1
|
Knabl J, Ye Y, Desoye G, Jeschke U. HLA-G - evolvement from a trophoblast specific marker to a checkpoint molecule in cancer, a narrative review about the specific role in breast- and gynecological cancer. J Reprod Immunol 2024; 166:104385. [PMID: 39432974 DOI: 10.1016/j.jri.2024.104385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 10/07/2024] [Accepted: 10/15/2024] [Indexed: 10/23/2024]
Abstract
Human leukocyte antigen G (HLA-G) is known as a non-classical molecule of the major histocompatibility complex class Ib and downregulates the mother's immune response against the fetus during pregnancy, thereby generating immune tolerance. Due to the latter effect, HLA-G is also referred to as an immune checkpoint molecule. Originally identified on extravillous trophoblasts, HLA-G is already known to induce immune tolerance at various stages of the immune response, for example through cell differentiation and proliferation, cytolysis and cytokine secretion. Because of these functions, HLA-G is involved in various processes of cancer progression, but a comprehensive review of the role of HLA-G in gynecologic cancers is lacking. Therefore, this review focuses on the existing knowledge of HLA-G in ovarian cancer, endometrial cancer, cervical cancer and breast cancer. HLA-G is predominantly expressed in cancer tissues adjacent to the extravillous trophoblast. Therefore, modulating its expression in the cancer target tissues of cancer patients could be a potential therapeutic approach to treat these diseases.
Collapse
Affiliation(s)
- Julia Knabl
- Department of Gynecology and Obstetrics, University Hospital, LMU Munich, Marchioninistr.15, Munich 81377 , Germany; Department of Obstetrics, Klinik Hallerwiese, St.-Johannis Mühlgasse 19, Nürnberg 90419, Germany
| | - Yao Ye
- Reproductive Medicine Center, The Affiliated Drum Tower Hospital of Nanjing University School of Medicine, Nanjing, China
| | - Gernot Desoye
- Department of Obstetrics and Gynecology, Medical University Graz, Auenbruggerplatz 14, Graz A-8036, Austria
| | - Udo Jeschke
- Department of Obstetrics and Gynecology, University Hospital Augsburg, Stenglinstr. 2, Augsburg 86156, Germany.
| |
Collapse
|
2
|
Sarker DB, Xue Y, Mahmud F, Jocelyn JA, Sang QXA. Interconversion of Cancer Cells and Induced Pluripotent Stem Cells. Cells 2024; 13:125. [PMID: 38247819 PMCID: PMC10814385 DOI: 10.3390/cells13020125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/07/2024] [Accepted: 01/08/2024] [Indexed: 01/23/2024] Open
Abstract
Cancer cells, especially cancer stem cells (CSCs), share many molecular features with induced pluripotent stem cells (iPSCs) that enable the derivation of induced pluripotent cancer cells by reprogramming malignant cells. Conversely, normal iPSCs can be converted into cancer stem-like cells with the help of tumor microenvironment components and genetic manipulation. These CSC models can be utilized in oncogenic initiation and progression studies, understanding drug resistance, and developing novel therapeutic strategies. This review summarizes the role of pluripotency factors in the stemness, tumorigenicity, and therapeutic resistance of cancer cells. Different methods to obtain iPSC-derived CSC models are described with an emphasis on exposure-based approaches. Culture in cancer cell-conditioned media or cocultures with cancer cells can convert normal iPSCs into cancer stem-like cells, aiding the examination of processes of oncogenesis. We further explored the potential of reprogramming cancer cells into cancer-iPSCs for mechanistic studies and cancer dependencies. The contributions of genetic, epigenetic, and tumor microenvironment factors can be evaluated using these models. Overall, integrating iPSC technology into cancer stem cell research holds significant promise for advancing our knowledge of cancer biology and accelerating the development of innovative and tailored therapeutic interventions.
Collapse
Affiliation(s)
- Drishty B. Sarker
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306-4390, USA; (D.B.S.); (Y.X.); (F.M.); (J.A.J.)
| | - Yu Xue
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306-4390, USA; (D.B.S.); (Y.X.); (F.M.); (J.A.J.)
| | - Faiza Mahmud
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306-4390, USA; (D.B.S.); (Y.X.); (F.M.); (J.A.J.)
| | - Jonathan A. Jocelyn
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306-4390, USA; (D.B.S.); (Y.X.); (F.M.); (J.A.J.)
| | - Qing-Xiang Amy Sang
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306-4390, USA; (D.B.S.); (Y.X.); (F.M.); (J.A.J.)
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306-4380, USA
| |
Collapse
|
3
|
Chehelgerdi M, Behdarvand Dehkordi F, Chehelgerdi M, Kabiri H, Salehian-Dehkordi H, Abdolvand M, Salmanizadeh S, Rashidi M, Niazmand A, Ahmadi S, Feizbakhshan S, Kabiri S, Vatandoost N, Ranjbarnejad T. Exploring the promising potential of induced pluripotent stem cells in cancer research and therapy. Mol Cancer 2023; 22:189. [PMID: 38017433 PMCID: PMC10683363 DOI: 10.1186/s12943-023-01873-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 09/27/2023] [Indexed: 11/30/2023] Open
Abstract
The advent of iPSCs has brought about a significant transformation in stem cell research, opening up promising avenues for advancing cancer treatment. The formation of cancer is a multifaceted process influenced by genetic, epigenetic, and environmental factors. iPSCs offer a distinctive platform for investigating the origin of cancer, paving the way for novel approaches to cancer treatment, drug testing, and tailored medical interventions. This review article will provide an overview of the science behind iPSCs, the current limitations and challenges in iPSC-based cancer therapy, the ethical and social implications, and the comparative analysis with other stem cell types for cancer treatment. The article will also discuss the applications of iPSCs in tumorigenesis, the future of iPSCs in tumorigenesis research, and highlight successful case studies utilizing iPSCs in tumorigenesis research. The conclusion will summarize the advancements made in iPSC-based tumorigenesis research and the importance of continued investment in iPSC research to unlock the full potential of these cells.
Collapse
Affiliation(s)
- Matin Chehelgerdi
- Novin Genome (NG) Lab, Research and Development Center for Biotechnology, Shahrekord, Iran
- Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Fereshteh Behdarvand Dehkordi
- Novin Genome (NG) Lab, Research and Development Center for Biotechnology, Shahrekord, Iran
- Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Mohammad Chehelgerdi
- Novin Genome (NG) Lab, Research and Development Center for Biotechnology, Shahrekord, Iran.
- Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran.
| | - Hamidreza Kabiri
- Novin Genome (NG) Lab, Research and Development Center for Biotechnology, Shahrekord, Iran
- Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | | | - Mohammad Abdolvand
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Science, Isfahan, Iran
| | - Sharareh Salmanizadeh
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Hezar-Jereeb Street, Isfahan, 81746-73441, Iran
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
- The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Anoosha Niazmand
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Science, Isfahan, Iran
| | - Saba Ahmadi
- Department of Molecular and Medical Genetics, Tbilisi State Medical University, Tbilisi, Georgia
| | - Sara Feizbakhshan
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Science, Isfahan, Iran
| | - Saber Kabiri
- Novin Genome (NG) Lab, Research and Development Center for Biotechnology, Shahrekord, Iran
- Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Nasimeh Vatandoost
- Pediatric Inherited Diseases Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Tayebeh Ranjbarnejad
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Science, Isfahan, Iran
| |
Collapse
|
4
|
Leonel ECR, Dadashzadeh A, Moghassemi S, Vlieghe H, Wyns C, Orellana R, Amorim CA. New Solutions for Old Problems: How Reproductive Tissue Engineering Has Been Revolutionizing Reproductive Medicine. Ann Biomed Eng 2023; 51:2143-2171. [PMID: 37468688 DOI: 10.1007/s10439-023-03321-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 07/12/2023] [Indexed: 07/21/2023]
Abstract
Acquired disorders and congenital defects of the male and female reproductive systems can have profound impacts on patients, causing sexual and endocrine dysfunction and infertility, as well as psychosocial consequences that affect their self-esteem, identity, sexuality, and relationships. Reproductive tissue engineering (REPROTEN) is a promising approach to restore fertility and improve the quality of life of patients with reproductive disorders by developing, replacing, or regenerating cells, tissues, and organs from the reproductive and urinary systems. In this review, we explore the latest advancements in REPROTEN techniques and their applications for addressing degenerative conditions in male and female reproductive organs. We discuss current research and clinical outcomes and highlight the potential of 3D constructs utilizing biomaterials such as scaffolds, cells, and biologically active molecules. Our review offers a comprehensive guide for researchers and clinicians, providing insights into how to reestablish reproductive tissue structure and function using innovative surgical approaches and biomaterials. We highlight the benefits of REPROTEN for patients, including preservation of fertility and hormonal production, reconstruction of uterine and cervical structures, and restoration of sexual and urinary functions. Despite significant progress, REPROTEN still faces ethical and technical challenges that need to be addressed. Our review underscores the importance of continued research in this field to advance the development of effective and safe REPROTEN approaches for patients with reproductive disorders.
Collapse
Affiliation(s)
- Ellen C R Leonel
- Department of Histology, Embryology and Cell Biology, Institute of Biological Sciences, Federal University of Goiás, Goiânia, GO, Brazil
| | - Arezoo Dadashzadeh
- Pôle de Recherche en Physiopathologie de la Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Avenue Hippocrate 55, bte B1.55.03, 1200, Brussels, Belgium
| | - Saeid Moghassemi
- Pôle de Recherche en Physiopathologie de la Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Avenue Hippocrate 55, bte B1.55.03, 1200, Brussels, Belgium
| | - Hanne Vlieghe
- Pôle de Recherche en Physiopathologie de la Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Avenue Hippocrate 55, bte B1.55.03, 1200, Brussels, Belgium
| | - Christine Wyns
- Pôle de Recherche en Physiopathologie de la Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Avenue Hippocrate 55, bte B1.55.03, 1200, Brussels, Belgium
- Department of Gynecology-Andrology, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Renan Orellana
- Departamento de Ciencias Químicas y Biológicas, Facultad de Ciencias de la Salud, Universidad Bernardo O'Higgins, Santiago, Chile
| | - Christiani A Amorim
- Pôle de Recherche en Physiopathologie de la Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Avenue Hippocrate 55, bte B1.55.03, 1200, Brussels, Belgium.
| |
Collapse
|
5
|
Kusakabe M, Taguchi A, Tanikawa M, Wagatsuma R, Yamazaki M, Tsuchimochi S, Toyohara Y, Kawata A, Baba S, Ueno T, Sone K, Mori-Uchino M, Ikemura M, Matsunaga H, Nagamatsu T, Wada-Hiraike O, Kawazu M, Ushiku T, Takeyama H, Oda K, Kawana K, Mano H, Osuga Y. Cells with stem-like properties are associated with the development of HPV18-positive cervical cancer. Cancer Sci 2023; 114:885-895. [PMID: 36404139 PMCID: PMC9986059 DOI: 10.1111/cas.15664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/22/2022] [Accepted: 11/15/2022] [Indexed: 11/22/2022] Open
Abstract
The cellular origins of cervical cancer and the histological differentiation of human papillomavirus (HPV)-infected cells remain unexplained. To gain new insights into the carcinogenesis and histological differentiation of HPV-associated cervical cancer, we focused on cervical cancer with mixed histological types. We conducted genomic and transcriptomic analyses of cervical cancers with mixed histological types. The commonality of the cellular origins of these cancers was inferred using phylogenetic analysis and by assessing the HPV integration sites. Carcinogenesis was estimated by analyzing human gene expression profiles in different histological types. Among 42 cervical cancers with known HPV types, mixed histological types were detected in four cases, and three of them were HPV18-positive. Phylogenetic analysis of these three cases revealed that the different histological types had a common cell of origin. Moreover, the HPV-derived transcriptome and HPV integration sites were common among different histological types, suggesting that HPV integration could occur before differentiation into each histological type. Human gene expression profiles indicated that HPV18-positive cancer retained immunologically cold components with stem cell properties. Mixed cervical cancer has a common cellular origin among different histological types, and progenitor cells with stem-like properties may be associated with the development of HPV18-positive cervical cancer.
Collapse
Affiliation(s)
- Misako Kusakabe
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Ayumi Taguchi
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Michihiro Tanikawa
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Ryota Wagatsuma
- Department of Life Science and Medical Bioscience, Waseda University, Tokyo, Japan.,CBBD-OIL, AIST-Waseda University, Tokyo, Japan
| | - Miki Yamazaki
- Department of Life Science and Medical Bioscience, Waseda University, Tokyo, Japan.,CBBD-OIL, AIST-Waseda University, Tokyo, Japan
| | - Saki Tsuchimochi
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yusuke Toyohara
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Akira Kawata
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Satoshi Baba
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Toshihide Ueno
- Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo, Japan
| | - Kenbun Sone
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Mayuyo Mori-Uchino
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Masako Ikemura
- Department of Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hiroko Matsunaga
- Research Organization for Nano and Life Innovation, Waseda University, Tokyo, Japan
| | - Takeshi Nagamatsu
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Osamu Wada-Hiraike
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Masahito Kawazu
- Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo, Japan
| | - Tetsuo Ushiku
- Department of Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Haruko Takeyama
- Department of Life Science and Medical Bioscience, Waseda University, Tokyo, Japan.,CBBD-OIL, AIST-Waseda University, Tokyo, Japan.,Research Organization for Nano and Life Innovation, Waseda University, Tokyo, Japan.,Institute for Advanced Research of Biosystem Dynamics, Waseda Research Institute for Science and Engineering, Waseda University, Tokyo, Japan
| | - Katsutoshi Oda
- Division of Integrative Genomics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kei Kawana
- Department of Obstetrics and Gynecology, Nihon University School of medicine, Tokyo, Japan
| | - Hiroyuki Mano
- Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo, Japan
| | - Yutaka Osuga
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
6
|
Matsumoto T, Iizuka T, Nakamura M, Suzuki T, Yamamoto M, Ono M, Kagami K, Kasama H, Wakae K, Muramatsu M, Horike SI, Kyo S, Yamamoto Y, Mizumoto Y, Daikoku T, Fujiwara H. FOXP4 inhibits squamous differentiation of atypical cells in cervical intraepithelial neoplasia via an ELF3-dependent pathway. Cancer Sci 2022; 113:3376-3389. [PMID: 35838233 PMCID: PMC9530870 DOI: 10.1111/cas.15489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/28/2022] [Accepted: 07/03/2022] [Indexed: 11/28/2022] Open
Abstract
Although the human papillomavirus (HPV) vaccine is effective for preventing cervical cancers, this vaccine does not eliminate pre‐existing infections, and alternative strategies have been warranted. Here, we report that FOXP4 is a new target molecule for differentiation therapy of cervical intraepithelial neoplasia (CIN). An immunohistochemical study showed that FOXP4 was expressed in columnar epithelial, reserve, and immature squamous cells, but not in mature squamous cells of the normal uterine cervix. In contrast with normal mature squamous cells, FOXP4 was expressed in atypical squamous cells in CIN and squamous cell carcinoma lesions. The FOXP4‐positive areas significantly increased according to the CIN stages from CIN1 to CIN3. In monolayer cultures, downregulation of FOXP4 attenuated proliferation and induced squamous differentiation in CIN1‐derived HPV 16‐positive W12 cells via an ELF3‐dependent pathway. In organotypic raft cultures, FOXP4‐downregulated W12 cells showed mature squamous phenotypes of CIN lesions. In human keratinocyte‐derived HaCaT cells, FOXP4 downregulation also induced squamous differentiation via an ELF3‐dependent pathway. These findings suggest that downregulation of FOXP4 inhibits cell proliferation and promotes the differentiation of atypical cells in CIN lesions. Based on these results, we propose that FOXP4 is a novel target molecule for nonsurgical CIN treatment that inhibits CIN progression by inducing squamous differentiation.
Collapse
Affiliation(s)
- Takeo Matsumoto
- Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Takashi Iizuka
- Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Mitsuhiro Nakamura
- Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Takuma Suzuki
- Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Megumi Yamamoto
- Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Masanori Ono
- Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa, Japan.,Department of Obstetrics and Gynecology, Tokyo Medical University, Tokyo, Japan
| | - Kyosuke Kagami
- Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Haruki Kasama
- Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Kousho Wakae
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Masamichi Muramatsu
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Shin-Ichi Horike
- Division of Integrated Omics research, Research Center for Experimental Modeling of Human Disease, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Satoru Kyo
- Department of Obstetrics and Gynecology, Shimane University Faculty of Medicine, Izumo, Shimane, Japan
| | - Yasuhiko Yamamoto
- Departments of Biochemistry and Molecular Vascular Biology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Ishikawa, Japan
| | - Yasunari Mizumoto
- Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Takiko Daikoku
- Division of Animal Disease Model, Research Center for Experimental Modeling of Human Disease, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Hiroshi Fujiwara
- Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa, Japan
| |
Collapse
|
7
|
Regauer S, Reich O. The origin of Human Papillomavirus (HPV) - induced cervical squamous cancer. Curr Opin Virol 2021; 51:111-118. [PMID: 34655910 DOI: 10.1016/j.coviro.2021.09.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 09/07/2021] [Accepted: 09/21/2021] [Indexed: 12/12/2022]
Abstract
Most research models of HPV-associated squamous cervical carcinogenesis focus on stratified glycogenated squamous epithelium, a permissive environment for HPV-life-cycle completion, while immature squamous metaplastic epithelium and reserve cells as targets of HPV-infection have received less attention. Subcolumnar reserve cells of urogenital sinus origin with a CK17/p63-phenotype serve as the primary stem cell for squamous metaplasia. The area of manifest or potential squamous metaplasia, referred to as transformation zone, is the site where most squamous cancers occur after a transforming HPV infection of proliferating reserve cells and/or metaplastic epithelium. Improper use of terminology, in particular confusion of transformation zone with transition zone (synonymous: squamous-columnar junction or SCJ), as well as poorly substantiated postulates of a stem cell niche at the squamous-columnar junction with 'embryonic stem cell markers' have complicated understanding of HPV-related squamous carcinogenesis. Reserve cells as target cells and reservoirs of HPV should move into future research focus.
Collapse
Affiliation(s)
- Sigrid Regauer
- Diagnostic and Research Institute of Pathology, Medical University Graz, Neue Stiftingtalstrasse 6, 8010 Graz, Austria.
| | - Olaf Reich
- Department of Obstetrics and Gynecology, Medical University Graz, Auenbruggerplatz 14, 8036 Graz, Austria
| |
Collapse
|
8
|
Wang L, He T, Liu J, Tai J, Wang B, Chen Z, Quan Z. Pan-cancer analysis reveals tumor-associated macrophage communication in the tumor microenvironment. Exp Hematol Oncol 2021; 10:31. [PMID: 33971970 PMCID: PMC8108336 DOI: 10.1186/s40164-021-00226-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 05/05/2021] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Tumor-associated macrophages (TAMs) are abundant in the tumor microenvironment (TME). However, their contribution to the immunosuppressive status of the TME remains unclear. METHODS We integrated single-cell sequencing and transcriptome data from different tumor types to uncover the molecular features of TAMs. In vitro experiments and prospective clinical tests confirmed the results of these analysis. RESULTS We first detected intra- and inter-tumoral heterogeneities between TAM subpopulations and their functions, with CD86+ TAMs playing a crucial role in tumor progression. Next, we focused on the ligand-receptor interactions between TAMs and tumor cells in different TME phenotypes and discovered that aberrant expressions of six hub genes, including FLI1, are involved in this process. A TAM-tumor cell co-culture experiment proved that FLI1 was involved in tumor cell invasion, and FLI1 also showed a unique pattern in patients. Finally, TAMs were discovered to communicate with immune and stromal cells. CONCLUSION We determined the role of TAMs in the TME by focusing on their communication pattern with other TME components. Additionally, the screening of hub genes revealed potential therapeutic targets.
Collapse
Affiliation(s)
- Linbang Wang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Tao He
- Department of Orthopedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Jingkun Liu
- Honghui Hospital, Xi'an Jiaotong University, 555 Youyi Dong Road, Beilin, Xi'an, 710054, Shaanxi, China
| | - Jiaojiao Tai
- Honghui Hospital, Xi'an Jiaotong University, 555 Youyi Dong Road, Beilin, Xi'an, 710054, Shaanxi, China
| | - Bing Wang
- Laboratory of Environmental Monitoring, Shaanxi Province Health Inspection Institution, Xi'an, 710077, Shaanxi, China
| | - Zhiyu Chen
- Department of Orthopedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Zhengxue Quan
- Department of Orthopedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
9
|
Xu HH, Yan WH, Lin A. The Role of HLA-G in Human Papillomavirus Infections and Cervical Carcinogenesis. Front Immunol 2020; 11:1349. [PMID: 32670296 PMCID: PMC7330167 DOI: 10.3389/fimmu.2020.01349] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 05/27/2020] [Indexed: 12/24/2022] Open
Abstract
Human leukocyte antigen (HLA)-G, a non-classical HLA-class I molecule, has a low polymorphism frequency, restricted tissue distribution and immunoinhibitory property. HLA-G expression in tumor cells and cells chronically infected with virus may enable them to escape from host immune surveillance. It is well-known that the HLA-G molecule is a novel biomarker and potential therapeutic target that is relevant in various types of cancers, but its role in cervical cancer has not been fully explored. In this review, we aim to summarize and discuss the immunologic role of the HLA-G molecule in the context of HPV infections and the process of cervical cancer carcinogenesis. A better understanding of the potential impact of HLA-G on the clinical course of persistent HPV infections, cervical epithelial cell transformation, tumor growth, recurrence and metastasis is needed to identify a novel diagnostic/prognostic biomarker for cervical cancer, which is critical for cervical cancer risk screening. In addition, it is also necessary to identify HLA-G-driven immune mechanisms involved in the interactions between host and virus to explore novel immunotherapy strategies that target HLA-G/immunoglobulin-like transcript (ILT) immune checkpoints.
Collapse
Affiliation(s)
- Hui-Hui Xu
- Medical Research Center, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Linhai, China
| | - Wei-Hua Yan
- Medical Research Center, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Linhai, China
| | - Aifen Lin
- Biological Resource Center, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Linhai, China
| |
Collapse
|
10
|
Budhwani M, Lukowski SW, Porceddu SV, Frazer IH, Chandra J. Dysregulation of Stemness Pathways in HPV Mediated Cervical Malignant Transformation Identifies Potential Oncotherapy Targets. Front Cell Infect Microbiol 2020; 10:307. [PMID: 32670895 PMCID: PMC7330094 DOI: 10.3389/fcimb.2020.00307] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 05/20/2020] [Indexed: 12/11/2022] Open
Abstract
Human papillomavirus (HPV) infection is associated with a range of malignancies that affect anogenital and oropharyngeal sites. α-HPVs dominantly infect basal epithelial cells of mucosal tissues, where they dysregulate cell division and local immunity. The cervix is one of the mucosal sites most susceptible to HPV infections. It consists of anatomically diverse regions, and the majority of cervical intraepithelial neoplasia and cancers arise within the cervical squamo-columnar junction where undifferentiated basal progenitor cells with stem cell properties are found. The cancer stem cell theory particularly associates tumorigenesis, invasion, dissemination, and metastasis with cancer cells exhibiting stem cell properties. In this perspective, we discuss evidence of a cervical cancer stem cell niche and explore the association of stemness related genes with 5-year survival using a publicly available transcriptomic dataset of a cervical cancer cohort. We report that poor prognosis in this cohort correlates with overexpression of a subset of stemness pathway genes, a majority of which regulate the central Focal Adhesion pathway, and are also found to be enriched in the HPV infection pathway. These observations support therapeutic targeting of stemness genes overexpressed by mucosal cells infected with high-risk HPVs.
Collapse
Affiliation(s)
- Megha Budhwani
- Diamantina Institute, Translational Research Institute, The University of Queensland, Woolloongabba, QLD, Australia
| | - Samuel W Lukowski
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
| | - Sandro V Porceddu
- Cancer Services, Princess Alexandra Hospital, Woolloongabba, QLD, Australia.,Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Ian H Frazer
- Diamantina Institute, Translational Research Institute, The University of Queensland, Woolloongabba, QLD, Australia
| | - Janin Chandra
- Diamantina Institute, Translational Research Institute, The University of Queensland, Woolloongabba, QLD, Australia
| |
Collapse
|
11
|
Gulli J, Cook E, Kroll E, Rosebrock A, Caudy A, Rosenzweig F. Diverse conditions support near-zero growth in yeast: Implications for the study of cell lifespan. MICROBIAL CELL 2019; 6:397-413. [PMID: 31528631 PMCID: PMC6717879 DOI: 10.15698/mic2019.09.690] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Baker's yeast has a finite lifespan and ages in two ways: a mother cell can only divide so many times (its replicative lifespan), and a non-dividing cell can only live so long (its chronological lifespan). Wild and laboratory yeast strains exhibit natural variation for each type of lifespan, and the genetic basis for this variation has been generalized to other eukaryotes, including metazoans. To date, yeast chronological lifespan has chiefly been studied in relation to the rate and mode of functional decline among non-dividing cells in nutrient-depleted batch culture. However, this culture method does not accurately capture two major classes of long-lived metazoan cells: cells that are terminally differentiated and metabolically active for periods that approximate animal lifespan (e.g. cardiac myocytes), and cells that are pluripotent and metabolically quiescent (e.g. stem cells). Here, we consider alternative ways of cultivating Saccharomyces cerevisiae so that these different metabolic states can be explored in non-dividing cells: (i) yeast cultured as giant colonies on semi-solid agar, (ii) yeast cultured in retentostats and provided sufficient nutrients to meet minimal energy requirements, and (iii) yeast encapsulated in a semisolid matrix and fed ad libitum in bioreactors. We review the physiology of yeast cultured under each of these conditions, and explore their potential to provide unique insights into determinants of chronological lifespan in the cells of higher eukaryotes.
Collapse
Affiliation(s)
- Jordan Gulli
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332
| | - Emily Cook
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332
| | - Eugene Kroll
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332
| | - Adam Rosebrock
- Donnelly Centre for Cellular and Biological Research and Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada.,Present address: Stony Brook School of Medicine, Stony Brook University, Stony Brook, NY 11794
| | - Amy Caudy
- Donnelly Centre for Cellular and Biological Research and Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Frank Rosenzweig
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332
| |
Collapse
|