1
|
Wu S, Cheng L, Luo T, Makeudom A, Wang L, Krisanaprakornkit S. Overexpression of a disintegrin and metalloproteinase 9 (ADAM9) in relation to poor prognosis of patients with oral squamous cell carcinoma. Discov Oncol 2024; 15:582. [PMID: 39441449 PMCID: PMC11499557 DOI: 10.1007/s12672-024-01422-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 10/03/2024] [Indexed: 10/25/2024] Open
Abstract
This study investigates the expressions of ADAM9, CDCP1 and t-PA in OSCC and their impacts on patient prognosis. Previous research has demonstrated the overexpression of ADAM9 and activation of plasminogen activator in OSCC, but CDCP1's role remains unexplored. While these biomolecules are known to contribute to lung cancer metastasis, their concurrent expressions in OSCC have not been thoroughly examined. Our aim is to assess the expressions of ADAM9, CDCP1, and t-PA in OSCC specimens, compare them with normal oral tissues, and explore their correlation with OSCC's clinicopathological features and patient survival outcomes.
Collapse
Affiliation(s)
- Shuangjiang Wu
- Department of Oral and Maxillofacial Surgery, The Affiliated Hospital, Southwest Medical University, Luzhou, China
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, China
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, China
| | - Lang Cheng
- School of Stomatology, Southwest Medical University, Luzhou, China
| | - Tao Luo
- Department of Pathology, The Fifth Hospital of Deyang, Deyang, China
| | - Anupong Makeudom
- School of Dentistry, Mae Fah Luang University Medical Center, Mae Fah Luang University, 365 Moo 12, Nang Lae Subdistrict, Mueang Chiang Rai District, Chiang Rai, 57100, Thailand
| | - Lei Wang
- Department of Oral and Maxillofacial Surgery, The Affiliated Hospital, Southwest Medical University, Luzhou, China
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, China
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, China
| | - Suttichai Krisanaprakornkit
- School of Dentistry, Mae Fah Luang University Medical Center, Mae Fah Luang University, 365 Moo 12, Nang Lae Subdistrict, Mueang Chiang Rai District, Chiang Rai, 57100, Thailand.
| |
Collapse
|
2
|
Liu JP, Shen KY, Cheng WC, Chang WC, Hsieh CY, Lo CC, Kuo TT, Lin CC, Liu SJ, Huang WC, Sher YP. ADAM9 drives the immunosuppressive microenvironment by cholesterol biosynthesis-mediated activation of IL6-STAT3 signaling for lung tumor progression. Am J Cancer Res 2024; 14:1850-1865. [PMID: 38726266 PMCID: PMC11076253 DOI: 10.62347/lodv2387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 04/07/2024] [Indexed: 05/12/2024] Open
Abstract
Chronic inflammation associated with lung cancers contributes to immunosuppressive tumor microenvironments, reducing CD8+ T-cell function and leading to poor patient outcomes. A disintegrin and metalloprotease domain 9 (ADAM9) promotes cancer progression. Here, we aim to elucidate the role of ADAM9 in the immunosuppressive tumor microenvironment. A bioinformatic analysis of TIMER2.0 was used to investigate the correlation of ADAM9 and to infiltrate immune cells in the human lung cancer database and mouse lung tumor samples. Flow cytometry, immunohistochemistry, and RNA sequencing (RNA-seq) were performed to investigate the ADAM9-mediated immunosuppressive microenvironment. The coculture system of lung cancer cells with immune cells, cytokine array assays, and proteomic approach was used to investigate the mechanism. By analyzing the human LUAD database and the mouse lung cancer models, we showed that ADAM9 was associated with the immunosuppressive microenvironment. Additionally, ADAM9 released IL6 protein from cancer cells to inhibit IL12p40 secretion from dendritic cells, therefore leading to dendritic cell dysfunction and further affecting T-cell functions. Proteomic analysis indicated that ADAM9 promoted cholesterol biosynthesis and increased IL6-STAT3 signaling. Mechanistically, ADAM9 reduced the protein stability of LDLR, resulting in reduced cholesterol uptake and induced cholesterol biosynthesis. Moreover, LDLR reduction enhanced IL6-STAT3 activation. We reveal that ADAM9 has a novel biological function that drives the immunosuppressive tumor microenvironment by linking lung cancer's metabolic and signaling axes. Thus, by targeting ADAM9 an innovative and promising therapeutic opportunity was indicated for regulating the immunosuppression of lung cancer.
Collapse
Affiliation(s)
- Jing-Pei Liu
- Graduate Institute of Biomedical Sciences, China Medical UniversityTaichung 404, Taiwan
| | - Kuan-Yin Shen
- School of Dentistry, Tri-Service General Hospital and National Defense Medical CenterTaipei 114, Taiwan
| | - Wei-Chung Cheng
- The Ph.D. Program for Cancer Biology and Drug Discovery, China Medical University and Academia SinicaTaichung 404, Taiwan
| | - Wei-Chao Chang
- Center for Molecular Medicine, China Medical University HospitalTaichung 404, Taiwan
| | - Chih-Ying Hsieh
- Division of Hematology and Oncology, China Medical University HospitalTaichung 404, Taiwan
| | - Chia-Chien Lo
- Center for Molecular Medicine, China Medical University HospitalTaichung 404, Taiwan
| | - Ting-Ting Kuo
- Institute of Biochemistry and Molecular Biology, China Medical UniversityTaichung 404, Taiwan
| | - Ching-Chan Lin
- Division of Hematology and Oncology, China Medical University HospitalTaichung 404, Taiwan
| | - Shih-Jen Liu
- National Institute of Infectious Diseases and Vaccinology, National Health Research InstitutesMiaoli 350, Taiwan
| | - Wen-Chin Huang
- Graduate Institute of Biomedical Sciences, China Medical UniversityTaichung 404, Taiwan
- Graduate Institute of Cell Biology, China Medical UniversityTaichung 404, Taiwan
- The International Master’s Program of Biomedical Sciences, China Medical UniversityTaichung 404, Taiwan
| | - Yuh-Pyng Sher
- Graduate Institute of Biomedical Sciences, China Medical UniversityTaichung 404, Taiwan
- The Ph.D. Program for Cancer Biology and Drug Discovery, China Medical University and Academia SinicaTaichung 404, Taiwan
- Center for Molecular Medicine, China Medical University HospitalTaichung 404, Taiwan
- Institute of Biochemistry and Molecular Biology, China Medical UniversityTaichung 404, Taiwan
- The International Master’s Program of Biomedical Sciences, China Medical UniversityTaichung 404, Taiwan
- Cancer Biology and Precision Therapeutics Center, China Medical UniversityTaichung 404, Taiwan
| |
Collapse
|
3
|
Moeinafshar A, Nouri M, Shokrollahi N, Masrour M, Behnam A, Tehrani Fateh S, Sadeghi H, Miryounesi M, Ghasemi MR. Non-coding RNAs as potential therapeutic targets for receptor tyrosine kinase signaling in solid tumors: current status and future directions. Cancer Cell Int 2024; 24:26. [PMID: 38200584 PMCID: PMC10782702 DOI: 10.1186/s12935-023-03203-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024] Open
Abstract
This review article presents an in-depth analysis of the current state of research on receptor tyrosine kinase regulatory non-coding RNAs (RTK-RNAs) in solid tumors. RTK-RNAs belong to a class of non-coding RNAs (nc-RNAs) responsible for regulating the expression and activity of receptor tyrosine kinases (RTKs), which play a critical role in cancer development and progression. The article explores the molecular mechanisms through which RTK-RNAs modulate RTK signaling pathways and highlights recent advancements in the field. This include the identification of potential new RTK-RNAs and development of therapeutic strategies targeting RTK-RNAs. While the review discusses promising results from a variety of studies, encompassing in vitro, in vivo, and clinical investigations, it is important to acknowledge the challenges and limitations associated with targeting RTK-RNAs for therapeutic applications. Further studies involving various cancer cell lines, animal models, and ultimately, patients are necessary to validate the efficacy of targeting RTK-RNAs. The specificity of ncRNAs in targeting cellular pathways grants them tremendous potential, but careful consideration is required to minimize off-target effects, the article additionally discusses the potential clinical applications of RTK-RNAs as biomarkers for cancer diagnosis, prognosis, and treatment. In essence, by providing a comprehensive overview of the current understanding of RTK-RNAs in solid tumors, this review emphasizes their potential as therapeutic targets for cancer while acknowledging the associated challenges and limitations.
Collapse
Affiliation(s)
- Aysan Moeinafshar
- Center for Comprehensive Genetic Services, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Nouri
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nima Shokrollahi
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahdi Masrour
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Center for Orthopedic Trans-Disciplinary Applied Research, Tehran University of Medical Sciences, Tehran, Iran
| | - Amirmohammad Behnam
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sahand Tehrani Fateh
- Center for Comprehensive Genetic Services, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hossein Sadeghi
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Miryounesi
- Center for Comprehensive Genetic Services, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad-Reza Ghasemi
- Center for Comprehensive Genetic Services, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Mohan S, Hakami MA, Dailah HG, Khalid A, Najmi A, Zoghebi K, Halawi MA. The emerging role of noncoding RNAs in the EGFR signaling pathway in lung cancer. Pathol Res Pract 2024; 253:155016. [PMID: 38070221 DOI: 10.1016/j.prp.2023.155016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/02/2023] [Accepted: 12/02/2023] [Indexed: 01/24/2024]
Abstract
Noncoding ribonucleic acids (ncRNAs) have surfaced as essential orchestrators within the intricate system of neoplastic biology. Specifically, the epidermal growth factor receptor (EGFR) signalling cascade shows a central role in the etiological underpinnings of pulmonary carcinoma. Pulmonary malignancy persists as a preeminent contributor to worldwide mortality attributable to malignant neoplasms, with non-small cell lung carcinoma (NSCLC) emerging as the most predominant histopathological subcategory. EGFR is a key driver of NSCLC, and its dysregulation is frequently associated with tumorigenesis, metastasis, and resistance to therapy. Over the past decade, researchers have unveiled a complex network of ncRNAs, encompassing microRNAs, long noncoding RNAs, and circular RNAs, which intricately regulate EGFR signalling. MicroRNAs, as versatile post-transcriptional regulators, have been shown to target various components of the EGFR pathway, influencing cancer cell proliferation, migration, and apoptosis. Additionally, ncRNAs have emerged as critical modulators of EGFR signalling, with their potential to act as scaffolds, decoys, or guides for EGFR-related proteins. Circular RNAs, a relatively recent addition to the ncRNA family, have also been implicated in EGFR signalling regulation. The clinical implications of ncRNAs in EGFR-driven lung cancer are substantial. These molecules exhibit diagnostic potential as robust biomarkers for early cancer detection and personalized treatment. Furthermore, their predictive value extends to predicting disease progression and therapeutic outcomes. Targeting ncRNAs in the EGFR pathway represents a novel therapeutic approach with promising results in preclinical and early clinical studies. This review explores the increasing evidence supporting the significant role of ncRNAs in modulating EGFR signalling in lung cancer, shedding light on their potential diagnostic, prognostic, and therapeutic implications.
Collapse
Affiliation(s)
- Syam Mohan
- Substance Abuse and Toxicology Research Centre, Jazan University, Jazan 45142, Saudi Arabia; School of Health Sciences, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India; Center for Global health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India.
| | - Mohammed Ageeli Hakami
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Al-Quwayiyah, Shaqra University, Riyadh, Saudi Arabia
| | - Hamad Ghaleb Dailah
- Research and Scientific Studies Unit, College of Nursing, Jazan University, Jazan 45142, Saudi Arabia
| | - Asaad Khalid
- Substance Abuse and Toxicology Research Centre, Jazan University, Jazan 45142, Saudi Arabia
| | - Asim Najmi
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Khalid Zoghebi
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Maryam A Halawi
- Department of Clinical Pharmacy, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| |
Collapse
|
5
|
Wei Z, Chen J, Zuo F, Guo J, Sun X, Liu D, Liu C. Traditional Chinese Medicine has great potential as candidate drugs for lung cancer: A review. JOURNAL OF ETHNOPHARMACOLOGY 2023; 300:115748. [PMID: 36162545 DOI: 10.1016/j.jep.2022.115748] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/13/2022] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE With high mortality and morbidity rates, lung cancer (LC) has become one of the major threats to human health. The treatment strategies for LC currently face issues, such as drug resistance and body tolerance. Traditional Chinese medicine (TCM) is characterized by novel pharmacological mechanisms, low toxicity, and limited side effects. TCM includes a substantial number of biologically active ingredients, several of which are effective monomeric agents against LC. An increasing number of researchers are focusing their efforts on the discovery of active anti-cancer ingredients in TCM. AIM OF THE REVIEW In this review, we summarized the anti-LC mechanisms of five types of TCM monomeric compounds. Our goal is to provide research ideas for the identification of new prospective medication candidates for the treatment of LC. MATERIALS AND METHODS We collected reports on the anti-LC effects of TCM monomers from web databases, including PubMed, Science Direct, Web of Science, and Europe PubMed Central. Among the keywords used were "lung cancer," "traditional Chinese medicine," "pharmacology," and their combinations thereof. Then, we systematically summarized the anti-LC efficacy and related mechanisms of TCM monomers. RESULTS Based on the available literature, this paper reviewed the therapeutic effects and mechanisms of five types of TCM monomers on LC. The characteristics of TCM monomers include the capabilities to suppress the tumor cell cycle, inhibit proliferation, induce apoptosis, promote autophagy, inhibit tumor cell invasion and metastasis, and enhance efficacy or reduce drug resistance when combined with cytotoxic agents and other methods to arrest the progression of LC and prolong the survival of patients. CONCLUSIONS TCM contains numerous flavonoids, alkaloids, terpenoids, polyphenols, and other active compounds that are effective against LC. Given their chemical structure and pharmacological properties, these monomers are suitable as candidate drugs for the treatment of LC.
Collapse
Affiliation(s)
- Zhicheng Wei
- Department of Pharmacy, Dazhou Central Hospital, Dazhou, 635000, PR China.
| | - Jing Chen
- Department of Pharmacy, Dazhou Central Hospital, Dazhou, 635000, PR China
| | - Fang Zuo
- Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Julie Guo
- Department of Pharmacy, Dazhou Central Hospital, Dazhou, 635000, PR China
| | - Xiaodong Sun
- Department of Pharmacy, Dazhou Central Hospital, Dazhou, 635000, PR China
| | - Deming Liu
- Chongqing Clinical Research Center for Dermatology, Chongqing Key Laboratory of Integrative Dermatology Research, Key Laboratory of External Therapies of Traditional Chinese Medicine in Eczema, Department of Dermatology, Chongqing Traditional Chinese Medicine Hospital, Chongqing, 400011, PR China.
| | - Conghai Liu
- Department of Pharmacy, Dazhou Central Hospital, Dazhou, 635000, PR China.
| |
Collapse
|
6
|
Overexpression of CDCP1 is Associated with Poor Prognosis and Enhanced Immune Checkpoints Expressions in Breast Cancer. JOURNAL OF ONCOLOGY 2022; 2022:1469354. [PMID: 36090897 PMCID: PMC9452972 DOI: 10.1155/2022/1469354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 08/04/2022] [Indexed: 11/17/2022]
Abstract
CUB-domain containing protein 1 (CDCP1) is a transmembrane protein acting as an effector of SRC family kinases, which play an oncogenic role in multiple human cancers. However, its clinical and immune correlations in breast cancer (BrCa) have not been explored. To define the expression, prognostic value, and potential molecular role of CDCP1 in BrCa, multiple public datasets, and an in-house cohort were used. Compared with paratumor tissue, CDCP1 was remarkably upregulated in the tumor tissues at both mRNA and protein levels. In the in-house cohort, CDCP1 protein expression was related to several clinicopathological parameters, including age, ER status, PR status, molecular type, and survival status. Kaplan–Meier analysis and Cox regression analysis exhibited that CDCP1 was an important prognostic biomarker in BrCa. In addition, enrichment analysis uncovered that CDCP1 was not only involved in multiple oncogenic pathways, but correlated with overexpression of immune checkpoints. Overall, we reported that increased expression of CDCP1 is a favorable prognostic factor in patients with BrCa. In addition, the correlations between CDCP1 and immune checkpoints provide a novel insight into the adjuvant treatment for immune checkpoint blockade via targeting CDCP1.
Collapse
|
7
|
Lin Q. MicroRNA-1-3p affects lung adenocarcinoma progression through E2F8 and regulating NF-кB pathway. Cytokine 2022; 156:155922. [PMID: 35660716 DOI: 10.1016/j.cyto.2022.155922] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/12/2022] [Accepted: 05/19/2022] [Indexed: 11/30/2022]
Abstract
E2F8 can modulate development and progression of various cancers including cervical cancer, breast cancer and hepatocellular carcinoma. But its mechanism in lung adenocarcinoma (LUAD) remains underexplored. In this study, we conducted a series of experiments including qRT-PCR, western blot, CCK-8, scratch healing assay, Transwell, and flow cytometry. Through these assays, we confirmed the notable overexpression of E2F8 in LUAD and its promoting effects on LUAD cell proliferation, migration and invasion. Subsequently, microRNA-1-3p that was negatively associated with E2F8 expression was identified through bioinformatics analysis. qRT-PCR was then carried out for quantification of microRNA-1-3p expression, which displayed low microRNA-1-3p expression in LUAD cells. In addition, dual-luciferase reporter gene assay was utilized for validating the targeted relationship between microRNA-1-3p and E2F8. The results denoted that microRNA-1-3p could bind to the promoter region of E2F8. Finally, the results of rescue experiment revealed that microRNA-1-3p negatively modulated E2F8 level. It regulated NF-κB pathway to repress LUAD cell proliferative, migratory, and invasive properties, lead to cell cycle arrest in G0/G1 phase, and enhance cell apoptosis level. This study unraveled that microRNA-1-3p/E2F8 constrained LUAD malignant progression through NF-κB pathway, which may provide possible targets for LUAD diagnosis and treatment.
Collapse
Affiliation(s)
- Qingsheng Lin
- Cardiothoracic Surgery, Puyang Oilfield General Hospital, China.
| |
Collapse
|
8
|
Scribner JA, Hicks SW, Sinkevicius KW, Yoder NC, Diedrich G, Brown JG, Lucas J, Fuller ME, Son T, Dastur A, Hooley J, Espelin CW, Themeles M, Chen FZ, Li Y, Chiechi M, Lee J, Barat B, Widjaja L, Gorlatov S, Tamura J, Ciccarone V, Ab O, McEachem KA, Koenig S, Westin EH, Moore PA, Chittenden T, Gregory RJ, Bonvini E, Loo D. Preclinical Evaluation of IMGC936, a Next Generation Maytansinoid-based Antibody-drug Conjugate Targeting ADAM9-expressing Tumors. Mol Cancer Ther 2022; 21:1047-1059. [PMID: 35511740 DOI: 10.1158/1535-7163.mct-21-0915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 03/03/2022] [Accepted: 04/27/2022] [Indexed: 11/16/2022]
Abstract
A disintegrin and metalloprotease (ADAM) 9 is a member of the ADAM family of multifunctional, multidomain type 1 transmembrane proteins. ADAM9 is overexpressed in many cancers, including non-small cell lung, pancreatic, gastric, breast, ovarian, and colorectal cancer, but exhibits limited expression in normal tissues. A target-unbiased discovery platform based on intact tumor and progenitor cell immunizations, followed by an immunohistochemistry screen, led to the identification of anti-ADAM9 antibodies with selective tumor-versus-normal tissue binding. Subsequent analysis revealed anti-ADAM9 antibodies were efficiently internalized and processed by tumor cells making ADAM9 an attractive target for antibody-drug conjugate development. Here, we describe the preclinical evaluation of IMGC936, a novel antibody-drug conjugate targeted against ADAM9. IMGC936 is comprised of a high-affinity humanized antibody site-specifically conjugated to DM21-C, a next-generation linker-payload that combines a maytansinoid microtubule-disrupting payload with a stable tripeptide linker, at a drug antibody ratio of approximately 2.0. Additionally, the YTE mutation (M252Y/S254T/T256E) was introduced into the CH2 domain of the antibody Fc to maximize in vivo plasma half-life and exposure. IMGC936 exhibited cytotoxicity toward ADAM9-positive human tumor cell lines, as well as bystander killing, potent antitumor activity in human cell line-derived xenograft and patient-derived xenograft tumor models, and an acceptable safety profile in cynomolgus monkeys with favorable pharmacokinetic properties. Our preclinical data provide a strong scientific rationale for the further development of IMGC936 as a therapeutic candidate for the treatment of ADAM9-positive cancers. A first-in-human study of IMGC936 in patients with advanced solid tumors has been initiated (NCT04622774).
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Thomas Son
- MacroGenics, Inc., Brisbane, California, United States
| | | | - Jeff Hooley
- MacroGenics, Inc., Brisbane, CA, United States
| | | | | | | | - Ying Li
- MacroGenics, Inc., Brisbane, CA, United States
| | | | - Jenny Lee
- ImmunoGen (United States), Waltham, MA, United States
| | | | | | | | - James Tamura
- MacroGenics, Inc., Rockville, Maryland, United States
| | | | - Olga Ab
- ImmunoGen (United States), Waltham, United States
| | | | | | | | | | | | | | | | - Deryk Loo
- MacroGenics, Inc., Brisbane, CA, United States
| |
Collapse
|
9
|
CDCP1: A promising diagnostic biomarker and therapeutic target for human cancer. Life Sci 2022; 301:120600. [DOI: 10.1016/j.lfs.2022.120600] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 04/25/2022] [Accepted: 04/27/2022] [Indexed: 12/25/2022]
|
10
|
Lim SA, Zhou J, Martinko AJ, Wang YH, Filippova EV, Steri V, Wang D, Remesh SG, Liu J, Hann B, Kossiakoff AA, Evans MJ, Leung KK, Wells JA. Targeting a proteolytic neoepitope on CUB domain containing protein 1 (CDCP1) for RAS-driven cancers. J Clin Invest 2022; 132:e154604. [PMID: 35166238 PMCID: PMC8843743 DOI: 10.1172/jci154604] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 12/21/2021] [Indexed: 11/17/2022] Open
Abstract
Extracellular proteolysis is frequently dysregulated in disease and can generate proteoforms with unique neoepitopes not found in healthy tissue. Here, we demonstrate that Abs that selectively recognize a proteolytic neoepitope on CUB domain containing protein 1 (CDCP1) could enable more effective and safer treatments for solid tumors. CDCP1 is highly overexpressed in RAS-driven cancers, and its ectodomain is cleaved by extracellular proteases. Biochemical, biophysical, and structural characterization revealed that the 2 cleaved fragments of CDCP1 remain tightly associated with minimal proteolysis-induced conformational change. Using differential phage display, we generated recombinant Abs that are exquisitely selective to cleaved CDCP1 with no detectable binding to the uncleaved form. These Abs potently targeted cleaved CDCP1-expressing cancer cells as an Ab-drug conjugate, an Ab-radionuclide conjugate, and a bispecific T cell engager. In a syngeneic pancreatic tumor model, these cleaved-specific Abs showed tumor-specific localization and antitumor activity with superior safety profiles compared with a pan-CDCP1 approach. Targeting proteolytic neoepitopes could provide an orthogonal "AND" gate for improving the therapeutic index.
Collapse
Affiliation(s)
| | - Jie Zhou
- Department of Pharmaceutical Chemistry
| | | | - Yung-Hua Wang
- Department of Radiology and Biomedical Imaging, and
- Helen Diller Family Comprehensive Cancer Center, UCSF, San Francisco, California, USA
| | - Ekaterina V. Filippova
- Department of Biochemistry and Molecular Biology, and
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois, USA
| | - Veronica Steri
- Helen Diller Family Comprehensive Cancer Center, UCSF, San Francisco, California, USA
- Preclinical Therapeutics Core, UCSF, San Francisco, California, USA
| | - Donghui Wang
- Helen Diller Family Comprehensive Cancer Center, UCSF, San Francisco, California, USA
- Preclinical Therapeutics Core, UCSF, San Francisco, California, USA
| | | | - Jia Liu
- Department of Pharmaceutical Chemistry
| | - Byron Hann
- Preclinical Therapeutics Core, UCSF, San Francisco, California, USA
| | - Anthony A. Kossiakoff
- Department of Biochemistry and Molecular Biology, and
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois, USA
| | - Michael J. Evans
- Department of Radiology and Biomedical Imaging, and
- Helen Diller Family Comprehensive Cancer Center, UCSF, San Francisco, California, USA
| | | | - James A. Wells
- Department of Pharmaceutical Chemistry
- Chan Zuckerberg Biohub, San Francisco, California, USA
- Department of Cellular and Molecular Pharmacology, UCSF, San Francisco, California, USA
| |
Collapse
|
11
|
Nam Y, Choi CM, Park YS, Jung H, Hwang HS, Lee JC, Lee JW, Lee JE, Kang JH, Jung BH, Ji W. CDCP1 Expression Is a Potential Biomarker of Poor Prognosis in Resected Stage I Non-Small-Cell Lung Cancer. J Clin Med 2022; 11:jcm11020341. [PMID: 35054034 PMCID: PMC8779436 DOI: 10.3390/jcm11020341] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/04/2022] [Accepted: 01/07/2022] [Indexed: 12/25/2022] Open
Abstract
Background: Although early-stage lung cancer has increased owing to the introduction of screening programs, high recurrence rate remains a critical concern. We aimed to explore biomarkers related to the prognosis of surgically resected non-small-cell lung cancer (NSCLC). Methods: In this retrospective study, we collected medical records of patients with NSCLC and matched tissue microarray blocks from surgical specimens. Semiquantitative immunohistochemistry was performed for measuring the expression level of fibroblast activation protein-alpha (FAP-α), Jagged-1 (JAG1), and CUB-domain-containing protein 1 (CDCP1). Results: A total of 453 patients who underwent complete resection between January 2011 and February 2012 were enrolled; 55.2% patients had stage I NSCLC, and 31.1% presented squamous cell carcinoma. Disease stage was a significant risk factor for recurrence and death, and age ≥ 65 years and male sex were associated with poor overall survival. FAP-a and JaG1 were not related to survivals, while CDCP1-expressing patients exhibited poor disease-free and overall survival. Moreover, CDCP1 expression in stage I NSCLC was significantly associated with recurrence. Conclusions: Old age, male sex, and high pathological stage were poor prognostic factors in patients with NSCLC who underwent surgical resection. Furthermore, CDCP1 expression could serve as a biomarker for poor prognosis in stage I NSCLC.
Collapse
Affiliation(s)
- Yunha Nam
- Asan Medical Center, Department of Pulmonary and Critical Care Medicine, University of Ulsan College of Medicine, Seoul 05505, Korea; (Y.N.); (C.-M.C.)
| | - Chang-Min Choi
- Asan Medical Center, Department of Pulmonary and Critical Care Medicine, University of Ulsan College of Medicine, Seoul 05505, Korea; (Y.N.); (C.-M.C.)
- Asan Medical Center, Department of Oncology, University of Ulsan College of Medicine, Seoul 05505, Korea;
| | - Young Soo Park
- Asan Medical Center, Department of Pathology, University of Ulsan College of Medicine, Seoul 05505, Korea; (Y.S.P.); (H.S.H.)
| | - HyunA Jung
- Asan Medical Center, Asan Institute for Life Sciences, University of Ulsan College of Medicine, Seoul 05505, Korea;
| | - Hee Sang Hwang
- Asan Medical Center, Department of Pathology, University of Ulsan College of Medicine, Seoul 05505, Korea; (Y.S.P.); (H.S.H.)
| | - Jae Cheol Lee
- Asan Medical Center, Department of Oncology, University of Ulsan College of Medicine, Seoul 05505, Korea;
| | - Jung Wook Lee
- Therapeutic Antibody R&D Center, Theranotics Co., Ltd., Seoul 05842, Korea; (J.W.L.); (J.E.L.); (J.H.K.); (B.H.J.)
| | - Jung Eun Lee
- Therapeutic Antibody R&D Center, Theranotics Co., Ltd., Seoul 05842, Korea; (J.W.L.); (J.E.L.); (J.H.K.); (B.H.J.)
| | - Jung Hee Kang
- Therapeutic Antibody R&D Center, Theranotics Co., Ltd., Seoul 05842, Korea; (J.W.L.); (J.E.L.); (J.H.K.); (B.H.J.)
| | - Byung Hun Jung
- Therapeutic Antibody R&D Center, Theranotics Co., Ltd., Seoul 05842, Korea; (J.W.L.); (J.E.L.); (J.H.K.); (B.H.J.)
| | - Wonjun Ji
- Asan Medical Center, Department of Pulmonary and Critical Care Medicine, University of Ulsan College of Medicine, Seoul 05505, Korea; (Y.N.); (C.-M.C.)
- Correspondence: ; Tel.: +82-2-3010-1699; Fax: +82-2-3010-6968
| |
Collapse
|
12
|
Wu L, Wang Y, Liu Q, Wu J, Zheng H, Lin B, Huang S. Circ_0001665 Contributes to the Occurrence of Vestibular Schwannoma via Targeting miR-302a-3p/Adam9/EGFR Signaling Pathway. Neuroscience 2021; 490:206-215. [PMID: 34979261 DOI: 10.1016/j.neuroscience.2021.12.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 12/22/2021] [Accepted: 12/26/2021] [Indexed: 10/19/2022]
Abstract
Vestibular schwannoma (VS) is a benign, slow-growing neoplasm, which is an important cause of sensorineural hearing loss. Circular RNAs (circRNAs) have been widely reported to be dysregulated and participate in multiple biological processes of human diseases. However, roles of most circRNAs still remain explored. In the present study, the main aim was to uncover the impacts of circ_0001665, a cricRNA derived from ADAM metallopeptidase domain 9 (Adam9), on the biological behaviors of VS cells. Firstly, RT-qPCR was done to analyze circ_0001665 expression in VS cells and it was suggested that circ_001665 was distinctly up-regulated in rat VS cells. Supported by western blot analysis, circ_0001665 inhibition was validated to impede the proliferation while inducing the apoptosis of VS cells via functional assays. Additionally, results of mechanism assays demonstrated that circ_0001665 could function as a sponge of microRNA-302a-3p (miR-302a-3p) to enhance Adam9 expression and to activate EGFR signaling pathway in VS cells. Eventually, it was indicated in rescue assays that circ_0001665 expedited proliferation and restrained apoptosis of VS cells via modulation on miR-302a-3p/Adam9. Collectively, our study identified a novel perspective for exploration into molecular mechanisms in VS.
Collapse
Affiliation(s)
- Lihua Wu
- Department of Otolaryngology, Head and Neck Surgery, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou 350001, Fujian, China
| | - Yinfang Wang
- Medical Department, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou 350001, Fujian, China
| | - Qinghua Liu
- Department of Otolaryngology, Head and Neck Surgery, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou 350001, Fujian, China
| | - Jianman Wu
- Department of Radiology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou 350001, Fujian, China
| | - Hao Zheng
- Department of Otolaryngology, Head and Neck Surgery, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou 350001, Fujian, China
| | - Biyu Lin
- Department of Otolaryngology, Head and Neck Surgery, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou 350001, Fujian, China
| | - Shaopeng Huang
- Department of Otolaryngology, Head and Neck Surgery, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou 350001, Fujian, China.
| |
Collapse
|
13
|
Cheng R, Zhang G, Bai Y, Zhang F, Zhang G. LncRNA SENCR promotes cell proliferation and progression in non-small-cell lung cancer cells via sponging miR-1-3p. Cell Cycle 2021; 20:1402-1414. [PMID: 34224326 PMCID: PMC8344740 DOI: 10.1080/15384101.2021.1924958] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 04/18/2021] [Accepted: 04/28/2021] [Indexed: 12/27/2022] Open
Abstract
ABBREVIATION NSCLC: Non-small cell lung cancer.
Collapse
Affiliation(s)
- Ruirui Cheng
- Department of Respiratory, The First Affiliated Hospital of Zhengzhou University, ZhengzhouChina
| | - Guowei Zhang
- Department of Internal Medicine, The Affiliated Cancer Hospital of Zhengzhou University, ZhengzhouChina
| | - Yong Bai
- Department of Respiratory, The First Affiliated Hospital of Zhengzhou University, ZhengzhouChina
| | - Furui Zhang
- Department of Respiratory, The First Affiliated Hospital of Zhengzhou University, ZhengzhouChina
| | - Guojun Zhang
- Department of Respiratory, The First Affiliated Hospital of Zhengzhou University, ZhengzhouChina
| |
Collapse
|
14
|
Dagnino S, Bodinier B, Guida F, Smith-Byrne K, Petrovic D, Whitaker MD, Haugdahl Nøst T, Agnoli C, Palli D, Sacerdote C, Panico S, Tumino R, Schulze MB, Johansson M, Keski-Rahkonen P, Scalbert A, Vineis P, Johansson M, Sandanger TM, Vermeulen RCH, Chadeau-Hyam M. Prospective Identification of Elevated Circulating CDCP1 in Patients Years before Onset of Lung Cancer. Cancer Res 2021; 81:3738-3748. [PMID: 33574093 PMCID: PMC7611235 DOI: 10.1158/0008-5472.can-20-3454] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 12/15/2020] [Accepted: 02/08/2021] [Indexed: 01/10/2023]
Abstract
Increasing evidence points to a role for inflammation in lung carcinogenesis. A small number of circulating inflammatory proteins have been identified as showing elevated levels prior to lung cancer diagnosis, indicating the potential for prospective circulating protein concentration as a marker of early carcinogenesis. To identify novel markers of lung cancer risk, we measured a panel of 92 circulating inflammatory proteins in 648 prediagnostic blood samples from two prospective cohorts in Italy and Norway (women only). To preserve the comparability of results and protect against confounding factors, the main statistical analyses were conducted in women from both studies, with replication sought in men (Italian participants). Univariate and penalized regression models revealed for the first time higher blood levels of CDCP1 protein in cases that went on to develop lung cancer compared with controls, irrespective of time to diagnosis, smoking habits, and gender. This association was validated in an additional 450 samples. Associations were stronger for future cases of adenocarcinoma where CDCP1 showed better explanatory performance. Integrative analyses combining gene expression and protein levels of CDCP1 measured in the same individuals suggested a link between CDCP1 and the expression of transcripts of LRRN3 and SEM1. Enrichment analyses indicated a potential role for CDCP1 in pathways related to cell adhesion and mobility, such as the WNT/β-catenin pathway. Overall, this study identifies lung cancer-related dysregulation of CDCP1 expression years before diagnosis. SIGNIFICANCE: Prospective proteomics analyses reveal an association between increased levels of circulating CDCP1 and lung carcinogenesis irrespective of smoking and years before diagnosis, and integrating gene expression indicates potential underlying mechanisms.See related commentary by Itzstein et al., p. 3441.
Collapse
Affiliation(s)
- Sonia Dagnino
- MRC Centre for Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, United Kingdom
| | - Barbara Bodinier
- MRC Centre for Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, United Kingdom
| | - Florence Guida
- International Agency for Research on Cancer (IARC), Lyon, France
| | - Karl Smith-Byrne
- International Agency for Research on Cancer (IARC), Lyon, France
| | - Dusan Petrovic
- MRC Centre for Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, United Kingdom
- Department of Epidemiology and Health Systems (DESS), University Center for General Medicine and Public Health (UNISANTE), Lausanne, Switzerland
- Department and Division of Primary Care Medicine, University Hospital of Geneva, Geneva, Switzerland
| | - Matthew D Whitaker
- MRC Centre for Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, United Kingdom
| | - Therese Haugdahl Nøst
- Department of Community Medicine, UiT- The Arctic University of Norway, Tromsø, Norway
| | - Claudia Agnoli
- Epidemiology and Prevention Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Domenico Palli
- Cancer Risk Factors and Life-Style Epidemiology Unit, Institute for Cancer Research, Prevention and Clinical Network - ISPRO, Florence, Italy
| | - Carlotta Sacerdote
- Unit of Cancer Epidemiology, Città della Salute e della Scienza University-Hospital, Turin, Italy
| | - Salvatore Panico
- Department of Clinical Medicine and Surgery, Federico II University, Naples, Italy
| | - Rosario Tumino
- Cancer Registry and Histopathology Department, Provincial Health Authority (ASP) Ragusa, Italy
| | - Matthias B Schulze
- Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
- Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany
| | - Mikael Johansson
- Department of Radiation Sciences, Oncology, Umeå University, Umeå, Sweden
| | | | | | - Paolo Vineis
- MRC Centre for Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, United Kingdom
- Italian Institute of Technology, Genova, Italy
| | | | - Torkjel M Sandanger
- Department of Community Medicine, UiT- The Arctic University of Norway, Tromsø, Norway
| | - Roel C H Vermeulen
- MRC Centre for Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, United Kingdom
- Division of Environmental Epidemiology, Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| | - Marc Chadeau-Hyam
- MRC Centre for Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, United Kingdom.
- Division of Environmental Epidemiology, Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| |
Collapse
|
15
|
Ma D, Zhu Y, Zhang X, Zhang J, Chen W, Chen X, Qian Y, Zhao Y, Hu T, Yao Z, Zhao W, Zhang Y, Liu F. Long Non-coding RNA RUNDC3A-AS1 Promotes Lung Metastasis of Thyroid Cancer via Targeting the miR-182-5p/ADAM9. Front Cell Dev Biol 2021; 9:650004. [PMID: 34046406 PMCID: PMC8147562 DOI: 10.3389/fcell.2021.650004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 02/12/2021] [Indexed: 12/30/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) have been identified as influential indicators in variety of malignancies. Among which, LncRNA RUNDC3A-AS1 is reported to upregulate in thyroid cancer. However, the expression pattern and the pathological function of lncRNA RUNDC3A-AS1 in thyroid cancer is unclear. In this study, we examined the expression levels of lncRNA RUNDC3A-AS1 in the thyroid cancer tissues and cell lines via RT-qPCR analysis. The effects of RUNDC3A-AS1 on thyroid cancer cell metastasis were detected by transwell chamber assay, scratch assay in vitro and lung metastasis model in vivo. The results indicated that RUNDC3A-AS1 was highly expressed in the thyroid cancer tissues and cell lines. Functionally, knockdown of RUNDC3A-AS1 could repress the migration and invasion of thyroid cancer cells in vitro, and inhibit thyroid cancer metastasis to lung in vivo. Mechanistically, RUNDC3A-AS1 served as an inhibitor of miR-182-5p in tumor tissues and cell lines. RUNDC3A-AS1 inhibited the expression of miR-182-5p to increase the expression level of ADAM9, thus further aggravating the malignancy of thyroid cancer. Therefore, the RUNDC3A-AS1/miR-182-5p/ADAM9 axis may be a potential therapeutic target for the treatment of thyroid cancer metastasis.
Collapse
Affiliation(s)
- Dawei Ma
- Department of Pathology, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, China
| | - Yan Zhu
- Department of Pathology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiao Zhang
- The Key Laboratory of Antibody Technology, National Health Commission and Nanjing Medical University, Nanjing, China
| | - Jia Zhang
- Department of Positron Emission Tomography/Computed Tomography (PET/CT) Center, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, China
| | - Wei Chen
- Department of Head and Neck Surgery, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, China
| | - Xinyuan Chen
- Department of Head and Neck Surgery, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, China
| | - Yichun Qian
- Department of Head and Neck Surgery, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, China
| | - Yanbin Zhao
- Department of Head and Neck Surgery, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, China
| | - Tingting Hu
- Department of Head and Neck Surgery, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, China
| | - Zhangyu Yao
- Department of Head and Neck Surgery, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, China
| | - Wei Zhao
- School of Laboratory Medicine/Sichuan Provincial Engineering Laboratory for Prevention and Control Technology of Veterinary Drug Residue in Animal-Origin Food, Chengdu Medical College, Chengdu, China
| | - Yuan Zhang
- Department of Head and Neck Surgery, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, China
| | - Fangzhou Liu
- Department of Head and Neck Surgery, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, China
| |
Collapse
|
16
|
Ruth JH, Gurrea-Rubio M, Athukorala KS, Rasmussen SM, Weber DP, Randon PM, Gedert RJ, Lind ME, Amin MA, Campbell PL, Tsou PS, Mao-Draayer Y, Wu Q, Lanigan TM, Keshamouni VG, Singer NG, Lin F, Fox DA. CD6 is a target for cancer immunotherapy. JCI Insight 2021; 6:145662. [PMID: 33497367 PMCID: PMC8021120 DOI: 10.1172/jci.insight.145662] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 01/20/2021] [Indexed: 12/12/2022] Open
Abstract
Limitations of checkpoint inhibitor cancer immunotherapy include induction of autoimmune syndromes and resistance of many cancers. Since CD318, a novel CD6 ligand, is associated with the aggressiveness and metastatic potential of human cancers, we tested the effect of an anti-CD6 monoclonal antibody, UMCD6, on killing of cancer cells by human lymphocytes. UMCD6 augmented killing of breast, lung, and prostate cancer cells through direct effects on both CD8+ T cells and NK cells, increasing cancer cell death and lowering cancer cell survival in vitro more robustly than monoclonal antibody checkpoint inhibitors that interrupt the programmed cell death 1 (PD-1)/PD-1 ligand 1 (PD-L1) axis. UMCD6 also augmented in vivo killing by human peripheral blood lymphocytes of a human breast cancer line xenotransplanted into immunodeficient mice. Mechanistically, UMCD6 upregulated the expression of the activating receptor NKG2D and downregulated expression of the inhibitory receptor NKG2A on both NK cells and CD8+ T cells, with concurrent increases in perforin and granzyme B production. The combined capability of an anti-CD6 monoclonal antibody to control autoimmunity through effects on CD4+ lymphocyte differentiation while enhancing killing of cancer cells through distinct effects on CD8+ and NK cells opens a potential new approach to cancer immunotherapy that would suppress rather than instigate autoimmunity.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Qi Wu
- Department of Neurology, and
| | | | | | - Nora G. Singer
- Case Western Reserve University
- Division of Rheumatology, MetroHealth Medical Center, Cleveland, Ohio, USA
| | - Feng Lin
- Department of Immunity and Inflammation, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | | |
Collapse
|
17
|
Chou CW, Huang YK, Kuo TT, Liu JP, Sher YP. An Overview of ADAM9: Structure, Activation, and Regulation in Human Diseases. Int J Mol Sci 2020; 21:ijms21207790. [PMID: 33096780 PMCID: PMC7590139 DOI: 10.3390/ijms21207790] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/17/2020] [Accepted: 10/19/2020] [Indexed: 12/16/2022] Open
Abstract
ADAM9 (A disintegrin and a metalloprotease 9) is a membrane-anchored protein that participates in a variety of physiological functions, primarily through the disintegrin domain for adhesion and the metalloprotease domain for ectodomain shedding of a wide variety of cell surface proteins. ADAM9 influences the developmental process, inflammation, and degenerative diseases. Recently, increasing evidence has shown that ADAM9 plays an important role in tumor biology. Overexpression of ADAM9 has been found in several cancer types and is correlated with tumor aggressiveness and poor prognosis. In addition, through either proteolytic or non-proteolytic pathways, ADAM9 promotes tumor progression, therapeutic resistance, and metastasis of cancers. Therefore, comprehensively understanding the mechanism of ADAM9 is crucial for the development of therapeutic anti-cancer strategies. In this review, we summarize the current understanding of ADAM9 in biological function, pathophysiological diseases, and various cancers. Recent advances in therapeutic strategies using ADAM9-related pathways are presented as well.
Collapse
Affiliation(s)
- Cheng-Wei Chou
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404, Taiwan; (C.-W.C.); (Y.-K.H.); (J.-P.L.)
- Department of Medicine, Division of Hematology/Medical Oncology, Taichung Veterans General Hospital, Taichung 407, Taiwan
| | - Yu-Kai Huang
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404, Taiwan; (C.-W.C.); (Y.-K.H.); (J.-P.L.)
| | - Ting-Ting Kuo
- Center for Molecular Medicine, China Medical University Hospital, Taichung 404, Taiwan;
| | - Jing-Pei Liu
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404, Taiwan; (C.-W.C.); (Y.-K.H.); (J.-P.L.)
| | - Yuh-Pyng Sher
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404, Taiwan; (C.-W.C.); (Y.-K.H.); (J.-P.L.)
- Center for Molecular Medicine, China Medical University Hospital, Taichung 404, Taiwan;
- Chinese Medicine Research Center, China Medical University, Taichung 404, Taiwan
- Correspondence: ; Tel.: +886-4-2205-2121
| |
Collapse
|
18
|
Wang M, Zheng S, Li X, Ding Y, Zhang M, Lin L, Xu H, Cheng Y, Zhang X, Xu H, Li S. Integrated Analysis of lncRNA-miRNA-mRNA ceRNA Network Identified lncRNA EPB41L4A-AS1 as a Potential Biomarker in Non-small Cell Lung Cancer. Front Genet 2020; 11:511676. [PMID: 33193600 PMCID: PMC7530329 DOI: 10.3389/fgene.2020.511676] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 08/31/2020] [Indexed: 12/18/2022] Open
Abstract
Background Recent evidence has indicated that long non-coding RNAs (lncRNAs) can function as competing endogenous RNAs (ceRNAs) to modulate mRNAs expression by sponging microRNAs (miRNAs). However, the specific mechanism and function of lncRNA-miRNA-mRNA regulatory network in non-small cell lung cancer (NSCLC) remains unclear. Materials and Methods We constructed a lung cancer related lncRNA-mRNA network (LCLMN) by integrating differentially expressed genes (DEGs) with miRNA-target interactions. We further performed topological feature analysis and random walk with restart (RWR) analysis of LCLMN. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were performed to investigate the target DEGs in LCLMN. The expression levels of significant lncRNAs in NSCLC were validated by quantitative real-time PCR (RT-qPCR). The prognostic value of the potential lncRNA was evaluated by Kaplan-Meier analysis. Results A total of 33 lncRNA nodes, 580 mRNA nodes and 2105 edges were identified from LCLMN. Based on functional enrichment analysis and co-expression analysis, lncRNA EPB41L4A-AS1 was demonstrated to be correlated with the tumorigenesis of NSCLC. RT-qPCR results confirmed that the expression levels of lncRNA EPB41L4A-AS1 in NSCLC tissues were downregulated compared with adjacent non-cancerous tissues. Kaplan-Meier analysis showed that high expression of lncRNA EPB41L4A-AS1 was associated with better overall survival (OS) in NSCLC patients. Further investigation identified that high expression levels of COL4A3BP, CDS2, PURA, PDCD6IP, and TMEM245 were also correlated with better OS in NSCLC patients. Conclusion In this study, we constructed a lncRNA-miRNA-mRNA ceRNA network to investigate potential prognostic biomarkers for NSCLC. We found that lncRNA EPB41L4A-AS1 could function as a regulator in the pathogenesis of NSCLC.
Collapse
Affiliation(s)
- Meiqi Wang
- Department of Clinical Laboratory, Harbin Medical University Cancer Hospital, Harbin, China
| | - Sihan Zheng
- Department of Clinical Laboratory, Harbin Medical University Cancer Hospital, Harbin, China.,College of Laboratory Medicine, Dalian Medical University, Dalian, China
| | - Xi Li
- Department of Clinical Laboratory, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yu Ding
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Mingyan Zhang
- Department of Clinical Laboratory, Harbin Medical University Cancer Hospital, Harbin, China
| | - Lin Lin
- Department of Clinical Laboratory, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Hao Xu
- Department of Thoracic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yue Cheng
- Department of Clinical Laboratory, Harbin Medical University Cancer Hospital, Harbin, China
| | - Xiaonan Zhang
- Department of Clinical Laboratory, Harbin Medical University Cancer Hospital, Harbin, China
| | - Hui Xu
- Department of Clinical Laboratory, Harbin Medical University Cancer Hospital, Harbin, China
| | - Shijun Li
- Department of Clinical Laboratory, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
19
|
Guo T, Yuan D, Lin M, Zhu D, Xu N, Wang J. Aberrant expression of ADAM9 in ovarian cancer and its clinical significance. J Clin Lab Anal 2020; 34:e23136. [PMID: 31793719 PMCID: PMC7171348 DOI: 10.1002/jcla.23136] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 11/08/2019] [Accepted: 11/09/2019] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND The oncogene a disintegrin and metalloproteinase 9 (ADAM9) was up-regulated in ovarian cancer tissues, and the present study aims to explore the potential diagnostic and prognostic value of ADAM9 in ovarian cancer (OC). METHODS A total of 30 paired fresh OC tumor tissues and the paired-adjacent normal tissue, and 90 formalin-fixed paraffin-embedded (FFPE) OC samples and adjacent normal tissue were collected. The expression of OC in FFPE samples was examined by immunohistochemical methods, and the mRNA expression of ADAM9 in fresh tumor samples was examined by RT-qPCR methods. Receiver operating characteristics curve was drawn to analyze the potential diagnostic value of ADAM9. Kaplan-Meier survival analysis was performed to compare the overall survival (OS) and disease-free survival (DFS) of the ADAM9 positive and negative OC patients. RESULTS The positive rate of ADAM9 in FFPE OC tumor tissue was markedly higher than in the non-tumorous tissue (61/90 vs 47/90), and increased expression level of ADAM9 may associate with higher histological grade, advanced Figo stage and increased risk of metastasis; moreover, the mRNA expression of ADAM9 was also increased in OC tissue compared with the normal tissue (P < .001), and results of ROC analysis suggested that ADAM9 is a sensitive marker for the diagnosis of OC( AUC 0.8389, 95% confidence interval 0.7333 to 0.9445); finally, increased expression of ADAM9 may indicate decreased OS (P = .004) and DFS (P = .014) of the patients. CONCLUSION A disintegrin and metalloproteinase 9 was up-regulated in OC, and ADAM9 may serve as potential diagnostic and prognostic marker for the diagnosis and treatment of OC.
Collapse
Affiliation(s)
- Ting Guo
- Institute of Clinical MedicineTaizhou People's Hospital Affiliated to Nantong UniversityTaizhouChina
| | - Donglan Yuan
- Department of Obstetrics and GynecologyTaizhou People's Hospital Affiliated to Nantong UniversityTaizhouChina
| | - Mei Lin
- Department of Clinical LaboratoryTaizhou People's Hospital Affiliated to Nantong UniversityTaizhouChina
| | - Dandan Zhu
- Department of Obstetrics and GynecologyTaizhou People's Hospital Affiliated to Nantong UniversityTaizhouChina
| | - Ning Xu
- Department of Gastrointestinal SurgeryTaizhou People's Hospital Affiliated to Nantong UniversityTaizhouChina
| | - Jun Wang
- Department of EmergencyTaizhou People's Hospital Affiliated to Nantong UniversityTaizhouChina
| |
Collapse
|
20
|
Zuo S, Wei M, Zhang H, Chen A, Wu J, Wei J, Dong J. A robust six-gene prognostic signature for prediction of both disease-free and overall survival in non-small cell lung cancer. J Transl Med 2019; 17:152. [PMID: 31088477 PMCID: PMC6515678 DOI: 10.1186/s12967-019-1899-y] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 04/29/2019] [Indexed: 01/08/2023] Open
Abstract
Background The high mortality of patients with non-small cell lung cancer (NSCLC) emphasizes the necessity of identifying a robust and reliable prognostic signature for NSCLC patients. This study aimed to identify and validate a prognostic signature for the prediction of both disease-free survival (DFS) and overall survival (OS) of NSCLC patients by integrating multiple datasets. Methods We firstly downloaded three independent datasets under the accessing number of GSE31210, GSE37745 and GSE50081, and then performed an univariate regression analysis to identify the candidate prognostic genes from each dataset, and identified the gene signature by overlapping the candidates. Then, we built a prognostic model to predict DFS and OS using a risk score method. Kaplan–Meier curve with log-rank test was used to determine the prognostic significance. Univariate and multivariate Cox proportional hazard regression models were implemented to evaluate the influences of various variables on DFS and OS. The robustness of the prognostic gene signature was evaluated by re-sampling tests based on the combined GEO dataset (GSE31210, GSE37745 and GSE50081). Furthermore, a The Cancer Genome Atlas (TCGA)-NSCLC cohort was utilized to validate the prediction power of the gene signature. Finally, the correlation of the risk score of the gene signature and the Gene set variation analysis (GSVA) score of cancer hallmark gene sets was investigated. Results We identified and validated a six-gene prognostic signature in this study. This prognostic signature stratified NSCLC patients into the low-risk and high-risk groups. Multivariate regression and stratification analyses demonstrated that the six-gene signature was an independent predictive factor for both DFS and OS when adjusting for other clinical factors. Re-sampling analysis implicated that this six-gene signature for predicting prognosis of NSCLC patients is robust. Moreover, the risk score of the gene signature is correlated with the GSVA score of 7 cancer hallmark gene sets. Conclusion This study provided a robust and reliable gene signature that had significant implications in the prediction of both DFS and OS of NSCLC patients, and may provide more effective treatment strategies and personalized therapies. Electronic supplementary material The online version of this article (10.1186/s12967-019-1899-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shuguang Zuo
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, 210093, China.,Center for Translational Medicine, Huaihe Hospital of Henan University, Kaifeng, 475001, Henan Province, China
| | - Min Wei
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, 210093, China
| | - Hailin Zhang
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, 210093, China
| | - Anxian Chen
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, 210093, China
| | - Junhua Wu
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, 210093, China
| | - Jiwu Wei
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, 210093, China. .,Nanjing University Hightech Institute at Suzhou, Suzhou, 215123, China.
| | - Jie Dong
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, 210093, China.
| |
Collapse
|
21
|
Wang Y, Luo X, Liu Y, Han G, Sun D. Long noncoding RNA RMRP promotes proliferation and invasion via targeting miR‐1‐3p in non–small‐cell lung cancer. J Cell Biochem 2019; 120:15170-15181. [PMID: 31050363 DOI: 10.1002/jcb.28779] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Revised: 12/30/2018] [Accepted: 01/09/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Yi Wang
- Department of Clinical Laboratory The Third Affiliated Hospital of Jinzhou Medical University Jinzhou Liaoning P.R. China
| | - Xigang Luo
- Department of Clinical Laboratory The Third Affiliated Hospital of Jinzhou Medical University Jinzhou Liaoning P.R. China
| | - Yang Liu
- Department of Clinical Laboratory The Third Affiliated Hospital of Jinzhou Medical University Jinzhou Liaoning P.R. China
| | - Guanying Han
- Department of Medical The First Affiliated Hospital of Jinzhou Medical University Jinzhou Liaoning P.R. China
| | - Dapeng Sun
- Department of Medical The First Affiliated Hospital of Jinzhou Medical University Jinzhou Liaoning P.R. China
| |
Collapse
|
22
|
Li T, Wang X, Jing L, Li Y. MiR-1-3p Inhibits Lung Adenocarcinoma Cell Tumorigenesis via Targeting Protein Regulator of Cytokinesis 1. Front Oncol 2019; 9:120. [PMID: 30881920 PMCID: PMC6405482 DOI: 10.3389/fonc.2019.00120] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 02/11/2019] [Indexed: 12/21/2022] Open
Abstract
Lung adenocarcinoma (LUAD) is one of the most lethal malignancies, posing a threat to human health. However, the molecular mechanisms underlying LUAD development remain largely unknown. In this study, we found that miR-1-3p was significantly downregulated in human LUAD tissues and cell lines and played an inhibitory role in LUAD cell tumorigenesis, as evidenced by the significantly reduced viability, migration, and invasion of LUAD cells in response to miR-1-3p overexpression. Mechanistically, microRNA (miR)-1-3p physically interacted with the 3′-untranslated region (UTR) of protein regulator of cytokinesis 1 (PRC1) mRNA, leading to downregulation of PRC1. Overexpression of PRC1 reversed the inhibitory effects of miR-1-3p on LUAD cell tumorigenesis, suggesting that the miR-1-3p/PRC1 axis is majorly involved in suppressing LUAD development and progression. Consistently, PRC1 was dramatically induced in LUAD tissues and cell lines as well as associated with a poor prognosis in LUAD patients. Taken together, our study identified the miR-1-3p/PRC1 axis as an important regulatory mechanism contributing to LUAD inhibition and provided valuable clues for the future development of therapeutic strategies against LUAD.
Collapse
Affiliation(s)
- Tao Li
- Department of Respiratory Diseases, Qilu Hospital of Shandong University, Jinan, China
| | - Xiuxiu Wang
- Department of Respiratory Diseases, Qilu Hospital of Shandong University, Jinan, China
| | - Lijun Jing
- Department of Respiratory Diseases, Qilu Hospital of Shandong University, Jinan, China
| | - Yu Li
- Department of Respiratory Diseases, Qilu Hospital of Shandong University, Jinan, China
| |
Collapse
|
23
|
Liu YT, Zong D, Jiang XS, Yin L, Wang LJ, Wang TT, Zhu J, He X. miR-32 promotes esophageal squamous cell carcinoma metastasis by targeting CXXC5. J Cell Biochem 2018; 120:6250-6263. [PMID: 30362164 DOI: 10.1002/jcb.27912] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Accepted: 09/25/2018] [Indexed: 12/11/2022]
Abstract
MicroRNA-32 (miR-32) functioned as a tumor oncogene in some cancer, which control genes involved in important biological and pathological functions and facilitate the tumor growth and metastasis. However, the role of miR-32 modulates esophageal squamous cell carcinoma (ESCC) malignant transformation has not been clarified. Here, we focused on the function and the underlying molecular mechanism of miR-32 in ESCC. Results discovered a significant increased expression of miR-32 in ESCC tissues and cells. Downregulation of miR-32 inhibited the migration, invasion, adhesion of ESCC cell lines (EC9706 and KYSE450), and the levels of EMT protein in vitro. In vivo, miR-32 inhibitors decrease tumor size, tumor weight, and the number of metastatic nodules. Hematoxylin and eosin (H&E) results revealed that inhibition of miR-32 attenuate lung metastasis. Immunohistochemistry and immunofluorescence assay showed increased level of E-cadherin and decreased level of N-cadherin and Vimentin with treatment of miR-32 inhibitors. Furthermore, miR-32 targeted the 3'-untranslated region (3'-UTR) of CXXC5, and inhibited the level of mRNA and protein of CXXC5. There is a negative correlation between the expressions of CXXC5 and miR-32. Then, after EC9706 and KYSE450 cells cotransfected with si-CXXC5 and miR-32 inhibitors, the ability of cell migration, invasion, and adhesion was significantly reduced. In addition, the protein expression of EMT and TGF-β signaling was also depressed. Collectively, these data supply an insight into the positive role of miR-32 in ESCC progression and metastasis, and its biological effects may attribute the inhibition of TGF-β signaling mediated by CXXC5.
Collapse
Affiliation(s)
- Ya-Tian Liu
- Department of Radiotherapy, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, China
| | - Dan Zong
- Department of Radiotherapy, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, China
| | - Xue-Song Jiang
- Department of Radiotherapy, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, China
| | - Li Yin
- Department of Radiotherapy, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, China
| | - Li-Jun Wang
- Department of Radiotherapy, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, China
| | - Ting-Ting Wang
- Department of Radiotherapy, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, China
| | - Jun Zhu
- Department of Radiotherapy, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, China
| | - Xia He
- Department of Radiotherapy, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, China
| |
Collapse
|
24
|
Oria VO, Lopatta P, Schilling O. The pleiotropic roles of ADAM9 in the biology of solid tumors. Cell Mol Life Sci 2018; 75:2291-2301. [PMID: 29550974 PMCID: PMC11105608 DOI: 10.1007/s00018-018-2796-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 02/16/2018] [Accepted: 03/13/2018] [Indexed: 12/11/2022]
Abstract
A disintegrin and a metalloprotease (ADAM) 9 is a metzincin cell-surface protease involved in several biological processes such as myogenesis, fertilization, cell migration, inflammatory response, proliferation, and cell-cell interactions. ADAM9 has been found over-expressed in several solid tumors entities such as glioma, melanoma, prostate cancer, pancreatic ductal adenocarcinoma, gastric, breast, lung, and liver cancers. Immunohistochemical analyses highlight ADAM9 expression by actual cancer cells and associate its abundant presence with clinicopathological features such as shortened overall survival, poor tumor grade, de-differentiation, therapy resistance, and metastasis formation. In each of these tumors, ADAM9 may contribute to tumor biology via proteolytic or non-proteolytic mechanisms. For example, in liver cancer, ADAM9 has been found to shed MHC class I polypeptide-related sequence A, contributing towards the evasion of tumor immunity. ADAM9 may also contribute to tumor biology in non-proteolytic ways probably through interaction with different integrins. For example, in melanoma, the interaction between ADAM9 and β1 integrins facilitates tumor stroma cross talks, which then promotes invasion and metastasis via the activation of MMP1 and MMP2. In breast cancer, the interaction between β1 integrins on endothelial cells and ADAM9 on tumor cells facilitate tumor cell extravasation and invasion to distant sites. This review summarizes the present knowledge on ADAM9 in solid cancers, and the different mechanisms which it employ to drive tumor progression.
Collapse
Affiliation(s)
- Victor O Oria
- Institute of Molecular Medicine and Cell Research, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Paul Lopatta
- Institute of Molecular Medicine and Cell Research, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Oliver Schilling
- Institute of Molecular Medicine and Cell Research, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
- BIOSS Centre for Biological Signaling Studies, University of Freiburg, Freiburg, Germany.
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
25
|
Pedrosa RMSM, Mustafa DAM, Aerts JGJV, Kros JM. Potential Molecular Signatures Predictive of Lung Cancer Brain Metastasis. Front Oncol 2018; 8:159. [PMID: 29868480 PMCID: PMC5958181 DOI: 10.3389/fonc.2018.00159] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 04/25/2018] [Indexed: 12/25/2022] Open
Abstract
Brain metastases are the most common tumors of the central nervous system (CNS). Incidence rates vary according to primary tumor origin, whereas the majority of the cerebral metastases arise from primary tumors in the lung (40-50%). Brain metastases from lung cancer can occur concurrently or within months after lung cancer diagnosis. Survival rates after lung cancer brain metastasis diagnosis remain poor, to an utmost of 10 months. Therefore, prevention of brain metastasis is a critical concern in order to improve survival among cancer patients. Although several studies have been made in order to disclose the genetic and molecular mechanisms associated with CNS metastasis, the precise mechanisms that govern the CNS metastasis from lung cancer are yet to be clarified. The ability to forecast, which patients have a higher risk of brain metastasis occurrence, would aid cancer management approaches to diminish or prevent the development of brain metastasis and improve the clinical outcome for such patients. In this work, we revise genetic and molecular targets suitable for prediction of lung cancer CNS disease.
Collapse
Affiliation(s)
| | - Dana A M Mustafa
- Department of Pathology, Erasmus Medical Center, Rotterdam, Netherlands
| | | | - Johan M Kros
- Department of Pathology, Erasmus Medical Center, Rotterdam, Netherlands
| |
Collapse
|
26
|
Jiao D, Chen J, Li Y, Tang X, Wang J, Xu W, Song J, Li Y, Tao H, Chen Q. miR-1-3p and miR-206 sensitizes HGF-induced gefitinib-resistant human lung cancer cells through inhibition of c-Met signalling and EMT. J Cell Mol Med 2018; 22:3526-3536. [PMID: 29664235 PMCID: PMC6010770 DOI: 10.1111/jcmm.13629] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Accepted: 03/08/2018] [Indexed: 12/20/2022] Open
Abstract
Hepatocyte growth factor (HGF) overexpression is an important mechanism in acquired epidermal growth factor receptor (EGFR) kinase inhibitor gefitinib resistance in lung cancers with EGFR activating mutations. MiR-1-3p and miR-206 act as suppressors in lung cancer proliferation and metastasis. However, whether miR-1-3p and miR-206 can overcome HGF-induced gefitinib resistance in EGFR mutant lung cancer is not clear. In this study, we showed that miR-1-3p and miR-206 restored the sensitivities of lung cancer cells PC-9 and HCC-827 to gefitinib in present of HGF. For the mechanisms, we demonstrated that both miR-1-3p and miR-206 directly target HGF receptor c-Met in lung cancer. Knockdown of c-Met mimicked the effects of miR-1-3p and miR-206 transfections Meanwhile, c-Met overexpression attenuated the effects of miR-1-3p and miR-206 in HGF-induced gefitinib resistance of lung cancers. Furthermore, we showed that miR-1-3p and miR-206 inhibited c-Met downstream Akt and Erk pathway and blocked HGF-induced epithelial-mesenchymal transition (EMT). Finally, we demonstrated that miR-1-3p and miR-206 can increase gefitinib sensitivity in xenograft mouse models in vivo. Our study for the first time indicated the new function of miR-1-3p and miR-206 in overcoming HGF-induced gefitinib resistance in EGFR mutant lung cancer cell.
Collapse
Affiliation(s)
- Demin Jiao
- Department of Respiratory Disease, The 117th Hospital of PLA, Hangzhou, Zhejiang, China
| | - Jun Chen
- Department of Respiratory Disease, The 117th Hospital of PLA, Hangzhou, Zhejiang, China
| | - Yu Li
- Department of Respiratory Disease, The 117th Hospital of PLA, Hangzhou, Zhejiang, China
| | - Xiali Tang
- Department of Respiratory Disease, The 117th Hospital of PLA, Hangzhou, Zhejiang, China
| | - Jian Wang
- Department of Respiratory Disease, The 117th Hospital of PLA, Hangzhou, Zhejiang, China
| | - Wei Xu
- Department of Respiratory Disease, The 117th Hospital of PLA, Hangzhou, Zhejiang, China
| | - Jia Song
- Department of Respiratory Disease, The 117th Hospital of PLA, Hangzhou, Zhejiang, China
| | - You Li
- Department of Respiratory Disease, The 117th Hospital of PLA, Hangzhou, Zhejiang, China
| | - Huimin Tao
- Department of Respiratory Disease, The 117th Hospital of PLA, Hangzhou, Zhejiang, China
| | - Qingyong Chen
- Department of Respiratory Disease, The 117th Hospital of PLA, Hangzhou, Zhejiang, China.,The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
27
|
Lin CY, Cho CF, Bai ST, Liu JP, Kuo TT, Wang LJ, Lin YS, Lin CC, Lai LC, Lu TP, Hsieh CY, Chu CN, Cheng DC, Sher YP. ADAM9 promotes lung cancer progression through vascular remodeling by VEGFA, ANGPT2, and PLAT. Sci Rep 2017; 7:15108. [PMID: 29118335 PMCID: PMC5678093 DOI: 10.1038/s41598-017-15159-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 10/23/2017] [Indexed: 12/27/2022] Open
Abstract
Lung cancer has a very high prevalence of brain metastasis, which results in a poor clinical outcome. Up-regulation of a disintegrin and metalloproteinase 9 (ADAM9) in lung cancer cells is correlated with metastasis to the brain. However, the molecular mechanism underlying this correlation remains to be elucidated. Since angiogenesis is an essential step for brain metastasis, microarray experiments were used to explore ADAM9-regulated genes that function in vascular remodeling. The results showed that the expression levels of vascular endothelial growth factor A (VEGFA), angiopoietin-2 (ANGPT2), and tissue plasminogen activator (PLAT) were suppressed in ADAM9-silenced cells, which in turn leads to decreases in angiogenesis, vascular remodeling, and tumor growth in vivo. Furthermore, simultaneous high expression of ADAM9 and VEGFA or of ADAM9 and ANGPT2 was correlated with poor prognosis in a clinical dataset. These findings suggest that ADAM9 promotes tumorigenesis through vascular remodeling, particularly by increasing the function of VEGFA, ANGPT2, and PLAT.
Collapse
Affiliation(s)
- Chen-Yuan Lin
- Graduate Institute of Clinical Medical Science, China Medical University, Taichung, 404, Taiwan.,Center for Molecular Medicine, China Medical University Hospital, Taichung, 404, Taiwan.,Division of Hematology and Oncology, China Medical University Hospital, Taichung, 404, Taiwan
| | - Chia-Fong Cho
- Center for Molecular Medicine, China Medical University Hospital, Taichung, 404, Taiwan
| | - Shih-Ting Bai
- Center for Molecular Medicine, China Medical University Hospital, Taichung, 404, Taiwan
| | - Jing-Pei Liu
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, 404, Taiwan
| | - Ting-Ting Kuo
- Center for Molecular Medicine, China Medical University Hospital, Taichung, 404, Taiwan
| | - Li-Ju Wang
- Center for Molecular Medicine, China Medical University Hospital, Taichung, 404, Taiwan
| | - Yu-Sen Lin
- Graduate Institute of Clinical Medical Science, China Medical University, Taichung, 404, Taiwan.,Division of Thoracic Surgery, China Medical University Hospital, Taichung, 404, Taiwan
| | - Ching-Chan Lin
- Graduate Institute of Clinical Medical Science, China Medical University, Taichung, 404, Taiwan.,Division of Hematology and Oncology, China Medical University Hospital, Taichung, 404, Taiwan
| | - Liang-Chuan Lai
- Graduate Institute of Physiology, National Taiwan University, Taipei, 106, Taiwan
| | - Tzu-Pin Lu
- Department of Public Health, National Taiwan University, Taipei, 106, Taiwan
| | - Chih-Ying Hsieh
- Center for Molecular Medicine, China Medical University Hospital, Taichung, 404, Taiwan
| | - Chin-Nan Chu
- Graduate Institute of Clinical Medical Science, China Medical University, Taichung, 404, Taiwan.,Department of Radiation Oncology, China Medical University Hospital, Taichung, 404, Taiwan
| | - Da-Chuan Cheng
- Graduate Institute of Clinical Medical Science, China Medical University, Taichung, 404, Taiwan.,Department of Biomedical Imaging and Radiological Science, China Medical University, Taichung, 404, Taiwan
| | - Yuh-Pyng Sher
- Graduate Institute of Clinical Medical Science, China Medical University, Taichung, 404, Taiwan. .,Graduate Institute of Biomedical Sciences, China Medical University, Taichung, 404, Taiwan. .,Center for Molecular Medicine, China Medical University Hospital, Taichung, 404, Taiwan.
| |
Collapse
|