1
|
Wang Y, He P, Zhou X, Wang C, Fu J, Zhang D, Liao D, Zhou Z, Wu C, Gong W. Gene mutation profiling and clinical significances in patients with renal cell carcinoma. Clinics (Sao Paulo) 2023; 78:100259. [PMID: 37515929 PMCID: PMC10410166 DOI: 10.1016/j.clinsp.2023.100259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 06/27/2023] [Accepted: 07/14/2023] [Indexed: 07/31/2023] Open
Abstract
OBJECTIVES The pathological mechanisms of patients with Renal Cell Carcinoma (RCC) remain defined. This study aimed to evaluate relationships between the landscape of gene mutations and their clinical significance in RCC patients. METHODS Tissue and peripheral blood samples of 42 patients with RCC were collected and performed for the Next Generation Sequencing (NGS) with Geneseeq PrimeTM 425-gene panel probes. Their landscapes of gene mutation were analyzed. We also carried out an evaluation of Tumor-Node-Metastasis (TNM) staging, RENAL nephelometry score, surgery, and targeted drug treatment of patients. Then we compared the correlations of landscape in gene mutations and the prognosis. RESULTS The most common gene alternations, including BAP1, PBRM1, SETD2, CSF1R, NPM1, EGFR, POLE, RB1, and VHL genes, were identified in tissue and blood samples of 75% of patients. EGFR, POLE, and RB1 gene mutations frequently occurred in relapsed and metastatic patients. BAP1, CCND2, KRAS, PTPN11, ERBB2/3, JAK2, and POLE were presented in the patients with > 9 RENAL nephelometry score. Univariable analysis indicated that SETD2, BAP1, and PBRM1 genes were key factors for Disease-Free Survival (DFS). Multivariable analysis confirmed that mutated SETD1, NPM1, and CSF1R were critical factors for the Progression Free Survival (PFS) of RCC patients with target therapy. CONCLUSIONS Wild-type PBRM1 and mutated BAP1 in patients with RCC were strongly associated with the outcomes of the patient. The PFS of the patients with SETD2, NPM1, and CSF1R mutations were significantly shorter than those patients without variants.
Collapse
Affiliation(s)
- Yongquan Wang
- Department of Urology, Southwest Hospital, Third Military Medical University (Army Medical University), Shapingba District, Chongqing, China
| | - Peng He
- Department of Urology, Southwest Hospital, Third Military Medical University (Army Medical University), Shapingba District, Chongqing, China
| | - Xiaozhou Zhou
- Department of Urology, Southwest Hospital, Third Military Medical University (Army Medical University), Shapingba District, Chongqing, China
| | - Cong Wang
- Department of Urology, Southwest Hospital, Third Military Medical University (Army Medical University), Shapingba District, Chongqing, China
| | - Jian Fu
- Department of Urology, Southwest Hospital, Third Military Medical University (Army Medical University), Shapingba District, Chongqing, China
| | - Dawei Zhang
- Department of Urology, Southwest Hospital, Third Military Medical University (Army Medical University), Shapingba District, Chongqing, China
| | - Deyang Liao
- Department of Urology, Southwest Hospital, Third Military Medical University (Army Medical University), Shapingba District, Chongqing, China
| | - Zhansong Zhou
- Department of Urology, Southwest Hospital, Third Military Medical University (Army Medical University), Shapingba District, Chongqing, China
| | - Chunman Wu
- Medicine Department, Nanjing Geneseeq Technology Inc, Nanjing, Jiangsu, China
| | - Wei Gong
- Department of Biochemistry, Third Military Medical University (Army Medical University), No. 30 Gaotanyan Road, Shapingba District, Chongqing, China.
| |
Collapse
|
2
|
Yang C, Yu T, Lin Q. A signature based on chromatin regulation and tumor microenvironment infiltration in clear cell renal cell carcinoma. Epigenomics 2022; 14:995-1013. [PMID: 36154213 DOI: 10.2217/epi-2022-0202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aims: This research aimed to construct a signature based on chromatin regulation in localized clear cell renal cell carcinoma (ccRCC). Materials & methods: Non-negative matrix factorization clustering was performed on 438 localized ccRCC cases. The immune infiltration was generated by the single-sample gene set enrichment analysis algorithm. Survival analyses were performed using the Kaplan-Meier method, and the significance of the differences was determined using the log-rank test. The risk score was constructed based on the expression of chromatin regulators to quantify chromatin modification. Results: A score system based on chromatin modification was established. The high-risk subtype was characterized by increased tumor mutation burden, whereas a low-risk score was characterized by an increase in chromatin regulator expression and better overall survival. Conclusion: This research has constructed a signature based on chromatin regulation in localized ccRCC.
Collapse
Affiliation(s)
- Chen Yang
- Department of Radiation Oncology, Xiamen Cancer Center, Xiamen Key Laboratory of Radiation Oncology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361003, China
| | - Tian Yu
- Graduate School, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China.,Department of General Surgery, Peking Union Medical College Hospital, No. 1 Shuaifuyuan, Beijing, 100730, China
| | - Qin Lin
- Department of Radiation Oncology, Xiamen Cancer Center, Xiamen Key Laboratory of Radiation Oncology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361003, China
| |
Collapse
|
3
|
Achenbach P, Hippich M, Zapardiel-Gonzalo J, Karges B, Holl RW, Petrera A, Bonifacio E, Ziegler AG. A classification and regression tree analysis identifies subgroups of childhood type 1 diabetes. EBioMedicine 2022; 82:104118. [PMID: 35803018 PMCID: PMC9270253 DOI: 10.1016/j.ebiom.2022.104118] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 06/04/2022] [Accepted: 06/06/2022] [Indexed: 12/22/2022] Open
Abstract
Background Diabetes in childhood and adolescence includes autoimmune and non-autoimmune forms with heterogeneity in clinical and biochemical presentations. An unresolved question is whether there are subtypes, endotypes, or theratypes within these forms of diabetes. Methods The multivariable classification and regression tree (CART) analysis method was used to identify subgroups of diabetes with differing residual C-peptide levels in patients with newly diagnosed diabetes before 20 years of age (n=1192). The robustness of the model was assessed in a confirmation and prognosis cohort (n=2722). Findings The analysis selected age, haemoglobin A1c (HbA1c), and body mass index (BMI) as split parameters that classified patients into seven islet autoantibody-positive and three autoantibody-negative groups. There were substantial differences in genetics, inflammatory markers, diabetes family history, lipids, 25-OH-Vitamin D3, insulin treatment, insulin sensitivity and insulin autoimmunity among the groups, and the method stratified patients with potentially different pathogeneses and prognoses. Interferon-ɣ and/or tumour necrosis factor inflammatory signatures were enriched in the youngest islet autoantibody-positive groups and in patients with the lowest C-peptide values, while higher BMI and type 2 diabetes characteristics were found in older patients. The prognostic relevance was demonstrated by persistent differences in HbA1c at 7 years median follow-up. Interpretation This multivariable analysis revealed subgroups of young patients with diabetes that have potential pathogenetic and therapeutic relevance. Funding The work was supported by funds from the German Federal Ministry of Education and Research (01KX1818; FKZ 01GI0805; DZD e.V.), the Innovative Medicine Initiative 2 Joint Undertaking INNODIA (grant agreement No. 115797), the German Robert Koch Institute, and the German Diabetes Association.
Collapse
Affiliation(s)
- Peter Achenbach
- Institute of Diabetes Research, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich-Neuherberg, Germany; German Center for Diabetes Research (DZD), Munich, Germany; Technical University Munich, School of Medicine, Forschergruppe Diabetes at Klinikum rechts der Isar, Munich, Germany
| | - Markus Hippich
- Institute of Diabetes Research, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich-Neuherberg, Germany; German Center for Diabetes Research (DZD), Munich, Germany
| | - Jose Zapardiel-Gonzalo
- Institute of Diabetes Research, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich-Neuherberg, Germany
| | - Beate Karges
- Division of Endocrinology and Diabetes, Medical Faculty, RWTH Aachen University, D 52074 Aachen, Germany
| | - Reinhard W Holl
- German Center for Diabetes Research (DZD), Munich, Germany; Institute of Epidemiology and Medical Biometry, ZIBMT, University of Ulm, D 89081 Ulm, Germany
| | - Agnese Petrera
- Research Unit Protein Science and Metabolomics and Proteomics Core Facility, Helmholtz Zentrum Munich - German Research Center for Environmental Health, Neuherberg, Germany
| | - Ezio Bonifacio
- German Center for Diabetes Research (DZD), Munich, Germany; DFG Center for Regenerative Therapies Dresden, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany; Institute for Diabetes and Obesity, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich-Neuherberg, Germany
| | - Anette-G Ziegler
- Institute of Diabetes Research, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich-Neuherberg, Germany; German Center for Diabetes Research (DZD), Munich, Germany; Technical University Munich, School of Medicine, Forschergruppe Diabetes at Klinikum rechts der Isar, Munich, Germany.
| | | |
Collapse
|
4
|
PBRM1 loss in kidney cancer unbalances the proximal tubule master transcription factor hub to repress proximal tubule differentiation. Cell Rep 2021; 36:109747. [PMID: 34551289 PMCID: PMC8561673 DOI: 10.1016/j.celrep.2021.109747] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 07/20/2021] [Accepted: 09/01/2021] [Indexed: 01/10/2023] Open
Abstract
PBRM1, a subunit of the PBAF coactivator complex that transcription factors use to activate target genes, is genetically inactivated in almost all clear cell renal cell cancers (RCCs). Using unbiased proteomic analyses, we find that PAX8, a master transcription factor driver of proximal tubule epithelial fates, recruits PBRM1/PBAF. Reverse analyses of the PAX8 interactome confirm recruitment specifically of PBRM1/PBAF and not functionally similar BAF. More conspicuous in the PAX8 hub in RCC cells, however, are corepressors, which functionally oppose coactivators. Accordingly, key PAX8 target genes are repressed in RCC versus normal kidneys, with the loss of histone lysine-27 acetylation, but intact lysine-4 trimethylation, activation marks. Re-introduction of PBRM1, or depletion of opposing corepressors using siRNA or drugs, redress coregulator imbalance and release RCC cells to terminal epithelial fates. These mechanisms thus explain RCC resemblance to the proximal tubule lineage but with suppression of the late-epithelial program that normally terminates lineage-precursor proliferation. Gu et al. identify that transcription factor PAX8 needs the PBRM1/PBAF coactivator to activate proximal tubule genes. PBRM1 mutation/deletion thus explains the resemblance of clear cell kidney cancer to proximal tubule tissue but with suppressed terminal epithelial markers. This oncogenic mechanism could be repaired using drugs to inhibit corepressors.
Collapse
|
5
|
Weidle UH, Nopora A. Clear Cell Renal Carcinoma: MicroRNAs With Efficacy in Preclinical In Vivo Models. Cancer Genomics Proteomics 2021; 18:349-368. [PMID: 33994361 PMCID: PMC8240043 DOI: 10.21873/cgp.20265] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/16/2021] [Accepted: 02/24/2021] [Indexed: 01/07/2023] Open
Abstract
In order to identify new targets and treatment modalities for clear cell renal carcinoma, we surveyed the literature with respect to microRNAs involved in this disease. In this review, we have focused on up- and down-regulated miRs which mediate efficacy in preclinical clear-cell renal carcinoma-related in vivo models. We have identified 10 up-regulated and 33 down-regulated micro-RNAs according to this criterion. As proof-of-concept, micro-RNAs interfering with VEGF (miR-205p) and mTOR (mir-99a) pathways, which are modulated by approved drugs for this disease, have been identified. miRs targeting hypoxia induced factor-2α (HIF-2α) (miR-145), E3 ubiquitinylases speckle-type POZ protein (SPOP) (miR 520/372/373) and casitas B-lineage lymphoma (CBL) (miR-200a-3p), interfere with druggable targets. Further identified miRs interfere with cell-cycle dependent kinases, such as CDK2 (miR-200c), CDK4, 6 (miR-1) and CDK4, 9 (206c). Transmembrane receptor Ral interacting protein of 76 kD (RLIP76), targeted by mir-137, has emerged as another important target for ccRCC. Additional miRs and their targets merrying further preclinical validation are discussed.
Collapse
Affiliation(s)
- Ulrich H Weidle
- Roche Pharma Research and Early Development, Roche Innovation Center Munich, Penzberg, Germany
| | - Adam Nopora
- Roche Pharma Research and Early Development, Roche Innovation Center Munich, Penzberg, Germany
| |
Collapse
|
6
|
Petitprez F, Ayadi M, de Reyniès A, Fridman WH, Sautès-Fridman C, Job S. Review of Prognostic Expression Markers for Clear Cell Renal Cell Carcinoma. Front Oncol 2021; 11:643065. [PMID: 33996558 PMCID: PMC8113694 DOI: 10.3389/fonc.2021.643065] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 02/17/2021] [Indexed: 12/12/2022] Open
Abstract
Context: The number of prognostic markers for clear cell renal cell carcinoma (ccRCC) has been increasing regularly over the last 15 years, without being integrated and compared. Objective: Our goal was to perform a review of prognostic markers for ccRCC to lay the ground for their use in the clinics. Evidence Acquisition: PubMed database was searched to identify RNA and protein markers whose expression level was reported as associated with survival of ccRCC patients. Relevant studies were selected through cross-reading by two readers. Evidence Synthesis: We selected 249 studies reporting an association with prognostic of either single markers or multiple-marker models. Altogether, these studies were based on a total of 341 distinct markers and 13 multiple-marker models. Twenty percent of these markers were involved in four biological pathways altered in ccRCC: cell cycle, angiogenesis, hypoxia, and immune response. The main genes (VHL, PBRM1, BAP1, and SETD2) involved in ccRCC carcinogenesis are not the most relevant for assessing survival. Conclusion: Among single markers, the most validated markers were KI67, BIRC5, TP53, CXCR4, and CA9. Of the multiple-marker models, the most famous model, ClearCode34, has been highly validated on several independent datasets, but its clinical utility has not yet been investigated. Patient Summary: Over the years, the prognosis studies have evolved from single markers to multiple-marker models. Our review highlights the highly validated prognostic markers and multiple-marker models and discusses their clinical utility for better therapeutic care.
Collapse
Affiliation(s)
- Florent Petitprez
- Programme Cartes d'Identité des Tumeurs, Ligue Nationale Contre le Cancer, Paris, France
| | - Mira Ayadi
- Programme Cartes d'Identité des Tumeurs, Ligue Nationale Contre le Cancer, Paris, France
| | - Aurélien de Reyniès
- Programme Cartes d'Identité des Tumeurs, Ligue Nationale Contre le Cancer, Paris, France
| | - Wolf H. Fridman
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Equipe Inflammation, Complément et Cancer, Paris, France
| | - Catherine Sautès-Fridman
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Equipe Inflammation, Complément et Cancer, Paris, France
| | - Sylvie Job
- Programme Cartes d'Identité des Tumeurs, Ligue Nationale Contre le Cancer, Paris, France
| |
Collapse
|
7
|
Santos VE, da Costa WH, Bezerra SM, da Cunha IW, Nobre JQC, Brazão ES, Meduna RR, Rocha MM, Fornazieri L, Zequi SDC. Prognostic Impact of Loss of SETD2 in Clear Cell Renal Cell Carcinoma. Clin Genitourin Cancer 2021; 19:339-345. [PMID: 33839039 DOI: 10.1016/j.clgc.2021.03.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/10/2021] [Accepted: 03/03/2021] [Indexed: 11/19/2022]
Abstract
PURPOSE To evaluate the prognostic impact of immunohistochemical expression of SETD2 in patients with clear cell renal cell carcinoma (ccRCC). PATIENTS AND METHODS A total of 662 patients with primary or metastatic ccRCC were evaluated. Two genitourinary pathologist reviewed all of the cases for uniform reclassification and determined the selection of the most representative tumor areas for construction of the tissue microarray (TMA). RESULTS SETD2 nuclear staining showed that 101 areas (15.3%) had negative expression, and 561 areas (84,7%) had positive expression of SETD2. The protein expression of SETD2 was associated with clinical stage (P < .001), pathological stage (P < .001), tumor size (P < .001), perinephric fat invasion (P < .001), Eastern Cooperative Oncology Group status (P = .004), surgery type (P < .001), International Society of Urologic Pathologists grade (P < .001), and tumor necrosis (P < .001). SETD2 influenced disease-specific survival (DSS) and overall survival (OS). DSS rates in patients with positive and negative expression of SETD2 were 90.2% and 58.4%, respectively (P < .001). OS rates in patients with positive and negative expression of SETD2 were 87% and 55.4%, respectively (P < .001). In a multivariate Cox analysis, low SETD2 expression was an independent predictor of DSS (hazard ratio [HR], 1.690; 95% confidence interval [CI], 1.0582.700; P = .031) and OS (HR, 1.641; 95% CI, 1.039-2.593; P = .037). CONCLUSION Our study showed that the negative expression of SETD2 was associated with a worse prognosis, and it was an independent predictor of survival in patients with ccRCC. We believe that the protein expression of SETD2 is an important biomarker in the management of patients with ccRCC.
Collapse
Affiliation(s)
| | - Walter Henriques da Costa
- Division of Urology, A.C. Camargo Cancer Center, São Paulo, Brazil; National Institute for Science and Technology in Oncogenomics and Therapeutic Innovation, São Paulo, Brazil
| | | | - Isabela Werneck da Cunha
- Division of Urology, A.C. Camargo Cancer Center, São Paulo, Brazil; National Institute for Science and Technology in Oncogenomics and Therapeutic Innovation, São Paulo, Brazil.; Department of Pathology, Rede D'Or-São Luiz, São Paulo, Brazil
| | | | | | | | | | - Lucas Fornazieri
- Division of Urology, A.C. Camargo Cancer Center, São Paulo, Brazil
| | - Stenio de Cassio Zequi
- Division of Urology, A.C. Camargo Cancer Center, São Paulo, Brazil; National Institute for Science and Technology in Oncogenomics and Therapeutic Innovation, São Paulo, Brazil
| |
Collapse
|
8
|
Imai-Sumida M, Dasgupta P, Kulkarni P, Shiina M, Hashimoto Y, Shahryari V, Majid S, Tanaka Y, Dahiya R, Yamamura S. Genistein Represses HOTAIR/Chromatin Remodeling Pathways to Suppress Kidney Cancer. Cell Physiol Biochem 2020; 54:53-70. [PMID: 31961100 DOI: 10.33594/000000205] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Accepted: 12/18/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND/AIMS Genistein, a soy isoflavone, has been shown to have anti-cancer effects in various cancers including renal cancer. Long non-coding RNA, HOX transcript antisense RNA (HOTAIR), is involved in cancer progression and metastasis, such as renal cancer. Our aim was to investigate the effects of genistein on HOTAIR chromatin remodeling functions. METHODS We used MTS assays and Transwell migration assays to study the effects of genistein on cell proliferation and migration respectively in human renal cell carcinoma (RCC) cell lines. We used Western blots to analyze SNAIL and ZO-1 expression. We performed chromatin immunoprecipitation (ChIP) assays to study recruitment of the polycomb repressive complex 2 (PRC2) to the ZO-1 promoter. We performed RNA immunoprecipitation (RIP) assays to study interaction between HOTAIR and PRC2, SMARCB1 or ARID1A. We also performed transfection experiments to overexpress EED, HOTAIR and knockdown SMARCB1. RESULTS Genistein reduced cell proliferation and migration of human renal cell carcinoma cell lines. ChIP assays indicated that genistein reduces recruitment of the PRC2 to the ZO-1 promoter and increased its expression. RIP assays showed that genistein inhibits HOTAIR interaction with PRC2, leading to tumor suppression. Immunoprecipitation also revealed that genistein reduced EED levels in PRC2, suggesting that decreased EED levels suppress HOTAIR interaction with PRC2. EED overexpression in the presence of genistein restored PRC2 interaction with HOTAIR and reduced ZO-1 transcription, suggesting genistein activates ZO-1 by inhibiting HOTAIR/PRC2 functions. RIP assays also showed that HOTAIR interacts with SMARCB1 and ARID1A, subunits of the human SWI/SNF chromatin remodeling complex and genistein reduces this interaction. Combination of HOTAIR overexpression and SMARCB1 knockdown in the presence of genistein revealed that genistein inhibits SNAIL transcription via the HOTAIR/SMARCB1 pathway. CONCLUSION Genistein suppresses EED levels in PRC2 and inhibits HOTAIR/PRC2 interaction. Genistein suppresses HOTAIR/PRC2 recruitment to the ZO-1 promoter and enhances ZO-1 transcription. Genistein also inhibits SNAIL transcription via reducing HOTAIR/SMARCB1 interaction. We demonstrate that the reduction of HOTAIR interaction with chromatin remodeling factors by genistein represses HOTAIR/chromatin remodeling pathways to suppress RCC malignancy.
Collapse
Affiliation(s)
- Mitsuho Imai-Sumida
- Department of Urology, San Francisco Veterans Affairs Medical Center and University of California San Francisco, San Francisco, USA
| | - Pritha Dasgupta
- Department of Urology, San Francisco Veterans Affairs Medical Center and University of California San Francisco, San Francisco, USA
| | - Priyanka Kulkarni
- Department of Urology, San Francisco Veterans Affairs Medical Center and University of California San Francisco, San Francisco, USA
| | - Marisa Shiina
- Department of Urology, San Francisco Veterans Affairs Medical Center and University of California San Francisco, San Francisco, USA
| | - Yutaka Hashimoto
- Department of Urology, San Francisco Veterans Affairs Medical Center and University of California San Francisco, San Francisco, USA
| | - Varahram Shahryari
- Department of Urology, San Francisco Veterans Affairs Medical Center and University of California San Francisco, San Francisco, USA
| | - Shahana Majid
- Department of Urology, San Francisco Veterans Affairs Medical Center and University of California San Francisco, San Francisco, USA
| | - Yuichiro Tanaka
- Department of Urology, San Francisco Veterans Affairs Medical Center and University of California San Francisco, San Francisco, USA
| | - Rajvir Dahiya
- Department of Urology, San Francisco Veterans Affairs Medical Center and University of California San Francisco, San Francisco, USA
| | - Soichiro Yamamura
- Department of Urology, San Francisco Veterans Affairs Medical Center and University of California San Francisco, San Francisco, USA,
| |
Collapse
|
9
|
Cai W, Su L, Liao L, Liu ZZ, Langbein L, Dulaimi E, Testa JR, Uzzo RG, Zhong Z, Jiang W, Yan Q, Zhang Q, Yang H. PBRM1 acts as a p53 lysine-acetylation reader to suppress renal tumor growth. Nat Commun 2019; 10:5800. [PMID: 31863007 PMCID: PMC6925188 DOI: 10.1038/s41467-019-13608-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 11/14/2019] [Indexed: 02/07/2023] Open
Abstract
p53 acetylation is indispensable for its transcriptional activity and tumor suppressive function. However, the identity of reader protein(s) for p53 acetylation remains elusive. PBRM1, the second most highly mutated tumor suppressor gene in kidney cancer, encodes PBRM1. Here, we identify PBRM1 as a reader for p53 acetylation on lysine 382 (K382Ac) through its bromodomain 4 (BD4). Notably, mutations on key residues of BD4 disrupt recognition of p53 K382Ac. The mutation in BD4 also reduces p53 binding to promoters of target genes such as CDKN1A (p21). Consequently, the PBRM1 BD4 mutant fails to fully support p53 transcriptional activity and is defective as a tumor suppressor. We also find that expressions of PBRM1 and p21 correlate with each other in human kidney cancer samples. Our findings uncover a tumor suppressive mechanism of PBRM1 in kidney cancer and provide a mechanistic insight into the crosstalk between p53 and SWI/SNF complexes.
Collapse
Affiliation(s)
- Weijia Cai
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Liya Su
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Lili Liao
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, 19107, USA
- Department of Pathology, Yale University, New Haven, CT, 06520, USA
| | - Zongzhi Z Liu
- Department of Pathology, Yale University, New Haven, CT, 06520, USA
| | - Lauren Langbein
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Essel Dulaimi
- Fox Chase Cancer Center, Philadelphia, PA, 19111, USA
| | | | - Robert G Uzzo
- Fox Chase Cancer Center, Philadelphia, PA, 19111, USA
| | - Zhijiu Zhong
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Wei Jiang
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Qin Yan
- Department of Pathology, Yale University, New Haven, CT, 06520, USA
| | - Qing Zhang
- Department of Pathology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX, 75390, USA.
| | - Haifeng Yang
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, 19107, USA.
| |
Collapse
|
10
|
Prognostic and Predictive Value of PBRM1 in Clear Cell Renal Cell Carcinoma. Cancers (Basel) 2019; 12:cancers12010016. [PMID: 31861590 PMCID: PMC7016957 DOI: 10.3390/cancers12010016] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 12/13/2019] [Accepted: 12/15/2019] [Indexed: 12/27/2022] Open
Abstract
Renal cell carcinoma (RCC) is the most frequent kidney solid tumor, the clear cell RCC (ccRCC) being the major histological subtype. The probability of recurrence and the clinical behavior of ccRCC will greatly depend on the different clinical and histopathological features, already incorporated to different scoring systems, and on the genomic landscape of the tumor. In this sense, ccRCC has for a long time been known to be associated to the biallelic inactivation of Von Hippel-Lindau (VHL) gene which causes aberrant hypoxia inducible factor (HIF) accumulation. Recently, next generation-sequencing technologies have provided the bases for an in-depth molecular characterization of ccRCC, identifying additional recurrently mutated genes, such as PBRM1 (≈40-50%), SETD2 (≈12%), or BAP1 (≈10%). PBRM1, the second most common mutated gene in ccRCC after VHL, is a component of the SWI/SNF chromatin remodeling complex. Different studies have investigated the biological consequences and the potential role of PBRM1 alterations in RCC prognosis and as a drug response modulator, although some results are contradictory. In the present article, we review the current evidence on PBRM1 as potential prognostic and predictive marker in both localized and metastatic RCC.
Collapse
|
11
|
Wang Z, Peng S, Guo L, Xie H, Wang A, Shang Z, Niu Y. Prognostic and clinicopathological value of PBRM1 expression in renal cell carcinoma. Clin Chim Acta 2018; 486:9-17. [DOI: 10.1016/j.cca.2018.07.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Revised: 07/03/2018] [Accepted: 07/09/2018] [Indexed: 12/29/2022]
|
12
|
Liao L, Liu ZZ, Langbein L, Cai W, Cho EA, Na J, Niu X, Jiang W, Zhong Z, Cai WL, Jagannathan G, Dulaimi E, Testa JR, Uzzo RG, Wang Y, Stark GR, Sun J, Peiper S, Xu Y, Yan Q, Yang H. Multiple tumor suppressors regulate a HIF-dependent negative feedback loop via ISGF3 in human clear cell renal cancer. eLife 2018; 7:37925. [PMID: 30355451 PMCID: PMC6234029 DOI: 10.7554/elife.37925] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 10/22/2018] [Indexed: 12/30/2022] Open
Abstract
Whereas VHL inactivation is a primary event in clear cell renal cell carcinoma (ccRCC), the precise mechanism(s) of how this interacts with the secondary mutations in tumor suppressor genes, including PBRM1, KDM5C/JARID1C, SETD2, and/or BAP1, remains unclear. Gene expression analyses reveal that VHL, PBRM1, or KDM5C share a common regulation of interferon response expression signature. Loss of HIF2α, PBRM1, or KDM5C in VHL-/-cells reduces the expression of interferon stimulated gene factor 3 (ISGF3), a transcription factor that regulates the interferon signature. Moreover, loss of SETD2 or BAP1 also reduces the ISGF3 level. Finally, ISGF3 is strongly tumor-suppressive in a xenograft model as its loss significantly enhances tumor growth. Conversely, reactivation of ISGF3 retards tumor growth by PBRM1-deficient ccRCC cells. Thus after VHL inactivation, HIF induces ISGF3, which is reversed by the loss of secondary tumor suppressors, suggesting that this is a key negative feedback loop in ccRCC.
Collapse
Affiliation(s)
- Lili Liao
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Pennsylvania, United States.,Department of Pathology, Yale University, Connecticut, United States
| | - Zongzhi Z Liu
- Department of Pathology, Yale University, Connecticut, United States
| | - Lauren Langbein
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Pennsylvania, United States
| | - Weijia Cai
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Pennsylvania, United States
| | - Eun-Ah Cho
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Pennsylvania, United States.,Fox Chase Cancer Center, Pennsylvania, United States
| | - Jie Na
- Department of Health Sciences Research, Mayo Clinic, Minnesota, United States
| | - Xiaohua Niu
- Department of Gastrointestinal Surgery, The Sixth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Wei Jiang
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Pennsylvania, United States
| | - Zhijiu Zhong
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Pennsylvania, United States
| | - Wesley L Cai
- Department of Pathology, Yale University, Connecticut, United States
| | - Geetha Jagannathan
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Pennsylvania, United States
| | - Essel Dulaimi
- Fox Chase Cancer Center, Pennsylvania, United States
| | | | - Robert G Uzzo
- Fox Chase Cancer Center, Pennsylvania, United States
| | - Yuxin Wang
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Ohio, United States
| | - George R Stark
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Ohio, United States
| | - Jianxin Sun
- Department of Medicine, Thomas Jefferson University, Pennsylvania, United States
| | - Stephen Peiper
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Pennsylvania, United States
| | - Yaomin Xu
- Department of Biostatistics, Vanderbilt University Medical Center, Tennessee, United States.,Department of Biomedical Informatics, Vanderbilt University Medical Center, Tennessee, United States
| | - Qin Yan
- Department of Pathology, Yale University, Connecticut, United States
| | - Haifeng Yang
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Pennsylvania, United States
| |
Collapse
|
13
|
Guerrero-Martínez JA, Reyes JC. High expression of SMARCA4 or SMARCA2 is frequently associated with an opposite prognosis in cancer. Sci Rep 2018; 8:2043. [PMID: 29391527 PMCID: PMC5794756 DOI: 10.1038/s41598-018-20217-3] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 01/16/2018] [Indexed: 12/21/2022] Open
Abstract
The gene encoding the ATPase of the chromatin remodeling SWI/SNF complexes SMARCA4 (BRG1) is often mutated or silenced in tumors, suggesting a role as tumor suppressor. Nonetheless, recent reports show requirement of SMARCA4 for tumor cells growth. Here, we performed a computational meta-analysis using gene expression, prognosis, and clinicopathological data to clarify the role of SMARCA4 and the alternative SWI/SNF ATPase SMARCA2 (BRM) in cancer. We show that while the SMARCA4 gene is mostly overexpressed in tumors, SMARCA2 is almost invariably downexpressed in tumors. High SMARCA4 expression was associated with poor prognosis in many types of tumors, including liver hepatocellular carcinoma (LIHC), and kidney renal clear cell carcinoma (KIRC). In contrast, high SMARCA2 expression was associated with good prognosis. We compared tumors with high versus low expression of SMARCA4 or SMARCA2 in LIHC and KIRC cohorts from The Cancer Genome Atlas. While a high expression of SMARCA4 is associated with aggressive tumors, a high expression of SMARCA2 is associated with benign differentiated tumors, suggesting that SMARCA4 and SMARCA2 play opposite roles in cancer. Our results demonstrate that expression of SMARCA4 and SMARCA2 have a high prognostic value and challenge the broadly accepted general role of SMARCA4 as a tumor suppressor.
Collapse
Affiliation(s)
- Jose A Guerrero-Martínez
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Consejo Superior de Investigaciones Científicas-Universidad de Sevilla-Universidad Pablo de Olavide (CSIC-USE-UPO). Av. Americo Vespucio 24, 41092, Seville, Spain
| | - Jose C Reyes
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Consejo Superior de Investigaciones Científicas-Universidad de Sevilla-Universidad Pablo de Olavide (CSIC-USE-UPO). Av. Americo Vespucio 24, 41092, Seville, Spain.
| |
Collapse
|
14
|
Pyo JS, Son BK, Oh D, Kim EK. BRG1 is correlated with poor prognosis in colorectal cancer. Hum Pathol 2017; 73:66-73. [PMID: 29288038 DOI: 10.1016/j.humpath.2017.12.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 12/05/2017] [Accepted: 12/13/2017] [Indexed: 12/20/2022]
Abstract
Brahma-related gene 1 (BRG1), a component of the chromatin-remodeling complex, regulates transcription by remodeling the chromatin structure. The present study aimed to elucidate the clinicopathological significance and prognostic role of BRG1 in colorectal cancer (CRC). We investigated the correlation between BRG1 expression and clinicopathological parameters, including prognosis, using immunohistochemistry on 266 archival paraffin-embedded CRC tissues. In addition, to confirm the prognostic role of BRG1 in malignant tumors, we performed a meta-analysis of 9 eligible studies and the current study. BRG1 was highly expressed in 67.7% of the 266 CRCs analyzed. High BRG1 expression significantly correlated with poor overall and recurrence-free survival (P < .001 and P < .001, respectively). The high expression of BRG1 also significantly correlated with high expression of SNAI (P < .001) but not E-cadherin (P = .432). However, there was no significant correlation between BRG1 expression and other clinicopathological parameters. The meta-analysis also demonstrated that high BRG1 expression positively correlated with poor overall and recurrence-free survival (hazard ratio 1.572, 95% confidence interval 1.106-2.235 and hazard ratio 2.050, 95% confidence interval 1.610-2.610, respectively). However, subgroup analysis based on tumor type showed that the correlation between BRG1 expression and poor prognosis was only prevalent in CRC and breast cancer. Taken together, the results of this study suggest that high BRG1 expression was associated with high SNAI expression and was significantly correlated with poor prognosis.
Collapse
Affiliation(s)
- Jung-Soo Pyo
- Department of Pathology, Eulji University Hospital, Eulji University School of Medicine, Daejeon 35233, Republic of Korea
| | - Byoung Kwan Son
- Department of Internal Medicine, Eulji Hospital, Eulji University School of Medicine, Seoul 01830, Republic of Korea.
| | - Dongwook Oh
- Department of Internal Medicine, Eulji Hospital, Eulji University School of Medicine, Seoul 01830, Republic of Korea
| | - Eun Kyung Kim
- Department of Pathology, Eulji Hospital, Eulji University School of Medicine, Seoul 01830, Republic of Korea
| |
Collapse
|