1
|
Mikołajczyk M, Złotkowska D, Mikołajczyk A. Impact on Human Health of Salmonella spp. and Their Lipopolysaccharides: Possible Therapeutic Role and Asymptomatic Presence Consequences. Int J Mol Sci 2024; 25:11868. [PMID: 39595937 PMCID: PMC11593640 DOI: 10.3390/ijms252211868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 10/13/2024] [Accepted: 10/30/2024] [Indexed: 11/28/2024] Open
Abstract
Epidemiologically, one of the most important concerns associated with introducing Salmonella spp. into the environment and food chain is the presence of asymptomatic carriers. The oncogenic and oncolytic activity of Salmonella and their lipopolysaccharides (LPSs) is important and research on this topic is needed. Even a single asymptomatic dose of the S. Enteritidis LPS (a dose that has not caused any symptoms of illness) in in vivo studies induces the dysregulation of selected cells and bioactive substances of the nervous, immune, and endocrine systems. LPSs from different species, and even LPSs derived from different serotypes of one species, can define different biological activities. The activity of low doses of LPSs derived from three different Salmonella serotypes (S. Enteritidis, S. Typhimurium, and S. Minnesota) affects the neurochemistry of neurons differently in in vitro studies. Studies on lipopolysaccharides from different Salmonella serotypes do not consider the diversity of their activity. The presence of an LPS from S. Enteritidis in the body, even in amounts that do not induce any symptoms of illness, may lead to unknown long-term consequences associated with its action on the cells and biologically active substances of the human body. These conclusions should be important for both research strategies and the pharmaceutical industry &.
Collapse
Affiliation(s)
- Mateusz Mikołajczyk
- Division of Medicine and Dentistry, Medical University of Warsaw, 02-091 Warsaw, Poland;
| | - Dagmara Złotkowska
- Department of Food Immunology and Microbiology, Polish Academy of Sciences, 10-748 Olsztyn, Poland;
| | - Anita Mikołajczyk
- Department of Psychology and Sociology of Health and Public Health, Collegium Medicum, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland
| |
Collapse
|
2
|
Dardelle F, Phelip C, Darabi M, Kondakova T, Warnet X, Combret E, Juranville E, Novikov A, Kerzerho J, Caroff M. Diversity, Complexity, and Specificity of Bacterial Lipopolysaccharide (LPS) Structures Impacting Their Detection and Quantification. Int J Mol Sci 2024; 25:3927. [PMID: 38612737 PMCID: PMC11011966 DOI: 10.3390/ijms25073927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/21/2024] [Accepted: 03/23/2024] [Indexed: 04/14/2024] Open
Abstract
Endotoxins are toxic lipopolysaccharides (LPSs), extending from the outer membrane of Gram-negative bacteria and notorious for their toxicity and deleterious effects. The comparison of different LPSs, isolated from various Gram-negative bacteria, shows a global similar architecture corresponding to a glycolipid lipid A moiety, a core oligosaccharide, and outermost long O-chain polysaccharides with molecular weights from 2 to 20 kDa. LPSs display high diversity and specificity among genera and species, and each bacterium contains a unique set of LPS structures, constituting its protective external barrier. Some LPSs are not toxic due to their particular structures. Different, well-characterized, and highly purified LPSs were used in this work to determine endotoxin detection rules and identify their impact on the host. Endotoxin detection is a major task to ensure the safety of human health, especially in the pharma and food sectors. Here, we describe the impact of different LPS structures obtained under different bacterial growth conditions on selective LPS detection methods such as LAL, HEK-blue TLR-4, LC-MS2, and MALDI-MS. In these various assays, LPSs were shown to respond differently, mainly attributable to their lipid A structures, their fatty acid numbers and chain lengths, the presence of phosphate groups, and their possible substitutions.
Collapse
Affiliation(s)
- Flavien Dardelle
- LPS-BioSciences, Bâtiment 440, Université de Paris-Saclay, 91400 Orsay, France; (F.D.); (M.D.); (E.J.)
| | - Capucine Phelip
- HEPHAISTOS-Pharma, Bâtiment 440, Université de Paris-Saclay, 91400 Orsay, France; (C.P.); (A.N.); (J.K.)
| | - Maryam Darabi
- LPS-BioSciences, Bâtiment 440, Université de Paris-Saclay, 91400 Orsay, France; (F.D.); (M.D.); (E.J.)
| | - Tatiana Kondakova
- LPS-BioSciences, Bâtiment 440, Université de Paris-Saclay, 91400 Orsay, France; (F.D.); (M.D.); (E.J.)
| | - Xavier Warnet
- LPS-BioSciences, Bâtiment 440, Université de Paris-Saclay, 91400 Orsay, France; (F.D.); (M.D.); (E.J.)
| | - Edyta Combret
- LPS-BioSciences, Bâtiment 440, Université de Paris-Saclay, 91400 Orsay, France; (F.D.); (M.D.); (E.J.)
| | - Eugenie Juranville
- LPS-BioSciences, Bâtiment 440, Université de Paris-Saclay, 91400 Orsay, France; (F.D.); (M.D.); (E.J.)
| | - Alexey Novikov
- HEPHAISTOS-Pharma, Bâtiment 440, Université de Paris-Saclay, 91400 Orsay, France; (C.P.); (A.N.); (J.K.)
| | - Jerome Kerzerho
- HEPHAISTOS-Pharma, Bâtiment 440, Université de Paris-Saclay, 91400 Orsay, France; (C.P.); (A.N.); (J.K.)
| | - Martine Caroff
- LPS-BioSciences, Bâtiment 440, Université de Paris-Saclay, 91400 Orsay, France; (F.D.); (M.D.); (E.J.)
- HEPHAISTOS-Pharma, Bâtiment 440, Université de Paris-Saclay, 91400 Orsay, France; (C.P.); (A.N.); (J.K.)
| |
Collapse
|
3
|
Hashimoto R, Koide H, Katoh Y. MEK inhibitors increase the mortality rate in mice with LPS-induced inflammation through IL-12-NO signaling. Cell Death Discov 2023; 9:374. [PMID: 37833247 PMCID: PMC10575927 DOI: 10.1038/s41420-023-01674-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 09/11/2023] [Accepted: 10/03/2023] [Indexed: 10/15/2023] Open
Abstract
Lipopolysaccharide (LPS) is an endotoxin that can cause an acute inflammatory response. Nitric oxide (NO) is one of the most important innate immune system components and is synthesized by inducible NOS (iNOS) in macrophages in response to stimulation with LPS. LPS activates the RAS-RAF-mitogen-activated protein kinase/ERK kinase (MEK)-extracellular-signal-regulated kinase (ERK) signaling cascade in macrophages. The purpose of this study was to examine how the combination of LPS and MEK inhibitors, which have been used as anticancer agents in recent years, affects inflammation. We showed that MEK inhibitors enhanced iNOS expression and NO production in LPS-stimulated mouse bone marrow-derived macrophages. A MEK inhibitor increased the mortality rate in mice with LPS-induced inflammation. The expression of the cytokine interleukin-12 (IL-12) in macrophages was enhanced by the MEK inhibitor, as shown by a cytokine array and ELISA. IL-12 enhanced iNOS expression and NO production in response to LPS. We also showed that tumor necrosis factor (TNF-α) was secreted by macrophage after stimulation with LPS and that TNF-α and IL-12 synergistically induced iNOS expression and NO production. An anti-IL-12 neutralizing antibody prevented NO production and mortality in an LPS-induced inflammation mouse model in the presence of a MEK inhibitor. These results suggest that the MEK inhibitor increases the mortality rate in mice with LPS-induced inflammation through IL-12-NO signaling.
Collapse
Affiliation(s)
- Ryota Hashimoto
- Laboratory of Cell Biology, Biomedical Research Core Facilities, Juntendo University Graduate School of Medicine, Hongo 2-1-1, Bunkyo-ku, Tokyo, 113-8421, Japan.
- Department of Physiology, Juntendo University Faculty of Medicine, Hongo 2-1-1, Bunkyo-ku, Tokyo, 113-8421, Japan.
| | - Hiroshi Koide
- Laboratory of Molecular and Biochemical Research, Biomedical Research Core Facilities, Juntendo University Graduate School of Medicine, Hongo 2-1-1, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Youichi Katoh
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, Hongo 2-1-1, Bunkyo-ku, Tokyo, 113-8421, Japan.
- Juntendo University Faculty of International Liberal Arts, Hongo 2-1-1, Bunkyo-ku, Tokyo, 112-8421, Japan.
| |
Collapse
|
4
|
Raman V, Deshpande CP, Khanduja S, Howell LM, Van Dessel N, Forbes NS. Build-a-bug workshop: Using microbial-host interactions and synthetic biology tools to create cancer therapies. Cell Host Microbe 2023; 31:1574-1592. [PMID: 37827116 DOI: 10.1016/j.chom.2023.09.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/16/2023] [Accepted: 09/12/2023] [Indexed: 10/14/2023]
Abstract
Many systemically administered cancer therapies exhibit dose-limiting toxicities that reduce their effectiveness. To increase efficacy, bacterial delivery platforms have been developed that improve safety and prolong treatment. Bacteria are a unique class of therapy that selectively colonizes most solid tumors. As delivery vehicles, bacteria have been genetically modified to express a range of therapies that match multiple cancer indications. In this review, we describe a modular "build-a-bug" method that focuses on five design characteristics: bacterial strain (chassis), therapeutic compound, delivery method, immune-modulating features, and genetic control circuits. We emphasize how fundamental research into gut microbe pathogenesis has created safe bacterial therapies, some of which have entered clinical trials. The genomes of gut microbes are fertile grounds for discovery of components to improve delivery and modulate host immune responses. Future work coupling these delivery vehicles with insights from gut microbes could lead to the next generation of microbial cancer therapy.
Collapse
Affiliation(s)
- Vishnu Raman
- Department of Chemical Engineering, University of Massachusetts, Amherst, Amherst, MA, USA; Ernest Pharmaceuticals, LLC, Hadley, MA, USA
| | - Chinmay P Deshpande
- Department of Chemical Engineering, University of Massachusetts, Amherst, Amherst, MA, USA
| | - Shradha Khanduja
- Department of Chemical Engineering, University of Massachusetts, Amherst, Amherst, MA, USA
| | - Lars M Howell
- Department of Chemical Engineering, University of Massachusetts, Amherst, Amherst, MA, USA
| | | | - Neil S Forbes
- Department of Chemical Engineering, University of Massachusetts, Amherst, Amherst, MA, USA; Molecular and Cell Biology Program, University of Massachusetts, Amherst, Amherst, MA, USA; Institute for Applied Life Science, University of Massachusetts, Amherst, Amherst, MA, USA.
| |
Collapse
|
5
|
Iwasaki M, Zhao H, Hu C, Saito J, Wu L, Sherwin A, Ishikawa M, Sakamoto A, Buggy D, Ma D. The differential cancer growth associated with anaesthetics in a cancer xenograft model of mice: mechanisms and implications of postoperative cancer recurrence. Cell Biol Toxicol 2023; 39:1561-1575. [PMID: 35953652 PMCID: PMC10425502 DOI: 10.1007/s10565-022-09747-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 07/06/2022] [Indexed: 12/13/2022]
Abstract
Anaesthetics may modify colorectal cancer cell biology which potentially affects long-term survival. This study aims to compare propofol and sevoflurane regarding with the direct anaesthetic effects on cancer malignancy and the indirect effects on host immunity in a cancer xenograft mode of mice. Cultured colon cancer cell (Caco-2) was injected subcutaneously to nude mice (day 1). Mice were exposed to either 1.5% sevoflurane for 1.5 h or propofol (20 μg g-1; ip injection) with or without 4 μg g-1 lipopolysaccharide (LPS; ip) from days 15 to 17, compared with those without anaesthetic exposure as controls. The clinical endpoints including tumour volumes over 70 mm3 were closely monitored up to day 28. Tumour samples from the other cohorts were collected on day 18 for PCR array, qRT-PCR, western blotting and immunofluorescent assessment. Propofol treatment reduced tumour size (mean ± SD; 23.0 ± 6.2mm3) when compared to sevoflurane (36.0 ± 0.3mm3) (p = 0.008) or control (23.6 ± 4.7mm3). Propofol decreased hypoxia inducible factor 1α (HIF1α), interleukin 1β (IL1β), and hepatocyte growth factor (HGF) gene expressions and increased tissue inhibitor of metalloproteinases 2 (TIMP-2) gene and protein expression in comparison to sevoflurane in the tumour tissue. LPS suppressed tumour growth in any conditions whilst increased TIMP-2 and anti-cancer neutrophil marker expressions and decreased macrophage marker expressions compared to those in the LPS-untreated groups. Our data indicated that sevoflurane increased cancer development when compared with propofol in vivo under non-surgical condition. Anaesthetics tested in this study did not alter the effects of LPS as an immune modulator in changing immunocyte phenotype and suppressing cancer development.
Collapse
Affiliation(s)
- Masae Iwasaki
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea & Westminster Hospital, 369 Fulham Rd, Chelsea, London, SW10 9NH UK
- Department of Anaesthesiology and Pain Medicine, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Hailin Zhao
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea & Westminster Hospital, 369 Fulham Rd, Chelsea, London, SW10 9NH UK
| | - Cong Hu
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea & Westminster Hospital, 369 Fulham Rd, Chelsea, London, SW10 9NH UK
| | - Junichi Saito
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea & Westminster Hospital, 369 Fulham Rd, Chelsea, London, SW10 9NH UK
- Department of Anesthesiology, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan
| | - Lingzhi Wu
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea & Westminster Hospital, 369 Fulham Rd, Chelsea, London, SW10 9NH UK
| | - Aislinn Sherwin
- Anaesthesiology and Perioperative Medicine, Mater University Hospital, University College Dublin, Dublin, Ireland
| | - Masashi Ishikawa
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea & Westminster Hospital, 369 Fulham Rd, Chelsea, London, SW10 9NH UK
- Department of Anaesthesiology and Pain Medicine, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Atsuhiro Sakamoto
- Department of Anaesthesiology and Pain Medicine, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Donal Buggy
- Anaesthesiology and Perioperative Medicine, Mater University Hospital, University College Dublin, Dublin, Ireland
| | - Daqing Ma
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea & Westminster Hospital, 369 Fulham Rd, Chelsea, London, SW10 9NH UK
| |
Collapse
|
6
|
Roe JM, Seely K, Bussard CJ, Eischen Martin E, Mouw EG, Bayles KW, Hollingsworth MA, Brooks AE, Dailey KM. Hacking the Immune Response to Solid Tumors: Harnessing the Anti-Cancer Capacities of Oncolytic Bacteria. Pharmaceutics 2023; 15:2004. [PMID: 37514190 PMCID: PMC10384176 DOI: 10.3390/pharmaceutics15072004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/13/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Oncolytic bacteria are a classification of bacteria with a natural ability to specifically target solid tumors and, in the process, stimulate a potent immune response. Currently, these include species of Klebsiella, Listeria, Mycobacteria, Streptococcus/Serratia (Coley's Toxin), Proteus, Salmonella, and Clostridium. Advancements in techniques and methodology, including genetic engineering, create opportunities to "hijack" typical host-pathogen interactions and subsequently harness oncolytic capacities. Engineering, sometimes termed "domestication", of oncolytic bacterial species is especially beneficial when solid tumors are inaccessible or metastasize early in development. This review examines reported oncolytic bacteria-host immune interactions and details the known mechanisms of these interactions to the protein level. A synopsis of the presented membrane surface molecules that elicit particularly promising oncolytic capacities is paired with the stimulated localized and systemic immunogenic effects. In addition, oncolytic bacterial progression toward clinical translation through engineering efforts are discussed, with thorough attention given to strains that have accomplished Phase III clinical trial initiation. In addition to therapeutic mitigation after the tumor has formed, some bacterial species, referred to as "prophylactic", may even be able to prevent or "derail" tumor formation through anti-inflammatory capabilities. These promising species and their particularly favorable characteristics are summarized as well. A complete understanding of the bacteria-host interaction will likely be necessary to assess anti-cancer capacities and unlock the full cancer therapeutic potential of oncolytic bacteria.
Collapse
Affiliation(s)
- Jason M Roe
- College of Osteopathic Medicine, Rocky Vista University, Ivins, UT 84738, USA
| | - Kevin Seely
- College of Osteopathic Medicine, Rocky Vista University, Ivins, UT 84738, USA
| | - Caleb J Bussard
- College of Osteopathic Medicine, Rocky Vista University, Parker, CO 80130, USA
| | | | - Elizabeth G Mouw
- College of Osteopathic Medicine, Rocky Vista University, Ivins, UT 84738, USA
| | - Kenneth W Bayles
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Michael A Hollingsworth
- Eppley Institute for Cancer Research, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Amanda E Brooks
- College of Osteopathic Medicine, Rocky Vista University, Ivins, UT 84738, USA
- College of Osteopathic Medicine, Rocky Vista University, Parker, CO 80130, USA
- Office of Research & Scholarly Activity, Rocky Vista University, Ivins, UT 84738, USA
| | - Kaitlin M Dailey
- Eppley Institute for Cancer Research, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
7
|
Wang J, Guo N, Hou W, Qin H. Coating bacteria for anti-tumor therapy. Front Bioeng Biotechnol 2022; 10:1020020. [PMID: 36185433 PMCID: PMC9520470 DOI: 10.3389/fbioe.2022.1020020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 09/01/2022] [Indexed: 11/13/2022] Open
Abstract
Therapeutic bacteria have shown great potential on anti-tumor therapy. Compared with traditional therapeutic strategy, living bacteria present unique advantages. Bacteria show high targeting and great colonization ability in tumor microenvironment with hypoxic and nutritious conditions. Bacterial-medicated antitumor therapy has been successfully applied on mouse models, but the low therapeutic effect and biosafe limit its application on clinical treatment. With the development of material science, coating living bacteria with suitable materials has received widespread attention to achieve synergetic therapy on tumor. In this review, we summarize various materials for coating living bacteria in cancer therapy and envision the opportunities and challenges of bacteria-medicated antitumor therapy.
Collapse
Affiliation(s)
- Jiahui Wang
- Department of Gastrointestinal Surgery, Shanghai Tenth People’s Hospital, Tongji University, Shanghai, China
| | - Ning Guo
- Department of Gastrointestinal Surgery, Shanghai Tenth People’s Hospital, Tongji University, Shanghai, China
- *Correspondence: Ning Guo, ; Weiliang Hou, ; Huanlong Qin,
| | - Weiliang Hou
- Department of Gastrointestinal Surgery, Shanghai Tenth People’s Hospital, Tongji University, Shanghai, China
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, Renji Hospital School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- *Correspondence: Ning Guo, ; Weiliang Hou, ; Huanlong Qin,
| | - Huanlong Qin
- Department of Gastrointestinal Surgery, Shanghai Tenth People’s Hospital, Tongji University, Shanghai, China
- *Correspondence: Ning Guo, ; Weiliang Hou, ; Huanlong Qin,
| |
Collapse
|
8
|
Wei X, Xie F, Zhou X, Wu Y, Yan H, Liu T, Huang J, Wang F, Zhou F, Zhang L. Role of pyroptosis in inflammation and cancer. Cell Mol Immunol 2022; 19:971-992. [PMID: 35970871 PMCID: PMC9376585 DOI: 10.1038/s41423-022-00905-x] [Citation(s) in RCA: 254] [Impact Index Per Article: 127.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 07/11/2022] [Indexed: 12/13/2022] Open
Abstract
Pyroptosis is a form of programmed cell death mediated by gasdermin and is a product of continuous cell expansion until the cytomembrane ruptures, resulting in the release of cellular contents that can activate strong inflammatory and immune responses. Pyroptosis, an innate immune response, can be triggered by the activation of inflammasomes by various influencing factors. Activation of these inflammasomes can induce the maturation of caspase-1 or caspase-4/5/11, both of which cleave gasdermin D to release its N-terminal domain, which can bind membrane lipids and perforate the cell membrane. Here, we review the latest advancements in research on the mechanisms of pyroptosis, newly discovered influencing factors, antitumoral properties, and applications in various diseases. Moreover, this review also provides updates on potential targeted therapies for inflammation and cancers, methods for clinical prevention, and finally challenges and future directions in the field.
Collapse
Affiliation(s)
- Xiang Wei
- International Biomed-X Research Center, Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310058, PR China
| | - Feng Xie
- Institutes of Biology and Medical Science, Soochow University, Suzhou, 215123, PR China
| | - Xiaoxue Zhou
- MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, 310058, PR China
| | - Yuchen Wu
- Department of Clinical Medicine, The First School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, PR China
| | - Haiyan Yan
- School of Medicine, Zhejiang University City College, Hangzhou, Zhejiang, 310015, PR China
| | - Ting Liu
- Department of Cell Biology and Department of General Surgery of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, Zhejiang, PR China
| | - Jun Huang
- Zhejiang Provincial Key Lab of Geriatrics and Geriatrics Institute of Zhejiang Province, Department of Geriatrics, Zhejiang Hospital, Hangzhou, Zhejiang, 310030, PR China.
- Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, 310058, PR China.
| | - Fangwei Wang
- MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, 310058, PR China.
| | - Fangfang Zhou
- Institutes of Biology and Medical Science, Soochow University, Suzhou, 215123, PR China.
| | - Long Zhang
- International Biomed-X Research Center, Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310058, PR China.
- MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, 310058, PR China.
| |
Collapse
|
9
|
Becerra-Báez EI, Meza-Toledo SE, Muñoz-López P, Flores-Martínez LF, Fraga-Pérez K, Magaño-Bocanegra KJ, Juárez-Hernández U, Mateos-Chávez AA, Luria-Pérez R. Recombinant Attenuated Salmonella enterica as a Delivery System of Heterologous Molecules in Cancer Therapy. Cancers (Basel) 2022; 14:cancers14174224. [PMID: 36077761 PMCID: PMC9454573 DOI: 10.3390/cancers14174224] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/09/2022] [Accepted: 08/28/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Cancer is among the main causes of death of millions of individuals worldwide. Although survival has improved with conventional treatments, the appearance of resistant cancer cells leads to patient relapses. It is, therefore, necessary to find new antitumor therapies that can completely eradicate transformed cells. Bacteria-based tumor therapy represents a promising alternative treatment, particularly the use of live-attenuated Salmonella enterica, with its potential use as a delivery system of antitumor heterologous molecules such as tumor-associated antigens, cytotoxic molecules, immunomodulatory molecules, pro-apoptotic proteins, nucleic acids, and nanoparticles. In this review, we present the state of the art of current preclinical and clinical research on the use of Salmonella enterica as a potential therapeutic ally in the war against cancer. Abstract Over a century ago, bacterial extracts were found to be useful in cancer therapy, but this treatment modality was obviated for decades. Currently, in spite of the development and advances in chemotherapies and radiotherapy, failure of these conventional treatments still represents a major issue in the complete eradication of tumor cells and has led to renewed approaches with bacteria-based tumor therapy as an alternative treatment. In this context, live-attenuated bacteria, particularly Salmonella enterica, have demonstrated tumor selectivity, intrinsic oncolytic activity, and the ability to induce innate or specific antitumor immune responses. Moreover, Salmonella enterica also has strong potential as a delivery system of tumor-associated antigens, cytotoxic molecules, immunomodulatory molecules, pro-apoptotic proteins, and nucleic acids into eukaryotic cells, in a process known as bactofection and antitumor nanoparticles. In this review, we present the state of the art of current preclinical and clinical research on the use of Salmonella enterica as a potential therapeutic ally in the war against cancer.
Collapse
Affiliation(s)
- Elayne Irene Becerra-Báez
- Unit of Investigative Research on Hemato-Oncological Diseases, Children’s Hospital of Mexico Federico Gomez, Mexico City 06720, Mexico
- Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico
| | - Sergio Enrique Meza-Toledo
- Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico
| | - Paola Muñoz-López
- Unit of Investigative Research on Hemato-Oncological Diseases, Children’s Hospital of Mexico Federico Gomez, Mexico City 06720, Mexico
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico
| | - Luis Fernando Flores-Martínez
- Unit of Investigative Research on Hemato-Oncological Diseases, Children’s Hospital of Mexico Federico Gomez, Mexico City 06720, Mexico
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico
| | - Karla Fraga-Pérez
- Unit of Investigative Research on Hemato-Oncological Diseases, Children’s Hospital of Mexico Federico Gomez, Mexico City 06720, Mexico
| | - Kevin Jorge Magaño-Bocanegra
- Unit of Investigative Research on Hemato-Oncological Diseases, Children’s Hospital of Mexico Federico Gomez, Mexico City 06720, Mexico
- Department of Molecular Biomedicine, Center for Research and Advanced Studies of the National Polytechnic Institute, Mexico City 07360, Mexico
| | - Uriel Juárez-Hernández
- Unit of Investigative Research on Hemato-Oncological Diseases, Children’s Hospital of Mexico Federico Gomez, Mexico City 06720, Mexico
- Department of Molecular Biomedicine, Center for Research and Advanced Studies of the National Polytechnic Institute, Mexico City 07360, Mexico
| | - Armando Alfredo Mateos-Chávez
- Unit of Investigative Research on Hemato-Oncological Diseases, Children’s Hospital of Mexico Federico Gomez, Mexico City 06720, Mexico
| | - Rosendo Luria-Pérez
- Unit of Investigative Research on Hemato-Oncological Diseases, Children’s Hospital of Mexico Federico Gomez, Mexico City 06720, Mexico
- Correspondence: ; Tel.: +52-55-52289917 (ext. 4401)
| |
Collapse
|
10
|
Fan JY, Huang Y, Li Y, Muluh TA, Fu SZ, Wu JB. Bacteria in cancer therapy: A new generation of weapons. Cancer Med 2022; 11:4457-4468. [PMID: 35522104 PMCID: PMC9741989 DOI: 10.1002/cam4.4799] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 04/10/2022] [Accepted: 04/12/2022] [Indexed: 12/15/2022] Open
Abstract
Tumors are presently a major threat to human life and health. Malignant tumors are conventionally treated through radiotherapy and chemotherapy. However, traditional therapies yield unsatisfactory results due to high toxicity to the normal cells, inability to treat deep tumor tissues, and the possibility of inducing drug resistance in the tumor cells. This has caused immunotherapy to emerge as an effective and alternate treatment strategy. To overcome the limitations of the conventional treatments as well as to avert the risk of various drug resistance and cytotoxicity, bacterial anti-tumor immunotherapy has raised the interest of researchers. This therapeutic strategy employs bacteria to specifically target and colonize the tumor tissues with preferential accumulation and proliferation. Such bacterial accumulation initiates a series of anti-tumor immune responses, effectively eliminating the tumor cells. This immunotherapy can use the bacteria alone or concomitantly with the other methods. For example, the bacteria can deliver the anti-cancer effect mediators by regulating the expression of the bacterial genes or by synthesizing the bioengineered bacterial complexes. This review will discuss the mechanism of utilizing bacteria in treating tumors, especially in terms of immune mechanisms. This could help in better integrating the bacterial method with other treatment options, thereby, providing a more effective, reliable, and unique treatment therapy for tumors.
Collapse
Affiliation(s)
- Jun Ying Fan
- Department of OncologyThe Affiliated Hospital of Southwest Medical UniversityLuzhouSichuanP.R. China
| | - Yuan Huang
- Department of OncologyThe Affiliated Hospital of Southwest Medical UniversityLuzhouSichuanP.R. China
| | - Yi Li
- Department of OncologyThe Affiliated Hospital of Southwest Medical UniversityLuzhouSichuanP.R. China
| | - Tobias Achu Muluh
- Department of OncologyThe Affiliated Hospital of Southwest Medical UniversityLuzhouSichuanP.R. China
| | - Shao Zhi Fu
- Department of OncologyThe Affiliated Hospital of Southwest Medical UniversityLuzhouSichuanP.R. China,Department of Nuclear MedicineThe Affiliated Hospital of Southwest Medical UniversityLuzhouSichuanP.R. China
| | - Jing Bo Wu
- Department of OncologyThe Affiliated Hospital of Southwest Medical UniversityLuzhouSichuanP.R. China,Department of Nuclear MedicineThe Affiliated Hospital of Southwest Medical UniversityLuzhouSichuanP.R. China,Academician (Expert) Workstation of Sichuan ProvinceLuzhouSichuanP.R. China
| |
Collapse
|
11
|
Bacteria as Nanoparticle Carriers for Immunotherapy in Oncology. Pharmaceutics 2022; 14:pharmaceutics14040784. [PMID: 35456618 PMCID: PMC9027800 DOI: 10.3390/pharmaceutics14040784] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 03/28/2022] [Accepted: 03/31/2022] [Indexed: 02/05/2023] Open
Abstract
The use of nanocarriers to deliver antitumor agents to solid tumors must overcome biological barriers in order to provide effective clinical responses. Once within the tumor, a nanocarrier should navigate into a dense extracellular matrix, overcoming intratumoral pressure to push it out of the diseased tissue. In recent years, a paradigm change has been proposed, shifting the target of nanomedicine from the tumoral cells to the immune system, in order to exploit the natural ability of this system to capture and interact with nanometric moieties. Thus, nanocarriers have been engineered to interact with immune cells, with the aim of triggering specific antitumor responses. The use of bacteria as nanoparticle carriers has been proposed as a valuable strategy to improve both the accumulation of nanomedicines in solid tumors and their penetration into the malignancy. These microorganisms are capable of propelling themselves into biological environments and navigating through the tumor, guided by the presence of specific molecules secreted by the diseased tissue. These capacities, in addition to the natural immunogenic nature of bacteria, can be exploited to design more effective immunotherapies that yield potent synergistic effects to induce efficient and selective immune responses that lead to the complete eradication of the tumor.
Collapse
|
12
|
Marzhoseyni Z, Shojaie L, Tabatabaei SA, Movahedpour A, Safari M, Esmaeili D, Mahjoubin-Tehran M, Jalili A, Morshedi K, Khan H, Okhravi R, Hamblin MR, Mirzaei H. Streptococcal bacterial components in cancer therapy. Cancer Gene Ther 2022; 29:141-155. [PMID: 33753868 DOI: 10.1038/s41417-021-00308-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 01/25/2021] [Accepted: 02/05/2021] [Indexed: 02/01/2023]
Abstract
The incidence rate of cancer is steadily increasing all around the world, and there is an urgent need to develop novel and more effective treatment strategies. Recently, bacterial therapy has been investigated as a new approach to target cancer, and is becoming a serious option. Streptococcus strains are among the most common and well-studied virulent bacteria that cause a variety of human infections. Everyone has experienced a sore throat during their lifetime, or has been asymptomatically colonized by streptococci. The ability of Streptococcus bacteria to fight cancer was discovered more than 100 years ago, and over the years has undergone clinical trials, but the mechanism is not yet completely understood. Recently, several animal models and human clinical trials have been reported. Streptococcal strains can have an intrinsic anti-tumor activity, or can activate the host immune system to fight the tumor. Bacteria can selectively accumulate and proliferate in the hypoxic regions of solid tumors. Moreover, the bacteria can be genetically engineered to secrete toxins or enzymes that can specifically attack the tumors.
Collapse
Affiliation(s)
- Zeynab Marzhoseyni
- Department of Microbiology and Immunology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Layla Shojaie
- Research Center for Liver Diseases, Keck School of Medicine, Department of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Seyed Alireza Tabatabaei
- Department of Internal Medicine, School of Medicine, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Ahmad Movahedpour
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahmood Safari
- Department of Microbiology and Immunology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Davoud Esmaeili
- Department of Microbiology and Applied Microbiology Research Center, Systems Biology and Poisonings Institute and Department of Microbiology, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Maryam Mahjoubin-Tehran
- Department of Medical Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amin Jalili
- Department of Medical Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Korosh Morshedi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan, 23200, Pakistan
| | - Ranaa Okhravi
- Department of Medical Sciences, Shahrood Branch, Islamic Azad University, Shahrood, Iran.
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, 2028, South Africa.
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
13
|
Bacteria and bacterial derivatives as delivery carriers for immunotherapy. Adv Drug Deliv Rev 2022; 181:114085. [PMID: 34933064 DOI: 10.1016/j.addr.2021.114085] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 11/16/2021] [Accepted: 12/14/2021] [Indexed: 02/08/2023]
Abstract
There is growing interest in the role of microorganisms in human health and disease, with evidence showing that new types of biotherapy using engineered bacterial therapeutics, including bacterial derivatives, can address specific mechanisms of disease. The complex interactions between microorganisms and metabolic/immunologic pathways underlie many diseases with unmet medical needs, suggesting that targeting these interactions may improve patient treatment. Using tools from synthetic biology and chemical engineering, non-pathogenic bacteria or bacterial products can be programmed and designed to sense and respond to environmental signals to deliver therapeutic effectors. This review describes current progress in biotherapy using live bacteria and their derivatives to achieve therapeutic benefits against various diseases.
Collapse
|
14
|
Johnson SA, Ormsby MJ, Wessel HM, Hulme HE, Bravo‐Blas A, McIntosh A, Mason S, Coffelt SB, Tait SW, Mowat AM, Milling SW, Blyth K, Wall DM. Monocytes mediate Salmonella Typhimurium-induced tumor growth inhibition in a mouse melanoma model. Eur J Immunol 2021; 51:3228-3238. [PMID: 34633664 PMCID: PMC9214623 DOI: 10.1002/eji.202048913] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 12/01/2020] [Accepted: 10/01/2021] [Indexed: 01/19/2023]
Abstract
The use of bacteria as an alternative cancer therapy has been reinvestigated in recent years. SL7207: an auxotrophic Salmonella enterica serovar Typhimurium aroA mutant with immune-stimulatory potential has proven a promising strain for this purpose. Here, we show that systemic administration of SL7207 induces melanoma tumor growth arrest in vivo, with greater survival of the SL7207-treated group compared to control PBS-treated mice. Administration of SL7207 is accompanied by a change in the immune phenotype of the tumor-infiltrating cells toward pro-inflammatory, with expression of the TH 1 cytokines IFN-γ, TNF-α, and IL-12 significantly increased. Interestingly, Ly6C+ MHCII+ monocytes were recruited to the tumors following SL7207 treatment and were pro-inflammatory. Accordingly, the abrogation of these infiltrating monocytes using clodronate liposomes prevented SL7207-induced tumor growth inhibition. These data demonstrate a previously unappreciated role for infiltrating inflammatory monocytes underlying bacterial-mediated tumor growth inhibition. This information highlights a possible novel role for monocytes in controlling tumor growth, contributing to our understanding of the immune responses required for successful immunotherapy of cancer.
Collapse
Affiliation(s)
- Síle A. Johnson
- Institute of Infection, Immunity, and Inflammation, College of Medical, Veterinary and Life SciencesUniversity of GlasgowGlasgowUnited Kingdom
| | - Michael J. Ormsby
- Institute of Infection, Immunity, and Inflammation, College of Medical, Veterinary and Life SciencesUniversity of GlasgowGlasgowUnited Kingdom
| | - Hannah M. Wessel
- Institute of Infection, Immunity, and Inflammation, College of Medical, Veterinary and Life SciencesUniversity of GlasgowGlasgowUnited Kingdom
| | - Heather E. Hulme
- Institute of Infection, Immunity, and Inflammation, College of Medical, Veterinary and Life SciencesUniversity of GlasgowGlasgowUnited Kingdom
| | - Alberto Bravo‐Blas
- Institute of Infection, Immunity, and Inflammation, College of Medical, Veterinary and Life SciencesUniversity of GlasgowGlasgowUnited Kingdom
| | - Anne McIntosh
- Institute of Infection, Immunity, and Inflammation, College of Medical, Veterinary and Life SciencesUniversity of GlasgowGlasgowUnited Kingdom
| | - Susan Mason
- Cancer Research UK Beatson InstituteGlasgowUnited Kingdom
| | - Seth B. Coffelt
- Cancer Research UK Beatson InstituteGlasgowUnited Kingdom
- Institute of Cancer SciencesUniversity of GlasgowGlasgowUnited Kingdom
| | - Stephen W.G. Tait
- Cancer Research UK Beatson InstituteGlasgowUnited Kingdom
- Institute of Cancer SciencesUniversity of GlasgowGlasgowUnited Kingdom
| | - Allan McI. Mowat
- Institute of Infection, Immunity, and Inflammation, College of Medical, Veterinary and Life SciencesUniversity of GlasgowGlasgowUnited Kingdom
| | - Simon W.F. Milling
- Institute of Infection, Immunity, and Inflammation, College of Medical, Veterinary and Life SciencesUniversity of GlasgowGlasgowUnited Kingdom
| | - Karen Blyth
- Cancer Research UK Beatson InstituteGlasgowUnited Kingdom
- Institute of Cancer SciencesUniversity of GlasgowGlasgowUnited Kingdom
| | - Daniel M. Wall
- Institute of Infection, Immunity, and Inflammation, College of Medical, Veterinary and Life SciencesUniversity of GlasgowGlasgowUnited Kingdom
| |
Collapse
|
15
|
Highlights of Immunomodulation in Salmonella-Based Cancer Therapy. Biomedicines 2021; 9:biomedicines9111566. [PMID: 34829795 PMCID: PMC8615479 DOI: 10.3390/biomedicines9111566] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/22/2021] [Accepted: 10/27/2021] [Indexed: 12/24/2022] Open
Abstract
Bacteria-mediated cancer therapy (BMCT) is an emerging tool that may advance potential approaches in cancer immunotherapy, whereby tumors are eradicated by the hosts’ immune system upon recruitment and activation by bacteria such as Salmonella. This paper provides an emphasis on the immunomodulatory effects that encompasses both the innate and adaptive immune responses inherently triggered by Salmonella. Furthermore, modifications of Salmonella-based treatment in the attempt to improve tumor-specific immune responses including cytokine therapy, gene therapy, and DNA vaccine delivery are likewise discussed. The majority of the findings described herein incorporate cell-based experiments and murine model studies, and only a few accounts describe clinical trials. Salmonella-based cancer therapy is still under development; nonetheless, the pre-clinical research and early-phase clinical trials that have been completed so far have shown promising and convincing results. Certainly, the continuous development of, and innovation on, Salmonella-based therapy could pave the way for its eventual emergence as one of the mainstream therapeutic interventions addressing various types of cancer.
Collapse
|
16
|
Bacterial-based cancer therapy: An emerging toolbox for targeted drug/gene delivery. Biomaterials 2021; 277:121124. [PMID: 34534860 DOI: 10.1016/j.biomaterials.2021.121124] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 08/30/2021] [Accepted: 09/07/2021] [Indexed: 01/01/2023]
Abstract
Precise targeting and high therapeutic efficiency are the major requisites of personalized cancer treatment. However, some unique features of the tumor microenvironment (TME) such as hypoxia, low pH and elevated interstitial fluid pressure cause cancer cells resistant to most therapies. Bacteria are increasingly being considered for targeted tumor therapy owing to their intrinsic tumor tropism, high motility as well as the ability to rapidly colonize in the favorable TME. Compared to other nano-strategies using peptides, aptamers, and other biomolecules, tumor-targeting bacteria are largely unaffected by the tumor cells and microenvironment. On the contrary, the hypoxic TME is highly conducive to the growth of facultative anaerobes and obligate anaerobes. Live bacteria can be further integrated with anti-cancer drugs and nanomaterials to increase the latter's targeted delivery and accumulation in the tumors. Furthermore, anaerobic and facultatively anaerobic bacteria have also been combined with other anti-cancer therapies to enhance therapeutic effects. In this review, we have summarized the applications and advantages of using bacteria for targeted tumor therapy (Scheme 1) in order to aid in the design of novel intelligent drug delivery systems. The current challenges and future prospects of tumor-targeting bacterial nanocarriers have also been discussed.
Collapse
|
17
|
Al-Saafeen BH, Fernandez-Cabezudo MJ, al-Ramadi BK. Integration of Salmonella into Combination Cancer Therapy. Cancers (Basel) 2021; 13:cancers13133228. [PMID: 34203478 PMCID: PMC8269432 DOI: 10.3390/cancers13133228] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/23/2021] [Accepted: 06/24/2021] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Despite significant advances in the development of new treatments, cancer continues to be a major public health concern due to the high mortality associated with the disease. The introduction of immunotherapy as a new modality for cancer treatment has led to unprecedented clinical responses, even in terminal cancer patients. However, for reasons that remain largely unknown, the percentage of patients who respond to this treatment remains rather modest. In the present article, we highlight the potential of using attenuated Salmonella strains in cancer treatment, particularly as a means to enhance therapeutic efficacy of other cancer treatments, including immunotherapy, chemotherapy, and radiotherapy. The challenges associated with the clinical application of Salmonella in cancer therapy are discussed. An increased understanding of the potential of Salmonella bacteria in combination cancer therapy may usher in a major breakthrough in its clinical application, resulting in more favorable and durable outcomes. Abstract Current modalities of cancer treatment have limitations related to poor target selectivity, resistance to treatment, and low response rates in patients. Accumulating evidence over the past few decades has demonstrated the capacity of several strains of bacteria to exert anti-tumor activities. Salmonella is the most extensively studied entity in bacterial-mediated cancer therapy, and has a good potential to induce direct tumor cell killing and manipulate the immune components of the tumor microenvironment in favor of tumor inhibition. In addition, Salmonella possesses some advantages over other approaches of cancer therapy, including high tumor specificity, deep tissue penetration, and engineering plasticity. These aspects underscore the potential of utilizing Salmonella in combination with other cancer therapeutics to improve treatment effectiveness. Herein, we describe the advantages that make Salmonella a good candidate for combination cancer therapy and summarize the findings of representative studies that aimed to investigate the therapeutic outcome of combination therapies involving Salmonella. We also highlight issues associated with their application in clinical use.
Collapse
Affiliation(s)
- Besan H. Al-Saafeen
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain 17666, United Arab Emirates;
| | - Maria J. Fernandez-Cabezudo
- Department of Biochemistry and Molecular Biology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain 17666, United Arab Emirates;
| | - Basel K. al-Ramadi
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain 17666, United Arab Emirates;
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain 17666, United Arab Emirates
- Correspondence:
| |
Collapse
|
18
|
Wang D, Wei X, Kalvakolanu DV, Guo B, Zhang L. Perspectives on Oncolytic Salmonella in Cancer Immunotherapy-A Promising Strategy. Front Immunol 2021; 12:615930. [PMID: 33717106 PMCID: PMC7949470 DOI: 10.3389/fimmu.2021.615930] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 01/11/2021] [Indexed: 12/12/2022] Open
Abstract
Since the first reported spontaneous regression of tumors in patients with streptococcus infection, cancer biological therapy was born and it evolved into today's immunotherapy over the last century. Although the original strategy was unable to impart maximal therapeutic benefit at the beginning, it laid the foundations for the development of immune checkpoint blockade and CAR-T which are currently used for cancer treatment in the clinics. However, clinical applications have shown that current cancer immunotherapy can cause a series of adverse reactions and are captious for patients with preexisting autoimmune disorders. Salmonellae was first reported to exert antitumor effect in 1935. Until now, numerous studies have proved its potency as an antitumor agent in the near future. In this review, we summarize the currently available data on the antitumor effects of Salmonella, and discussed a possibility of integrating Salmonella into cancer immunotherapy to overcome current obstacles.
Collapse
Affiliation(s)
- Ding Wang
- Department of Pathophysiology and Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Xiaodong Wei
- Department of Pathophysiology and Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Dhan V. Kalvakolanu
- Department of Microbiology and Immunology and Greenebaum Comprehensive Cancer Center, School of Medicine, University of Maryland, Baltimore, Baltimore, MD, United States
| | - Baofeng Guo
- Department of Plastic Surgery, China-Japan Union Hospital, Jilin University, Changchun, China
| | - Ling Zhang
- Department of Pathophysiology and Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, China
| |
Collapse
|
19
|
Min JJ, Thi-Quynh Duong M, Ramar T, You SH, Kang SR. Theranostic Approaches Using Live Bacteria. Mol Imaging 2021. [DOI: 10.1016/b978-0-12-816386-3.00056-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
20
|
Liang K, Liu Q, Kong Q. New technologies in developing recombinant-attenuated bacteria for cancer therapy. Biotechnol Bioeng 2020; 118:513-530. [PMID: 33038015 DOI: 10.1002/bit.27596] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/12/2020] [Accepted: 10/06/2020] [Indexed: 12/12/2022]
Abstract
Cancer has always been a global problem, with more cases of cancer patients being diagnosed every year. Conventional cancer treatments, including radiotherapy, chemotherapy, and surgery, are still unable to bypass their obvious limitations, and developing effective targeted therapies is still required. More than one century ago, the doctor William B. Coley discovered that cancer patients had tumor regression by injection of Streptococcus bacteria. The studies of cancer therapy using bacterial microorganisms are now very widespread. In particular, the facultative anaerobic bacteria Salmonella typhimurium is widely investigated as it can selectively colonize different types of tumors, locally deliver various antitumor drugs, and inhibit tumor growth. The exciting antitumor efficacy and safety observed in animal tumor models prompted the well-known attenuated Salmonella bacterial strain VNP20009 to be tested in human clinical trials in the early 21st century. Regrettably, no patients showed significant therapeutic effects and even bacterial colonization in tumor tissue was undetectable in most patients. Salmonella bacteria are still considered as a promising agent or vehicle for cancer therapy. Recent efforts have been focused on the generation of attenuated bacterial strains with higher targeting for tumor tissue, and optimization of the delivery of therapeutic antitumor cargoes into the tumor microenvironment. This review will summarize new technologies or approaches that may improve bacteria-mediated cancer therapy.
Collapse
Affiliation(s)
- Kang Liang
- College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Qing Liu
- College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Qingke Kong
- College of Veterinary Medicine, Southwest University, Chongqing, China
| |
Collapse
|
21
|
Haderski GJ, Kandar BM, Brackett CM, Toshkov IM, Johnson CP, Paszkiewicz GM, Natarajan V, Gleiberman AS, Gudkov AV, Burdelya LG. TLR5 agonist entolimod reduces the adverse toxicity of TNF while preserving its antitumor effects. PLoS One 2020; 15:e0227940. [PMID: 32027657 PMCID: PMC7004342 DOI: 10.1371/journal.pone.0227940] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 01/02/2020] [Indexed: 12/24/2022] Open
Abstract
Tumor necrosis factor alpha (TNF) is capable of inducing regression of solid tumors. However, TNF released in response to Toll-like receptor 4 (TLR4) activation by bacterial lipopolysaccharide (LPS) is the key mediator of cytokine storm and septic shock that can cause severe tissue damage limiting anticancer applications of this cytokine. In our previous studies, we demonstrated that activation of another Toll-like receptor, TLR5, could protect from tissue damage caused by a variety of stresses including radiation, chemotherapy, Fas-activating antibody and ischemia-reperfusion. In this study, we tested whether entolimod could counteract TNF-induced toxicity in mouse models. We found that entolimod pretreatment effectively protects livers and lungs from LPS- and TNF-induced toxicity and prevents mortality caused by combining either of these agents with the sensitizer, D-galactosamine. While LPS and TNF induced significant activation of apoptotic caspase 3/7, lipid tissue peroxidation and serum ALT accumulation in mice without entolimod treatment, these indicators of toxicity were reduced by entolimod pretreatment to the levels of untreated control mice. Entolimod was effective when injected 0.5–48 hours prior to, but not when injected simultaneously or after LPS or TNF. Using chimeric mice with hematopoiesis differing in its TLR5 status from the rest of tissues, we showed that this protective activity was dependent on TLR5 expression by non-hematopoietic cells. Gene expression analysis identified multiple genes upregulated by entolimod in the liver and cultured hepatocytes as possible mediators of its protective activity. Entolimod did not interfere with the antitumor activity of TNF in mouse hepatocellular and colorectal tumor models. These results support further development of TLR5 agonists to increase tissue resistance to cytotoxic cytokines, reduce the risk of septic shock and enable safe systemic application of TNF as an anticancer therapy.
Collapse
Affiliation(s)
- Gary J. Haderski
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, United States America
| | - Bojidar M. Kandar
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, United States America
| | - Craig M. Brackett
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, United States America
| | - Ilia M. Toshkov
- Genome Protection, Inc., Buffalo, New York, United States of America
| | - Christopher P. Johnson
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, United States America
| | - Geraldine M. Paszkiewicz
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, United States America
| | - Venkatesh Natarajan
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, United States America
| | | | - Andrei V. Gudkov
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, United States America
- * E-mail: (LGB); (AVG)
| | - Lyudmila G. Burdelya
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, United States America
- * E-mail: (LGB); (AVG)
| |
Collapse
|
22
|
Guo Y, Chen Y, Liu X, Min JJ, Tan W, Zheng JH. Targeted cancer immunotherapy with genetically engineered oncolytic Salmonella typhimurium. Cancer Lett 2020; 469:102-110. [DOI: 10.1016/j.canlet.2019.10.033] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 09/29/2019] [Accepted: 10/21/2019] [Indexed: 12/31/2022]
|
23
|
Bacteria-cancer interactions: bacteria-based cancer therapy. Exp Mol Med 2019; 51:1-15. [PMID: 31827064 PMCID: PMC6906302 DOI: 10.1038/s12276-019-0297-0] [Citation(s) in RCA: 230] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 04/19/2019] [Accepted: 04/30/2019] [Indexed: 12/18/2022] Open
Abstract
Recent advances in cancer therapeutics, such as targeted therapy and immunotherapy, have raised the hope for cures for many cancer types. However, there are still ongoing challenges to the pursuit of novel therapeutic approaches, including high toxicity to normal tissue and cells, difficulties in treating deep tumor tissue, and the possibility of drug resistance in tumor cells. The use of live tumor-targeting bacteria provides a unique therapeutic option that meets these challenges. Compared with most other therapeutics, tumor-targeting bacteria have versatile capabilities for suppressing cancer. Bacteria preferentially accumulate and proliferate within tumors, where they can initiate antitumor immune responses. Bacteria can be further programmed via simple genetic manipulation or sophisticated synthetic bioengineering to produce and deliver anticancer agents based on clinical needs. Therapeutic approaches using live tumor-targeting bacteria can be applied either as a monotherapy or in combination with other anticancer therapies to achieve better clinical outcomes. In this review, we introduce and summarize the potential benefits and challenges of this anticancer approach. We further discuss how live bacteria interact with tumor microenvironments to induce tumor regression. We also provide examples of different methods for engineering bacteria to improve efficacy and safety. Finally, we introduce past and ongoing clinical trials involving tumor-targeting bacteria. Live tumor-targeting bacteria can selectively induce cancer regression and, with the help of genetic engineering, be made safe and effective vehicles for delivering drugs to tumor cells. In a review article, Jung-Joon Min and colleagues from Chonnam National University Medical School in Hwasun, South Korea, discuss the clinical history of using natural or engineered bacterial strains to suppress cancer growth. Because bacteria such as Salmonella and Listeria preferentially home in on tumors or their surrounding microenvironments, researchers have harnessed these microbial agents to attack cancer cells without causing collateral damage to normal tissues. Bioengineers have also armed bacteria with stronger tumor-sensing and more targeted drug delivery capabilities, and improved control of off-target toxicities. An increasing number of therapeutic bacterial strains are now entering clinical testing, promising to enhance the efficacy of more conventional anticancer treatments.
Collapse
|
24
|
Pangilinan CR, Lee CH. Salmonella-Based Targeted Cancer Therapy: Updates on A Promising and Innovative Tumor Immunotherapeutic Strategy. Biomedicines 2019; 7:biomedicines7020036. [PMID: 31052558 PMCID: PMC6630963 DOI: 10.3390/biomedicines7020036] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 04/25/2019] [Accepted: 04/29/2019] [Indexed: 12/27/2022] Open
Abstract
Presently, cancer is one of the leading causes of death in the world, primarily due to tumor heterogeneity associated with high-grade malignancy. Tumor heterogeneity poses a tremendous challenge, especially with the emergence of resistance not only to chemo- and radiation- therapies, but also to immunotherapy using monoclonal antibodies. The use of Salmonella, as a highly selective and penetrative antitumor agent, has shown convincing results, thus meriting further investigation. In this review, the mechanisms used by Salmonella in combating cancer are carefully explained. In essence, Salmonella overcomes the suppressive nature of the tumor microenvironment and coaxes the activation of tumor-specific immune cells to induce cell death by apoptosis and autophagy. Furthermore, Salmonella treatment suppresses tumor aggressive behavior via inhibition of angiogenesis and delay of metastatic activity. Thus, harnessing the natural potential of Salmonella in eliminating tumors will provide an avenue for the development of a promising micro-based therapeutic agent that could be further enhanced to address a wide range of tumor types.
Collapse
Affiliation(s)
| | - Che-Hsin Lee
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung 80424, Taiwan.
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 404, Taiwan.
| |
Collapse
|
25
|
Dyer A, Baugh R, Chia SL, Frost S, Iris, Jacobus EJ, Khalique H, Pokrovska TD, Scott EM, Taverner WK, Seymour LW, Lei J. Turning cold tumours hot: oncolytic virotherapy gets up close and personal with other therapeutics at the 11th Oncolytic Virus Conference. Cancer Gene Ther 2019; 26:59-73. [PMID: 30177818 DOI: 10.1038/s41417-018-0042-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 06/28/2018] [Accepted: 07/07/2018] [Indexed: 12/17/2022]
Abstract
The 11th International Oncolytic Virus Conference (IOVC) was held from April 9-12, 2018 in Oxford, UK. This is part of the high-profile academic-led series of meetings that was started back in 2002 by Steve Russell and John Bell, with most of the previous meetings being held in North America (often in Banff). The conference brought together many of the major players in oncolytic virotherapy from all over the world, addressing all stages of research and development-from aspects of basic science and cellular immunology all the way through to early- and late-phase clinical trials. The meeting welcomed 352 delegates from 24 countries. The top seven delegate countries, namely, the UK, US, Canada, The Netherlands, Germany, Japan and South Korea, contributed 291 delegates while smaller numbers coming from Australia, Austria, Bulgaria, China, Finland, France, Iraq, Ireland, Israel, Italy, Latvia, Malaysia, Poland, Slovenia, Spain, Sweden and Switzerland. Academics comprised about half of the attendees, industry 30% and students 20%. The next IOVC is scheduled to be held on Vancouver Island in autumn 2019. Here we share brief summaries of the oral presentations from invited speakers and proffered papers in the different subtopics presented at IOVC 2018.
Collapse
Affiliation(s)
- Arthur Dyer
- Department of Oncology, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ, UK
| | - Richard Baugh
- Department of Oncology, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ, UK
| | - Suet Lin Chia
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Sally Frost
- Department of Oncology, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ, UK
| | - Iris
- Department of Oncology, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ, UK
| | - Egon J Jacobus
- Department of Oncology, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ, UK
| | - Hena Khalique
- Department of Oncology, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ, UK
| | - Tzveta D Pokrovska
- Department of Oncology, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ, UK
| | - Eleanor M Scott
- Department of Oncology, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ, UK
| | - William K Taverner
- Department of Oncology, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ, UK
| | - Len W Seymour
- Department of Oncology, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ, UK.
| | - Janet Lei
- Department of Oncology, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ, UK.
| |
Collapse
|
26
|
Liang K, Liu Q, Li P, Luo H, Wang H, Kong Q. Genetically engineered Salmonella Typhimurium: Recent advances in cancer therapy. Cancer Lett 2019; 448:168-181. [PMID: 30753837 DOI: 10.1016/j.canlet.2019.01.037] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 01/27/2019] [Accepted: 01/30/2019] [Indexed: 12/13/2022]
Abstract
Bacteria have been investigated as anti-tumor therapeutic agents for more than a century, since Coley first observed successful curing of a patient with inoperable cancer by injection of streptococcal organisms. Previous studies have demonstrated that some obligate or facultative anaerobes can selectively accumulate and proliferate within tumors and suppress their growth. Developments in molecular biology as well as the complete genome sequencing of many bacterial species have increased the applicability of bacterial organisms for cancer treatment. In particular, the facultative anaerobe Salmonella Typhimurium has been widely studied and genetically engineered to improve its tumor-targeting ability as well as to reduce bacterial virulence. Moreover, the effectiveness of engineered attenuated S. Typhimurium strains employed as live delivery vectors of various anti-tumor therapeutic agents or combined with other therapies has been evaluated in a large number of animal experiments. The well-known S. Typhimurium mutant VNP20009 and its derivative strain TAPET-CD have even been applied in human clinical trials. However, Salmonella-mediated cancer therapies have not achieved the expected success, except in animal experiments. Many problems remain to be solved to exploit more promising strategies for combatting cancer with Salmonella bacteria. Here, we summarize the promising studies regarding cancer therapy mediated by Salmonella bacteria and highlight the main mechanisms of Salmonella anti-tumor activities.
Collapse
Affiliation(s)
- Kang Liang
- College of Animal Science and Technology, Southwest University, Chongqing, 400715, China
| | - Qing Liu
- College of Animal Science and Technology, Southwest University, Chongqing, 400715, China
| | - Pei Li
- College of Animal Science and Technology, Southwest University, Chongqing, 400715, China
| | - Hongyan Luo
- College of Animal Science and Technology, Southwest University, Chongqing, 400715, China
| | - Haoju Wang
- College of Animal Science and Technology, Southwest University, Chongqing, 400715, China
| | - Qingke Kong
- College of Animal Science and Technology, Southwest University, Chongqing, 400715, China; Department of Infectious Diseases and Immunology, University of Florida, Gainesville, FL, 32608, USA.
| |
Collapse
|
27
|
Mikołajczyk A, Złotkowska D. Subclinical Lipopolysaccharide from Salmonella Enteritidis Induces Dysregulation of Bioactive Substances from Selected Brain Sections and Glands of Neuroendocrine Axes. Toxins (Basel) 2019; 11:E91. [PMID: 30717384 PMCID: PMC6409941 DOI: 10.3390/toxins11020091] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 01/29/2019] [Accepted: 01/30/2019] [Indexed: 02/07/2023] Open
Abstract
Bacterial lipopolysaccharide (LPS) can contribute to the pathogenesis and the clinical symptoms of many diseases such as cancer, mental disorders, neurodegenerative as well as metabolic diseases. The asymptomatic carrier state of Salmonella spp. is a very important public health problem. A subclinical single dose of LPS obtained from S. Enteritidis (5 μg/kg, i.v.) was administered to discern the consequences of changes of various brain peptides such as corticotropin-releasing hormone (CRH), gonadotropin-releasing hormone (GnRH), thyrotropin-releasing hormone (TRH), galanin (GAL), neuropeptide Y (NPY), somatostatin (SOM), substance P (SP), and vasoactive intestinal polypeptide (VIP) in selected clinically important brain sections and endocrine glands of the hypothalamic-pituitary-adrenal (HPA), -thyroid (HPT), -ovarian (HPO) axes. The study was conducted on ten immature crossbred female pigs. The brain peptides were extracted from the hypothalamus (medial basal hypothalamus, preoptic area, lateral hypothalamic area, mammillary bodies, and the stalk median eminence), and pituitary gland (adenohypophysis and neurohypophysis) sections and from the ovaries and adrenal and thyroid glands. There was no difference in health status between LPS and the control groups during the period of the experiment. Nevertheless, even a low single dose of LPS from S. Enteritidis that did not result in any clinical symptoms of disease induced dysregulation of various brain peptides, such as CRH, GnRH, TRH, GAL, NPY, SOM, SP, and VIP in selected brain sections of hypothalamus, pituitary gland and in the endocrine glands of the HPA, HPO, and HPT axes. In conclusion, the obtained results clearly show that subclinical LPS from S. Enteritidis can affect the brain chemistry structure and dysregulate bioactive substance from selected brain sections and glands of the neuroendocrine axes. The exact mechanisms by which LPS can influence major neuroendocrine axes are not fully understood and require further studies.
Collapse
Affiliation(s)
- Anita Mikołajczyk
- Department of Public Health, Faculty of Health Sciences, Collegium Medicum, University of Warmia and Mazury in Olsztyn, 10-082 Olsztyn, Poland.
| | - Dagmara Złotkowska
- Department of Food Immunology and Microbiology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences in Olsztyn, 10-748 Olsztyn, Poland.
| |
Collapse
|
28
|
Cancer Immunotherapy: Priming the Host Immune Response with Live Attenuated Salmonella enterica. J Immunol Res 2018; 2018:2984247. [PMID: 30302344 PMCID: PMC6158935 DOI: 10.1155/2018/2984247] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 07/09/2018] [Accepted: 07/26/2018] [Indexed: 12/15/2022] Open
Abstract
In recent years, cancer immunotherapy has undergone great advances because of our understanding of the immune response and the mechanisms through which tumor cells evade it. A century after the first immunotherapy attempt based on bacterial products described by William Coley, the use of live attenuated bacterial vectors has become a promising alternative in the fight against cancer. This review describes the role of live attenuated Salmonella enterica as an oncolytic and immunotherapeutic agent, due to its high affinity for tumor tissue and its ability to activate innate and adaptive antitumor immune response. Furthermore, its potential use as delivery system of tumor antigens and immunomodulatory molecules that induce tumor regression is also reviewed.
Collapse
|
29
|
Forbes NS, Coffin RS, Deng L, Evgin L, Fiering S, Giacalone M, Gravekamp C, Gulley JL, Gunn H, Hoffman RM, Kaur B, Liu K, Lyerly HK, Marciscano AE, Moradian E, Ruppel S, Saltzman DA, Tattersall PJ, Thorne S, Vile RG, Zhang HH, Zhou S, McFadden G. White paper on microbial anti-cancer therapy and prevention. J Immunother Cancer 2018; 6:78. [PMID: 30081947 PMCID: PMC6091193 DOI: 10.1186/s40425-018-0381-3] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 06/27/2018] [Indexed: 12/13/2022] Open
Abstract
In this White Paper, we discuss the current state of microbial cancer therapy. This paper resulted from a meeting ('Microbial Based Cancer Therapy') at the US National Cancer Institute in the summer of 2017. Here, we define 'Microbial Therapy' to include both oncolytic viral therapy and bacterial anticancer therapy. Both of these fields exploit tumor-specific infectious microbes to treat cancer, have similar mechanisms of action, and are facing similar challenges to commercialization. We designed this paper to nucleate this growing field of microbial therapeutics and increase interactions between researchers in it and related fields. The authors of this paper include many primary researchers in this field. In this paper, we discuss the potential, status and opportunities for microbial therapy as well as strategies attempted to date and important questions that need to be addressed. The main areas that we think will have the greatest impact are immune stimulation, control of efficacy, control of delivery, and safety. There is much excitement about the potential of this field to treat currently intractable cancer. Much of the potential exists because these therapies utilize unique mechanisms of action, difficult to achieve with other biological or small molecule drugs. By better understanding and controlling these mechanisms, we will create new therapies that will become integral components of cancer care.
Collapse
Affiliation(s)
- Neil S Forbes
- grid.266683.f0000 0001 2184 9220Department of Chemical EngineeringUniversity of Massachusetts 159 Goessmann Hall 01003 Amherst MA USA
| | | | - Liang Deng
- 0000 0001 2171 9952grid.51462.34Department of Medicine, Memorial Sloan Kettering Cancer Center 10065 New York NY USA
| | - Laura Evgin
- 0000 0004 0459 167Xgrid.66875.3aMayo Clinic Rochester USA
| | - Steve Fiering
- 0000 0001 2179 2404grid.254880.3Geisel School of Medicine at Dartmouth Hanover USA
| | | | - Claudia Gravekamp
- 0000000121791997grid.251993.5Albert Einstein College of Medicine Bronx USA
| | - James L Gulley
- 0000 0004 1936 8075grid.48336.3aNational Cancer Institute, National Institutes of Health Bethesda USA
| | | | - Robert M Hoffman
- 0000 0001 2107 4242grid.266100.3UC, San Diego San Diego USA
- 0000 0004 0461 1271grid.417448.aAntiCancer Inc. San Diego USA
| | - Balveen Kaur
- 0000000121548364grid.55460.32University of Texas Austin USA
| | - Ke Liu
- 0000 0001 2243 3366grid.417587.8Center for Biologics Evaluation and ResearchUS Food and Drug Administration Silver Spring USA
| | | | - Ariel E Marciscano
- 0000 0004 1936 8075grid.48336.3aNational Cancer Institute, National Institutes of Health Bethesda USA
| | | | - Sheryl Ruppel
- 0000 0004 4665 8158grid.419407.fLeidos Biomedical Research, Inc. Frederick USA
| | - Daniel A Saltzman
- 0000000419368657grid.17635.36University of Minnesota Minneapolis USA
| | | | - Steve Thorne
- 0000 0004 1936 9000grid.21925.3dUniversity of Pittsburgh Pittsburgh USA
| | - Richard G Vile
- 0000 0004 0459 167Xgrid.66875.3aMayo Clinic Rochester USA
| | | | - Shibin Zhou
- 0000 0001 2171 9311grid.21107.35Johns Hopkins University Baltimore USA
| | - Grant McFadden
- 0000 0001 2151 2636grid.215654.1Center for Immunotherapy, Vaccines and Virotherapy , Biodesign InstituteArizona State University 727 E Tyler Street, Room A330E 85281 Tempe AZ USA
| |
Collapse
|
30
|
Felgner S, Kocijancic D, Frahm M, Heise U, Rohde M, Zimmermann K, Falk C, Erhardt M, Weiss S. Engineered Salmonella enterica serovar Typhimurium overcomes limitations of anti-bacterial immunity in bacteria-mediated tumor therapy. Oncoimmunology 2017; 7:e1382791. [PMID: 29308303 PMCID: PMC5749626 DOI: 10.1080/2162402x.2017.1382791] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 09/14/2017] [Accepted: 09/16/2017] [Indexed: 01/19/2023] Open
Abstract
Cancer is one of the leading causes of death in the industrialized world and represents a tremendous social and economic burden. As conventional therapies fail to provide a sustainable cure for most cancer patients, the emerging unique immune therapeutic approach of bacteria-mediated tumor therapy (BMTT) is marching towards a feasible solution. Although promising results have been obtained with BMTT using various preclinical tumor models, for advancement a major concern is immunity against the bacterial vector itself. Pre-exposure to the therapeutic agent under field conditions is a reasonable expectation and may limit the therapeutic efficacy of BMTT. In the present study, we investigated the therapeutic potential of Salmonella and E. coli vector strains in naïve and immunized tumor bearing mice. Pre-exposure to the therapeutic agent caused a significant aberrant phenotype of the microenvironment of colonized tumors and limited the in vivo efficacy of established BMTT vector strains Salmonella SL7207 and E. coli Symbioflor-2. Using targeted genetic engineering, we generated the optimized auxotrophic Salmonella vector strain SF200 (ΔlpxR9 ΔpagL7 ΔpagP8 ΔaroA ΔydiV ΔfliF) harboring modifications in Lipid A and flagella synthesis. This combination of mutations resulted in an increased immune-stimulatory capacity and as such the strain was able to overcome the efficacy-limiting effects of pre-exposure. Thus, we conclude that any limitations of BMTT concerning anti-bacterial immunity may be countered by strategies that optimize the immune-stimulatory capacity of the attenuated vector strains.
Collapse
Affiliation(s)
- Sebastian Felgner
- Department of Molecular Immunology, Helmholtz Centre for Infection Research, Braunschweig, Lower Saxony, Germany
- Infection Biology of Salmonella, Helmholtz Centre for Infection Research, Braunschweig, Lower Saxony, Germany
| | - Dino Kocijancic
- Department of Molecular Immunology, Helmholtz Centre for Infection Research, Braunschweig, Lower Saxony, Germany
| | - Michael Frahm
- Department of Molecular Immunology, Helmholtz Centre for Infection Research, Braunschweig, Lower Saxony, Germany
| | - Ulrike Heise
- Mouse-Pathology Service Unit, Helmholtz Centre for Infection Research, Braunschweig, Lower Saxony, Germany
| | - Manfred Rohde
- Central Facility for Microscopy, Helmholtz Centre for Infection Research, Braunschweig, Lower Saxony, Germany
| | | | - Christine Falk
- Institute of Transplant Immunology, Medical School Hannover, Hannover, Hessia, Germany
| | - Marc Erhardt
- Infection Biology of Salmonella, Helmholtz Centre for Infection Research, Braunschweig, Lower Saxony, Germany
| | - Siegfried Weiss
- Department of Molecular Immunology, Helmholtz Centre for Infection Research, Braunschweig, Lower Saxony, Germany
- Institute of Immunology, Medical School Hannover, Hannover, Lower Saxony, Germany
| |
Collapse
|