stem/progenitor marker expression patterns were compared with CD4, CD8 and CD20 in a ccRCC TMA which showed a number of similar trends with respect to frequency of the different tumour-infiltrating leukocytes. CONCLUSION Taken together, we observed heterogeneous but patterned expression levels of different stem/progenitor markers. Our results suggest a non-random relationship between their expression patterns with the immune microenvironment populations in ccRCC.
Collapse
Affiliation(s)
- Ju-Yoon Yoon
- Department of Laboratory Medicine and Pathobiology, University of Toronto, 27 King's College Circle, Toronto, Ontario, M5S 1A1, Canada.
| | - Craig Gedye
- Hunter Medical Research Institute, Newcastle, New South Wales, Australia
| | - Joshua Paterson
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Laurie Ailles
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
16
|
Peng L, Ming Y, Zhang L, Zhou J, Xiang W, Zeng S, He H, Chen L. MicroRNA-30a suppresses self-renewal and tumorigenicity of glioma stem cells by blocking the NT5E-dependent Akt signaling pathway. FASEB J 2020; 34:5128-5143. [PMID: 32067282 DOI: 10.1096/fj.201802629rr] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 09/10/2019] [Accepted: 09/23/2019] [Indexed: 01/15/2023]
Abstract
Over the past decade, increasing researches have demonstrated the implication of microRNAs (miRNAs or miRs) in tumorigenicity of glioma stem cells (GSCs). The regulatory functions of miRNAs in GSCs have emerged as potential therapeutic candidates for glioma treatment. Herein, we aim to investigate the role of miR-30a in the proliferation and self-renewal of GSCs and the possible mechanism in relation to ecto-5'-nucleotidase (NT5E)-dependent Akt signaling pathway. RT-qPCR and Western blot analysis were performed to determine the expression of miR-30a and NT5E in glioma tissues and cell lines. GSCs were isolated from glioma cells and identified using flow cytometry. The relationship between miR-30a and NT5E was determined by dual-luciferase reporter gene assay. Gain- and loss-of-function experiments were performed to examine the effects of miR-30a and NT5E on sphere formation, colony formation, and proliferation of GSCs in vitro, as well as orthotopic tumor growth of GSCs in nude mice. Additionally, the Akt signaling pathway was blocked with an Akt inhibitor, LY294002, to investigate its involvement in the regulatory effect of miR30a. miR-30a was poorly expressed in glioma tissues and cell lines as well as GSCs. NT5E, highly expressed in GSCs, was identified as a target of miR-30a. In addition, miR-30a upregulation or NT5E silencing could reduce GSC sphere formation, clone formation, proliferation, and orthotopic tumor growth in nude mice. Moreover, miR-30a inhibited the activation of the Akt signaling pathway by targeting NT5E, and ultimately suppressing the self-renewal and orthotopic tumor growth of GSCs. Our results demonstrate that miR-30a targets NT5E to inhibit the Akt signaling pathway, by which could suppress the self-renewal and orthotopic tumor growth of GSCs. Those findings may provide theoretical basis of miR-30a as a therapeutic target to suppress the glioma progression.
Collapse
Affiliation(s)
- Lilei Peng
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, P. R. China.,Neurosurgical Clinical Research Center of Sichuan Province, Luzhou, P. R. China
| | - Yang Ming
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, P. R. China.,Neurosurgical Clinical Research Center of Sichuan Province, Luzhou, P. R. China
| | - Ling Zhang
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, P. R. China.,Neurosurgical Clinical Research Center of Sichuan Province, Luzhou, P. R. China
| | - Jie Zhou
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, P. R. China.,Neurosurgical Clinical Research Center of Sichuan Province, Luzhou, P. R. China
| | - Wei Xiang
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, P. R. China.,Neurosurgical Clinical Research Center of Sichuan Province, Luzhou, P. R. China
| | - Shan Zeng
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, P. R. China.,Neurosurgical Clinical Research Center of Sichuan Province, Luzhou, P. R. China
| | - Haiping He
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, P. R. China.,Neurosurgical Clinical Research Center of Sichuan Province, Luzhou, P. R. China
| | - Ligang Chen
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, P. R. China.,Neurosurgical Clinical Research Center of Sichuan Province, Luzhou, P. R. China
| |
Collapse
|
17
|
Chen S, Wainwright DA, Wu JD, Wan Y, Matei DE, Zhang Y, Zhang B. CD73: an emerging checkpoint for cancer immunotherapy. Immunotherapy 2019; 11:983-997. [PMID: 31223045 PMCID: PMC6609898 DOI: 10.2217/imt-2018-0200] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Accepted: 06/07/2019] [Indexed: 02/07/2023] Open
Abstract
CD73 is a novel immune checkpoint associated with adenosine metabolism that promotes tumor progression by suppressing antitumor immune response and promoting angiogenesis. The inhibition of CD73, in combination with immune checkpoint blockade, targeted therapy or conventional therapy, improves antitumor effects in numerous preclinical mouse models of cancer. Emerging evidence suggests that the combination of anti-CD73 and immune checkpoint blockade has promising clinical activity in patients with advanced solid tumors. In this review, we will discuss the specific role of CD73 on both tumor cells and nontumor cells in regulating tumor immunity and tumorigenesis and provide an update on the current view of the antitumor activity of targeting CD73 by mAb or small molecule selective inhibitors in preclinical and clinical settings.
Collapse
Affiliation(s)
- Siqi Chen
- Robert H Lurie Comprehensive Cancer Center, Department of Medicine-Division of Hematology/Oncology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Derek A Wainwright
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Jennifer D Wu
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Yong Wan
- Department of Obstetrics & Gynecology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Daniela E Matei
- Department of Obstetrics & Gynecology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Yi Zhang
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Bin Zhang
- Robert H Lurie Comprehensive Cancer Center, Department of Medicine-Division of Hematology/Oncology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| |
Collapse
|
18
|
Shi D, Che J, Yan Y, Peng B, Yao X, Guo C. Expression and clinical value of CD105 in renal cell carcinoma based on data mining in The Cancer Genome Atlas. Exp Ther Med 2019; 17:4499-4505. [PMID: 31086581 PMCID: PMC6489005 DOI: 10.3892/etm.2019.7493] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 11/30/2018] [Indexed: 02/06/2023] Open
Abstract
The objective of the present study was to assess the expression of CD105 and its association with overall survival in three subtypes of renal cell carcinoma (RCC), namely clear cell (cc)RCC, papillary (p)RCC and chromophobe (ch)RCC. Data regarding the transcriptome and copy number of genes in RCC tumor samples and survival were obtained from The Cancer Genome Atlas. Bioinformatics analysis revealed that CD105 is overexpressed in ccRCC tumor tissue vs. normal renal tissue, and a higher CD105 copy number in ccRCC tissues was significantly associated with longer patient survival. The effect of the mRNA expression of CD105 in all three types of RCC and the copy number in pRCC and chRCC on patient survival was insignificant, but certain trends were observed. In addition, CD105 mRNA expression was associated with the metastasis and tumor stage, as well as pathological stage in ccRCC and pRCC. Pathway enrichment analysis revealed that CD105 may, through translation initiation of associated genes, promote RCC progression. The results of the present study suggest that in RCC tumors, the association of CD105 with different stages is complex. To evaluate the role of CD105 in RCC, its function should be assessed in addition to its expression. The exact influence of CD105 mRNA expression and copy number in RCC tumors on patient survival and the underlying mechanisms require further elucidation.
Collapse
Affiliation(s)
- Donghui Shi
- Department of Urology, Shanghai 10th People's Hospital, Tongji University, Shanghai 200072, P.R. China.,Department of Urology, Suzhou Wu Zhong People's Hospital, Suzhou, Jiangsu 215128, P.R. China
| | - Jianping Che
- Department of Urology, Shanghai 10th People's Hospital, Tongji University, Shanghai 200072, P.R. China
| | - Yang Yan
- Department of Urology, Shanghai 10th People's Hospital, Tongji University, Shanghai 200072, P.R. China
| | - Bo Peng
- Department of Urology, Shanghai 10th People's Hospital, Tongji University, Shanghai 200072, P.R. China
| | - Xudong Yao
- Department of Urology, Shanghai 10th People's Hospital, Tongji University, Shanghai 200072, P.R. China
| | - Changcheng Guo
- Department of Urology, Shanghai 10th People's Hospital, Tongji University, Shanghai 200072, P.R. China
| |
Collapse
|
19
|
Corrò C, Healy ME, Engler S, Bodenmiller B, Li Z, Schraml P, Weber A, Frew IJ, Rechsteiner M, Moch H. IL-8 and CXCR1 expression is associated with cancer stem cell-like properties of clear cell renal cancer. J Pathol 2019; 248:377-389. [PMID: 30883740 PMCID: PMC6618115 DOI: 10.1002/path.5267] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 02/25/2019] [Accepted: 03/13/2019] [Indexed: 12/28/2022]
Abstract
Recent studies suggest that clear cell renal cell carcinoma (ccRCC) possesses a rare population of cancer stem cells (CSCs) that might contribute to tumor heterogeneity, metastasis and therapeutic resistance. Nevertheless, their relevance for renal cancer is still unclear. In this study, we successfully isolated CSCs from established human ccRCC cell lines. CSCs displayed high expression of the chemokine IL‐8 and its receptor CXCR1. While recombinant IL‐8 significantly increased CSC number and properties in vitro, CXCR1 inhibition using an anti‐CXCR1 antibody or repertaxin significantly reduced these features. After injection into immune‐deficient mice, CSCs formed primary tumors that metastasized to the lung and liver. All xenografted tumors in mice expressed high levels of IL‐8 and CXCR1. Furthermore, IL‐8/CXCR1 expression significantly correlated with decreased overall survival in ccRCC patients. These results suggest that the IL‐8/CXCR1 phenotype is associated with CSC‐like properties in renal cancer. © 2019 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Claudia Corrò
- Department of Pathology and Molecular Pathology, University Hospital Zurich, Zurich, Switzerland.,Life Science Zurich Graduate School, ETH and University of Zurich, Zurich, Switzerland
| | - Marc E Healy
- Department of Pathology and Molecular Pathology, University Hospital Zurich, Zurich, Switzerland
| | - Stefanie Engler
- Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Bernd Bodenmiller
- Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Zhe Li
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Peter Schraml
- Department of Pathology and Molecular Pathology, University Hospital Zurich, Zurich, Switzerland
| | - Achim Weber
- Department of Pathology and Molecular Pathology, University Hospital Zurich, Zurich, Switzerland
| | - Ian J Frew
- Clinic of Internal Medicine I, Faculty of Medicine, Medical Center - University of Freiburg, Freiburg im Breisgau, Germany
| | - Markus Rechsteiner
- Department of Pathology and Molecular Pathology, University Hospital Zurich, Zurich, Switzerland
| | - Holger Moch
- Department of Pathology and Molecular Pathology, University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
20
|
Peng D, Hu Z, Wei X, Ke X, Shen Y, Zeng X. NT5Einhibition suppresses the growth of sunitinib-resistant cells and EMT course and AKT/GSK-3β signaling pathway in renal cell cancer. IUBMB Life 2018; 71:113-124. [PMID: 30281919 DOI: 10.1002/iub.1942] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 08/22/2018] [Accepted: 08/22/2018] [Indexed: 01/05/2023]
Affiliation(s)
- Dan Peng
- Department of Nuclear Medicine; Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Wuhan 430030 Hubei China
| | - Zhiquan Hu
- Department of Urology; Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Wuhan 430030 Hubei China
| | - Xian Wei
- Department of Urology; Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Wuhan 430030 Hubei China
| | - Xinwen Ke
- Department of Urology; Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Wuhan 430030 Hubei China
| | - Yuanqing Shen
- Department of Urology; Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Wuhan 430030 Hubei China
| | - Xing Zeng
- Department of Urology; Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Wuhan 430030 Hubei China
| |
Collapse
|
21
|
Yang R, Hong H, Wang M, Ma Z. Correlation Between Single-Nucleotide Polymorphisms Within miR-30a and Related Target Genes and Risk or Prognosis of Nephrotic Syndrome. DNA Cell Biol 2018; 37:233-243. [PMID: 29356585 DOI: 10.1089/dna.2017.4024] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
This study was aimed to figure out the association of single-nucleotide polymorphisms (SNPs) within miR-30a and its downstream molecules (i.e., Notch1, Snail1, p53, CD73, and TET1) with susceptibility to and prognosis of nephrotic syndrome (NS). In the aggregate, 265 patients and 281 healthy controls were gathered, and related laboratory indicators were examined. The miR-30a, Notch1, Snail1, TET1, p53, and CD73 expressions were also evaluated by quantitative real-time polymerase chain reaction (qRT-PCR), immunohistochemistry, or enzyme-linked immunosorbent assay. Besides, the SNPs were genotyped by RT-PCR with aid of ABI-PRISM™ 377 DNA sequencing instrument. As a result, the NS patients were correlated with remarkably higher 24-h protein excretion, random urine protein/creatinine (UPCR), and serum creatinine, along with lower estimated glomerular filtration rate and serum albumin, when compared with normal subjects (p < 0.05). Furthermore, significant correlations were present between miR-30a expression and the expressions of Notch1 (rs = -0.350), p53 (rs = -0.339), CD73 (rs = -0.300), TET1 (rs = -0.249), and Snail1 (rs = -0.829) (all p < 0.05). The SNPs of miR-30a [i.e., rs2222722 (C>T)], Notch1 [i.e., rs3124599 (G>A), rs3124591 (C>T), and rs139994842 (G>A)], Snail1 [i.e., rs6020178 (T>C)], p53 [i.e., rs1042522 (C>G)], and CD73 [i.e., rs9444348 (G>A) and rs4431401 (T>C)] were significantly correlated with both differed NS risk and altered hormone sensitivity to NS (all p < 0.05). Moreover, haplotype AC of CD73 and haplotype ATG of Notch1 were the helpful factors against NS (p < 0.05), yet haplotype GT of CD73 functioned oppositely (p < 0.05). The haplotype AT of CD73 was beneficial to the NS patients for that the carriers could be treated with hormones without severe complications (p < 0.05). Conclusively, the SNPs situated within miR-30a and its downstream molecules (i.e., Notch1, Snail1, p53, CD73, and TET1) could become the promising biomarkers for both NS diagnosis and prediction of NS prognosis.
Collapse
Affiliation(s)
- Ruiheng Yang
- Department of Nephrology, Liaocheng People's Hospital , Liaocheng, China
| | - Hong Hong
- Department of Nephrology, Liaocheng People's Hospital , Liaocheng, China
| | - Mengjun Wang
- Department of Nephrology, Liaocheng People's Hospital , Liaocheng, China
| | - Zhongchao Ma
- Department of Nephrology, Liaocheng People's Hospital , Liaocheng, China
| |
Collapse
|
22
|
Corrò C, Moch H. Biomarker discovery for renal cancer stem cells. J Pathol Clin Res 2018; 4:3-18. [PMID: 29416873 PMCID: PMC5783955 DOI: 10.1002/cjp2.91] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 11/27/2017] [Accepted: 12/13/2017] [Indexed: 12/17/2022]
Abstract
Characterised by high intra- and inter-tumor heterogeneity, metastatic renal cell carcinoma (RCC) is resistant to chemo- and radiotherapy. Therefore, the development of new prognostic and diagnostic markers for RCC patients is needed. Cancer stem cells (CSCs) are a small population of neoplastic cells within a tumor which present characteristics reminiscent of normal stem cells. CSCs are characterised by unlimited cell division, maintenance of the stem cell pool (self-renewal), and capability to give rise to all cell types within a tumor; and contribute to metastasis in vivo (tumourigenicity), treatment resistance and recurrence. So far, many studies have tried to establish unique biomarkers to identify CSC populations in RCC. At the same time, different approaches have been developed with the aim to isolate CSCs. Consequently, several markers were found to be specifically expressed in CSCs and cancer stem-like cells derived from RCC such as CD105, ALDH1, OCT4, CD133, and CXCR4. However, the contribution of genetic and epigenetic mechanisms, and tumor microenvironment, to cellular plasticity have made the discovery of unique biomarkers a very difficult task. In fact, contrasting results regarding the applicability of such markers to the isolation of renal CSCs have been reported in the literature. Therefore, a better understanding of the mechanism underlying CSC may help dissecting tumor heterogeneity and drug treatment efficiency.
Collapse
Affiliation(s)
- Claudia Corrò
- Department of Pathology and Molecular PathologyUniversity Hospital ZurichSwitzerland
| | - Holger Moch
- Department of Pathology and Molecular PathologyUniversity Hospital ZurichSwitzerland
| |
Collapse
|