1
|
Wu YH, Kuo CF, Hsieh AH, Hsieh HL, Chan YF, Hwang TL. Upregulation of miR-210-5p impairs dead cell clearance by macrophages through the inhibition of Sp1-and HSCARG-dependent NADPH oxidase pathway. Free Radic Biol Med 2021; 172:441-450. [PMID: 34197940 DOI: 10.1016/j.freeradbiomed.2021.06.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/23/2021] [Accepted: 06/26/2021] [Indexed: 12/11/2022]
Abstract
The deficiency of dead cell clearance is a prominent pathogenic factor in systemic lupus erythematosus (SLE). In this study, the overexpression of miR-210-5p resulted in the accumulation of secondary necrotic cells (SNECs) in macrophages through the reduction of protein degradation. The upreguation of miR-210-5p inhibited NADPH oxidase (NOX) activation, reactive oxygen species (ROS) generation, and SNEC clearance. miR-210-5p overexpression suppressed Sp1 and HSCARG expression, and the knockdown of SP1 and HSCARG inhibited NOX expression and superoxide production in macrophages. Furthermore, patients with active SLE expressed a higher level of miR-210-5p and lower expression of SP1 and HSCARG in peripheral blood mononuclear cells. In summary, our findings indicate that the upregulation of miR-210-5p increases the accumulation of SNECs through a decrease in the Sp1-and HSCARG-mediated NOX activity and ROS generation in macrophages. Our results also suggest that targeting miR-210-5p may have therapeutic potential for SLE.
Collapse
Affiliation(s)
- Yi-Hsuan Wu
- Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, 333, Taiwan.
| | - Chang-Fu Kuo
- Center for Artificial Intelligence in Medicine, Chang Gung Memorial Hospital, Taoyuan, 333, Taiwan; School of Medicine, Chang Gung University, Taoyuan, 333, Taiwan
| | - Ao-Ho Hsieh
- Division of Rheumatology, Allergy and Immunology, Chang Gung Memorial Hospital, Taoyuan, 333, Taiwan
| | - Hsi-Lung Hsieh
- Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, 333, Taiwan; Department of Nursing, Division of Basic Medical Sciences, Chang Gung University of Science and Technology, Taoyuan, 333, Taiwan; Department of Neurology, Chang Gung Memorial Hospital, Taoyuan, 333, Taiwan; Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, 333, Taiwan
| | - Yen-Fan Chan
- Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, 333, Taiwan
| | - Tsong-Long Hwang
- Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, 333, Taiwan; Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, 333, Taiwan; Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan; Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan, 333, Taiwan; Department of Chemical Engineering, Ming Chi University of Technology, New Taipei City, 243, Taiwan.
| |
Collapse
|
2
|
Asgarzade A, Ziyabakhsh A, Asghariazar V, Safarzadeh E. Myeloid-derived suppressor cells: Important communicators in systemic lupus erythematosus pathogenesis and its potential therapeutic significance. Hum Immunol 2021; 82:782-790. [PMID: 34272089 DOI: 10.1016/j.humimm.2021.06.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 06/01/2021] [Accepted: 06/22/2021] [Indexed: 01/26/2023]
Abstract
Systemic lupus erythematosus (SLE) is a recognized chronic condition associated with immune system disorders that affect women nine times more commonly than men. SLE is characterized by over-secretion and release of autoantibodies in response to different cellular compartments and self-tolerance breaks to its own antigens. The detailed immunological dysregulation as an associated event that elicits the onset of clinical manifestations of SLE has not been clarified yet. Though, research using several animal models in the last two decades has indicated the role of the immune system in the pathogenesis of this disease. Myeloid-derived suppressor cells (MDSCs) as heterogeneous myeloid cells, are responsible for severe pathological conditions, including infection, autoimmunity, and cancer, by exerting considerable immunosuppressive effects on T-cells responses. It has been reported that these cells are involved in the regulation process of the immune response in several autoimmune diseases, particularly SLE. The function of MDSC is deleterious in infection and cancer diseases, though their role is more complicated in autoimmune diseases. In this review, we summarized the role and function of MDSCs in the pathogenesis and progression of SLE and its possible therapeutic approach.
Collapse
Affiliation(s)
- Ali Asgarzade
- Students Research Committee, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Alireza Ziyabakhsh
- Students Research Committee, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Vahid Asghariazar
- Deputy of Research and Technology, Ardabil University of Medical Sciences, Ardabil, Iran; Immunology Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Elham Safarzadeh
- Department of Microbiology, and Immunology, Ardabil University of Medical Sciences, Ardabil, Iran.
| |
Collapse
|
3
|
Adhikari N, Jha T, Ghosh B. Dissecting Histone Deacetylase 3 in Multiple Disease Conditions: Selective Inhibition as a Promising Therapeutic Strategy. J Med Chem 2021; 64:8827-8869. [PMID: 34161101 DOI: 10.1021/acs.jmedchem.0c01676] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The acetylation of histone and non-histone proteins has been implicated in several disease states. Modulation of such epigenetic modifications has therefore made histone deacetylases (HDACs) important drug targets. HDAC3, among various class I HDACs, has been signified as a potentially validated target in multiple diseases, namely, cancer, neurodegenerative diseases, diabetes, obesity, cardiovascular disorders, autoimmune diseases, inflammatory diseases, parasitic infections, and HIV. However, only a handful of HDAC3-selective inhibitors have been reported in spite of continuous efforts in design and development of HDAC3-selective inhibitors. In this Perspective, the roles of HDAC3 in various diseases as well as numerous potent and HDAC3-selective inhibitors have been discussed in detail. It will surely open up a new vista in the discovery of newer, more effective, and more selective HDAC3 inhibitors.
Collapse
Affiliation(s)
- Nilanjan Adhikari
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, P.O. Box 17020, Kolkata, 700032 West Bengal, India
| | - Tarun Jha
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, P.O. Box 17020, Kolkata, 700032 West Bengal, India
| | - Balaram Ghosh
- Epigenetic Research Laboratory, Department of Pharmacy, BITS-Pilani, Hyderabad Campus, Shamirpet, Hyderabad 500078, India
| |
Collapse
|
4
|
Abstract
PURPOSE OF REVIEW Juvenile-onset systemic lupus erythematosus ((j)SLE) is an autoimmune/inflammatory disease that results in significant damage and disability. When compared to patients with disease onset in adulthood, jSLE patients exhibit increased disease activity, damage and require more aggressive treatments. This manuscript summarises age-specific pathogenic mechanisms and underscores the need for age group-specific research, classification and treatment. RECENT FINDINGS Genetic factors play a significant role in the pathophysiology of jSLE, as > 7% of patients develop disease as a result of single gene mutations. Remaining patients carry genetic variants that are necessary for disease development, but require additional factors. Increased 'genetic impact' likely contributes to earlier disease onset and more severe phenotypes. Epigenetic events have only recently started to be addressed in jSLE, and add to the list of pathogenic mechanisms that may serve as biomarkers and/or treatment targets. To allow meaningful and patient-oriented paediatric research, age-specific classification criteria and treatment targets require to be defined as currently available tools established for adult-onset SLE have limitations in the paediatric cohort. Significant progress has been made in understanding the pathophysiology of jSLE. Meaningful laboratory and clinical research can only be performed using age group-specific tools, classification criteria and treatment targets.
Collapse
Affiliation(s)
- A Charras
- Department of Women's & Children's Health, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| | - E Smith
- Department of Women's & Children's Health, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
- Department of Paediatric Rheumatology, Alder Hey Children's NHS Foundation Trust Hospital, Liverpool, UK
| | - C M Hedrich
- Department of Women's & Children's Health, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK.
- Department of Paediatric Rheumatology, Alder Hey Children's NHS Foundation Trust Hospital, Liverpool, UK.
- Institute in the Park, Alder Hey Children's NHS Foundation Trust Hospital, East Prescot Road, Liverpool, L14 5AB, UK.
| |
Collapse
|
5
|
Akbaba TH, Sag E, Balci-Peynircioglu B, Ozen S. Epigenetics for Clinicians from the Perspective of Pediatric Rheumatic Diseases. Curr Rheumatol Rep 2020; 22:46. [DOI: 10.1007/s11926-020-00912-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
6
|
The protective effect of interfering TLR9-IRF5 signaling pathway on the development of CVB3-induced myocarditis. Clin Immunol 2019; 207:24-35. [DOI: 10.1016/j.clim.2019.07.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 06/28/2019] [Accepted: 07/03/2019] [Indexed: 12/22/2022]
|
7
|
Arneth B. Systemic Lupus Erythematosus and DNA Degradation and Elimination Defects. Front Immunol 2019; 10:1697. [PMID: 31440232 PMCID: PMC6692764 DOI: 10.3389/fimmu.2019.01697] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 07/08/2019] [Indexed: 12/25/2022] Open
Abstract
Introduction: Systemic lupus erythematosus (SLE) is a chronic autoimmune disease that is characterized by the production of autoantibodies specific for components of the cell nucleus and that causes damage to body tissues and organs. The pathogenesis of SLE remains unclear, with numerous studies pointing to a combination of genetic and environmental factors. A critical stage in SLE development is cell necrosis, in which undegraded chromatin and nucleoproteins are released into the blood, resulting in circulating cell-free DNA and serum nucleoproteins that trigger anti-dsDNA autoantibody production. This systematic literature review aimed to examine whether SLE stems from a DNA degradation and elimination defect. Materials and Methods: An advanced literature search was conducted in PubMed using the following keywords: [("SLE" OR "Systemic Lupus Erythematosus" OR "Lupus")] AND [("DNA" OR "DNA Degradation")] AND [("Defect Elimination")]. More articles were obtained from the references of the identified articles and basic Google searches. Twenty-five peer-reviewed articles published within the past 10 years (2007-2018) were included for review. Results: The findings of each study are summarized in Tables 1, 2. Discussion and Conclusion: The etiopathogenesis of SLE remains controversial, which limits therapeutic inventions for this disease. However, SLE is a DNA degradation and elimination disorder caused by uncleared histones and nuclear material that leak into the extracellular space and form cell-free DNA, triggering an immune response that destroys tissues and organs. Under normal conditions, apoptosis allows DNA and other nuclear material to be efficiently cleared through degradation and additional complex mechanisms such that this material does not trigger the immune system to produce nuclear autoantibodies.
Collapse
Affiliation(s)
- Borros Arneth
- Institute of Laboratory Medicine and Pathobiochemistry, Molecular Diagnostics, University Hospital of Giessen and Marburg, Justus Liebig University Giessen, Giessen, Germany
| |
Collapse
|
8
|
Abstract
Biomarker discovery and validation are necessary for improving the prediction of clinical outcomes and patient monitoring. Despite considerable interest in biomarker discovery and development, improvements in the range and quality of biomarkers are still needed. The main challenge is how to integrate preclinical data to obtain a reliable biomarker that can be measured with acceptable costs in routine clinical practice. Epigenetic alterations are already being incorporated as valuable candidates in the biomarker field. Furthermore, their reversible nature offers a promising opportunity to ameliorate disease symptoms by using epigenetic-based therapy. Thus, beyond helping to understand disease biology, clinical epigenetics is being incorporated into patient management in oncology, as well as being explored for clinical applicability for other human pathologies such as neurological and infectious diseases and immune system disorders.
Collapse
|
9
|
Matta B, Barnes BJ. Coordination between innate immune cells, type I IFNs and IRF5 drives SLE pathogenesis. Cytokine 2019; 132:154731. [PMID: 31130331 DOI: 10.1016/j.cyto.2019.05.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 05/16/2019] [Accepted: 05/19/2019] [Indexed: 12/18/2022]
Abstract
Systemic lupus erythematosus (SLE) is a complex autoimmune disease which affects multiple organs. The type I interferon (IFN) gene signature and circulating autoantibodies are hallmarks of SLE. Plasmacytoid dendritic cells (pDCs) are considered the main producers of type I IFN and production is modulated by multiple other immune cell types. In SLE, essentially every immune cell type is dysregulated and aberrant deregulation is thought to be due, in part, to direct or indirect exposure to IFN. Genetic variants within or around the transcription factor interferon regulatory factor 5 (IRF5) associate with SLE risk. Elevated IFNα activity was detected in the sera of SLE patients carrying IRF5 risk polymorphisms who were positive for either anti-RNA binding protein (anti-RBP) or anti-double-stranded DNA (anti-dsDNA) autoantibodies. Neutrophils are also an important source of type I IFNs and are found in abundance in human blood. Neutrophil extracellular traps (NETs) are considered a potential source of antigenic trigger in SLE that can lead to type I IFN gene induction, as well as increased autoantibody production. In this review, we will focus on immune cell types that produce type I IFNs and/or are affected by type I IFN in SLE. In addition, we will discuss potential inducers of endogenous type I IFN production in SLE. Last, we will postulate how the different immune cell populations may be affected by an IRF5-SLE risk haplotype.
Collapse
Affiliation(s)
- Bharati Matta
- Center for Autoimmune Musculoskeletal and Hematopoietic Diseases, Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY, USA
| | - Betsy J Barnes
- Center for Autoimmune Musculoskeletal and Hematopoietic Diseases, Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY, USA; Departments of Molecular Medicine and Pediatrics, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA.
| |
Collapse
|
10
|
Thompson CD, Matta B, Barnes BJ. Therapeutic Targeting of IRFs: Pathway-Dependence or Structure-Based? Front Immunol 2018; 9:2622. [PMID: 30515152 PMCID: PMC6255967 DOI: 10.3389/fimmu.2018.02622] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 10/25/2018] [Indexed: 12/12/2022] Open
Abstract
The interferon regulatory factors (IRFs) are a family of master transcription factors that regulate pathogen-induced innate and acquired immune responses. Aberration(s) in IRF signaling pathways due to infection, genetic predisposition and/or mutation, which can lead to increased expression of type I interferon (IFN) genes, IFN-stimulated genes (ISGs), and other pro-inflammatory cytokines/chemokines, has been linked to the development of numerous diseases, including (but not limited to) autoimmune and cancer. What is currently lacking in the field is an understanding of how best to therapeutically target these transcription factors. Many IRFs are regulated by post-translational modifications downstream of pattern recognition receptors (PRRs) and some of these modifications lead to activation or inhibition. We and others have been able to utilize structural features of the IRFs in order to generate dominant negative mutants that inhibit function. Here, we will review potential therapeutic strategies for targeting all IRFs by using IRF5 as a candidate targeting molecule.
Collapse
Affiliation(s)
- Cherrie D Thompson
- Center for Autoimmune Musculoskeletal and Hematopoietic Diseases, Feinstein Institute for Medical Research, Manhasset, NY, United States
| | - Bharati Matta
- Center for Autoimmune Musculoskeletal and Hematopoietic Diseases, Feinstein Institute for Medical Research, Manhasset, NY, United States
| | - Betsy J Barnes
- Center for Autoimmune Musculoskeletal and Hematopoietic Diseases, Feinstein Institute for Medical Research, Manhasset, NY, United States
| |
Collapse
|
11
|
Ballestar E, Li T. New insights into the epigenetics of inflammatory rheumatic diseases. Nat Rev Rheumatol 2017; 13:593-605. [DOI: 10.1038/nrrheum.2017.147] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|