1
|
Wang M, Zao X, Ge Z, Fan X, Jin L, Zhang J, Zhao H, Tie B, Liang Y, Song L, Liu J, Wang Y, Zhang S, Yang Y. Bicentric lesion of colon cancer with postoperative fever: A case report. Oncol Lett 2024; 28:497. [PMID: 39211303 PMCID: PMC11358718 DOI: 10.3892/ol.2024.14630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 07/19/2024] [Indexed: 09/04/2024] Open
Abstract
Colon adenocarcinoma (COAD) is a malignant tumor type. Fever is the most common postoperative complication of COAD. The present study described the treatment of a patient with early-stage COAD with precancerous colon polyps and the possible cause of postoperative fever. The patient was a 48-year-old woman with intermittent hematochezia, defecation urgency and liquid feces. The patient received surgical treatment, a whole segment from the intestine was removed, which contained a 4-cm-long mass and a 2-cm-long firm mass. Within 3 days after the operation, the patient's incision healed well, but the body temperature increased to a range of 37.8-38.6°C. The suture was removed on the 10th postoperative day. After another three days, it was discovered that the upper end of the patient's surgical incision split to the anterior rectus abdominis sheath. The patient was provided with recombinant human acidic fibroblast growth factor to promote wound healing. The patient was finally diagnosed with rectosigmoid junction adenocarcinoma and precancerous colon polyps according to pathological examination results. The patient was given intravenous bevacizumab combined with irinotecan hydrochloride and oral capecitabine, and all drugs were repeatedly applied every 3 weeks, and a total of four treatment cycles were used. The cause of this postoperative fever was concluded to be anemia coming from chronic hematochezia and combined with deep wound dehiscence with secondary infection. The present study showcased that low-dose and short-course prophylactic adjuvant therapy is feasible for early-stage COAD with precancerous colon polyps.
Collapse
Affiliation(s)
- Mengyuan Wang
- Anorectal Department, Yinchuan Traditional Chinese Medicine Hospital, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750001, P.R. China
| | - Xiaobin Zao
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, P.R. China
| | - Zhiming Ge
- Anorectal Department, Yinchuan Traditional Chinese Medicine Hospital, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750001, P.R. China
| | - Xianxian Fan
- Anorectal Department, Yinchuan Traditional Chinese Medicine Hospital, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750001, P.R. China
| | - Li Jin
- Anorectal Department, Yinchuan Traditional Chinese Medicine Hospital, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750001, P.R. China
| | - Jiucun Zhang
- Anorectal Department, Yinchuan Traditional Chinese Medicine Hospital, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750001, P.R. China
| | - Hongbo Zhao
- Anorectal Department, Yinchuan Traditional Chinese Medicine Hospital, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750001, P.R. China
| | - Baoxia Tie
- Anorectal Department, Yinchuan Traditional Chinese Medicine Hospital, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750001, P.R. China
| | - Yijun Liang
- Oncology Department, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, P.R. China
| | - Lianying Song
- Anorectal Department, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, P.R. China
| | - Jinglong Liu
- Anorectal Department, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, P.R. China
| | - Yifei Wang
- Anorectal Department, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, P.R. China
| | - Shuxin Zhang
- Anorectal Department, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, P.R. China
| | - Yun Yang
- Anorectal Department, Yinchuan Traditional Chinese Medicine Hospital, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750001, P.R. China
| |
Collapse
|
2
|
Opposing Roles of IGFBP-3 and Heparanase in Regulating A549 Lung Cancer Cell Survival. Cells 2022; 11:cells11223533. [PMID: 36428962 PMCID: PMC9688904 DOI: 10.3390/cells11223533] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 11/04/2022] [Accepted: 11/05/2022] [Indexed: 11/10/2022] Open
Abstract
In this study, we examined the roles of heparanase and IGFBP-3 in regulating A549 and H1299 non-small-cell lung cancer (NSCLC) survival. We found that H1299 cells, known to be p53-null with no expression of IGFBP-3, had higher heparanase levels and activity and higher levels of heparan sulfate (HS) in the media compared to the media of A549 cells. Inhibiting heparanase activity or its expression using siRNA had no effect on the levels of IGFBP-3 in the media of A549 cells, reduced the levels of soluble HS fragments, and led to decreased interactions between IGFBP-3 and HS in the media. HS competed with HA for binding to IGFBP-3 or IGFBP-3 peptide (215-KKGFYKKKQCRPSKGRKR-232) but not the mutant peptide (K228AR230A). HS abolished the cytotoxic effects of IGFBP-3 but not upon blocking HA-CD44 signaling with the anti-CD44 antibody (5F12). Blocking HA-CD44 signaling decreased the levels of heparanase in the media of both A549 and H1299 cell lines and increased p53 activity and the levels of IGFBP-3 in A549 cell media. Knockdown of p53 led to increased heparanase levels and reduced IGFBP-3 levels in A549 cell media while knockdown of IGFBP-3 in A549 cells blocked p53 activity and increased heparanase levels in the media.
Collapse
|
3
|
Clinical characteristics and outcomes of phase I cancer patients with CCNE1 amplification: MD Anderson experiences. Sci Rep 2022; 12:8701. [PMID: 35610322 PMCID: PMC9130298 DOI: 10.1038/s41598-022-12669-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 05/13/2022] [Indexed: 11/25/2022] Open
Abstract
Cyclin E is frequently encoded by CCNE1 gene amplification in various malignancies. We reviewed the medical records of patients with solid tumors displaying CCNE1 amplification to determine the effect of this amplification for future therapeutic development. We reviewed the medical records of patients with advanced solid tumors harboring CCNE1 amplification who were seen at the phase I clinic between September 1, 2012, and December 31, 2019. Among 79 patients with solid tumors harboring CCNE1 amplification, 56 (71%) received phase 1 clinical trial therapy, 39 (49%) had 3 or more concurrent genomic aberrances, and 52 (66%) had a concurrent TP53 mutation. The median overall survival (OS) after patients’ initial phase I visit was 8.9 months and after their initial metastasis diagnosis was 41.4 months. We identified four factors associated with poor risk: age < 45 years, body mass index ≥ 25 kg/m2, presence of the TP53 mutation, and elevated LDH > upper limit of normal. In patients treated with gene aberration-related therapy, anti-angiogenic therapy led to significantly longer OS after their initial phase I trial therapy than those who did not: 26 months versus 7.4 months, respectively (P = 0.04). This study provided preliminary evidence that CCNE1 amplification was associated with frequent TP53 mutation and aggressive clinical outcomes. Survival benefit was observed in patients who received antiangiogenic therapy and gene aberration-related treatment, supporting the future development of a personalized approach to combine gene aberration-related therapy with antiangiogenesis for the treatment of advanced malignancies harboring CCNE1 amplification.
Collapse
|
4
|
Phase I studies of vorinostat with ixazomib or pazopanib imply a role of antiangiogenesis-based therapy for TP53 mutant malignancies. Sci Rep 2020; 10:3080. [PMID: 32080210 PMCID: PMC7033174 DOI: 10.1038/s41598-020-58366-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Accepted: 01/13/2020] [Indexed: 12/19/2022] Open
Abstract
We performed two phase I trials of the histone deacetylase inhibitor vorinostat combined with either the vascular endothelial growth factor inhibitor pazopanib (NCT01339871) or the proteasome inhibitor ixazomib (NCT02042989) in patients with metastatic TP53 mutant solid tumors. Both trials followed a 3 + 3 dose-escalation design allowing for a dose expansion cohort of up to 14 additional patients with a specific tumor type. Patients had to have a confirmed TP53 mutation to be enrolled in NCT02042989. Among patients enrolled in NCT01339871, TP53 mutation status was determined for those for whom tumor specimens were available. The results of NCT01339871 were reported previously. Common treatment-related adverse events in NCT02042989 included anemia, thrombocytopenia, fatigue, nausea, vomiting, and diarrhea. Compared with patients with metastatic TP53 hotspot mutant solid tumors who were treated with ixazomib and vorinostat (n = 59), those who were treated with pazopanib and vorinostat (n = 11) had a significantly higher rate of clinical benefit, defined as stable disease lasting ≥6 months or an objective response (3.4% vs. 45%; p < 0.001), a significantly longer median progression-free survival duration (1.7 months [95% confidence interval (CI), 1.1–2.3] vs. 3.5 months [95% CI, 1.7–5.2]; p = 0.002), and a longer median overall survival duration (7.3 months [95% CI, 4.8–9.8] vs. 12.7 months [95% CI, 7.1–18.3]; p = 0.24). Our two phase I trials provide preliminary evidence supporting the use of antiangiogenisis-based therapy in patients with metastatic TP53 mutant solid tumors, especially in those with metastatic sarcoma or metastatic colorectal cancer.
Collapse
|
5
|
Li AM, Boichard A, Kurzrock R. Mutated TP53 is a marker of increased VEGF expression: analysis of 7,525 pan-cancer tissues. Cancer Biol Ther 2019; 21:95-100. [PMID: 31564192 PMCID: PMC7012180 DOI: 10.1080/15384047.2019.1665956] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 05/20/2019] [Accepted: 09/01/2019] [Indexed: 01/05/2023] Open
Abstract
Anti-angiogenic therapies are an important class of anti-cancer treatment drugs. However, their efficacy is limited to certain tumors and would benefit from identifying a biomarker predictive of therapeutic response. TP53 (tumor protein p53) is a tumor suppressor gene frequently mutated in cancer and implicated in cell-cycle regulation, apoptosis, and angiogenesis. Data from 7,525 unique tumor samples (representing 30 tumor cohorts) were retrieved from the TCGA database to analyze the relationship between TP53-mutation status and VEGFA (vascular endothelial growth factor A) expression. Univariate analyses were done using a Mann-Whitney univariate test or Fisher's exact test. Parameters with a p-value (p)≤0.1 in univariate analysis were selected for follow-up multivariate analyses, including TP53-mutation status, cancer cohorts, cancer subtypes, and VEGFA expression. Our analysis demonstrates statistically significant increases in VEGFA mRNA tissue expression in TP53-mutated adenocarcinomas (but not in squamous cancers) compared to TP53 wild-type tumors. This association holds true in multivariate analyses and remains independent of HIF-1α and MDM2 overexpression. Our findings provide additional evidence that TP53 mutations are linked to the VEGF pathway, potentially offering insight into the mechanism behind increased sensitivity to anti-angiogenic therapies observed in some TP53-mutant tumors.
Collapse
Affiliation(s)
- Alex M. Li
- University of California San Diego School of Medicine, La Jolla, CA, USA
| | - Amélie Boichard
- Center for Personalized Cancer Therapy and Division of Hematology and Oncology, University of California San Diego Moores Cancer Center, La Jolla, CA, USA
| | - Razelle Kurzrock
- Center for Personalized Cancer Therapy and Division of Hematology and Oncology, University of California San Diego Moores Cancer Center, La Jolla, CA, USA
| |
Collapse
|
6
|
Wang Y, Wang Z, Piha-Paul S, Janku F, Subbiah V, Shi N, Hess K, Broaddus R, Shan B, Naing A, Hong D, Tsimberidou AM, Karp D, Lu C, Papadimitrakopoulou V, Heymach J, Meric-Bernstam F, Fu S. Outcome analysis of Phase I trial patients with metastatic KRAS and/or TP53 mutant non-small cell lung cancer. Oncotarget 2018; 9:33258-33270. [PMID: 30279957 PMCID: PMC6161801 DOI: 10.18632/oncotarget.25947] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 07/18/2018] [Indexed: 01/26/2023] Open
Abstract
KRAS and TP53 mutations, which are the most common genetic drivers of tumorigenesis, are still considered undruggable targets. Therefore, we analyzed these genetic aberrations in metastatic non-small cell lung cancer (NSCLC) for the development of potential therapeutics. One hundred eighty-five consecutive patients with metastatic NSCLC in a phase 1 trial center were included. Their genomic aberrations, clinical characteristics, survivals, and phase 1 trial therapies were analyzed. About 10%, 18%, 36%, and 36% of the patients had metastatic KRAS+/TP53+, KRAS+/TP53-,KRAS-/TP53+, and KRAS-/TP53- NSCLC, respectively. The most common concurrent genetic aberrations beside KRAS and/or TP53 (>5%) were KIT, epidermal growth factor receptor, PIK3CA, c-MET, BRAF, STK11, ATM, CDKN2A, and APC. KRAS+/TP53+ NSCLC did not respond well to the phase 1 trial therapy and was associated with markedly worse progression-free (PFS) and overall (OS) survivals than the other three groups together. KRAS hotspot mutations at locations other than codon G12 were associated with considerably worse OS than those at this codon. Gene aberration-matched therapy produced prolonged PFS and so was anti-angiogenesis in patients with TP53 mutations. Introduction of the evolutionary action score system of TP53 missense mutations enabled us to identify a subgroup of NSCLC patients with low-risk mutant p53 proteins having a median OS duration of 64.5 months after initial diagnosis of metastasis. These data suggested that patients with metastatic dual KRAS+/TP53+ hotspot-mutant NSCLC had poor clinical outcomes. Further analysis identified remarkably prolonged survival in patients with low-risk mutant p53 proteins, which warrants confirmatory studies.
Collapse
Affiliation(s)
- Yudong Wang
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Medical Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, People’s Republic of China
| | - Zhijie Wang
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Medical Oncology, Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People’s Republic of China
| | - Sarina Piha-Paul
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Filip Janku
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Vivek Subbiah
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Naiyi Shi
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kenneth Hess
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Russell Broaddus
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Baoen Shan
- Department of Cancer Research, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, People’s Republic of China
| | - Aung Naing
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - David Hong
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Apostolia M. Tsimberidou
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Daniel Karp
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Charles Lu
- Department of Thoracic Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Vali Papadimitrakopoulou
- Department of Thoracic Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - John Heymach
- Department of Thoracic Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Funda Meric-Bernstam
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Siqing Fu
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|