1
|
Liao C, Hu L, Zhang Q. Von Hippel-Lindau protein signalling in clear cell renal cell carcinoma. Nat Rev Urol 2024; 21:662-675. [PMID: 38698165 DOI: 10.1038/s41585-024-00876-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/26/2024] [Indexed: 05/05/2024]
Abstract
The distinct pathological and molecular features of kidney cancer in adaptation to oxygen homeostasis render this malignancy an attractive model for investigating hypoxia signalling and potentially developing potent targeted therapies. Hypoxia signalling has a pivotal role in kidney cancer, particularly within the most prevalent subtype, known as renal cell carcinoma (RCC). Hypoxia promotes various crucial pathological processes, such as hypoxia-inducible factor (HIF) activation, angiogenesis, proliferation, metabolic reprogramming and drug resistance, all of which contribute to kidney cancer development, growth or metastasis formation. A substantial portion of kidney cancers, in particular clear cell RCC (ccRCC), are characterized by a loss of function of Von Hippel-Lindau tumour suppressor (VHL), leading to the accumulation of HIF proteins, especially HIF2α, a crucial driver of ccRCC. Thus, therapeutic strategies targeting pVHL-HIF signalling have been explored in ccRCC, culminating in the successful development of HIF2α-specific antagonists such as belzutifan (PT2977), an FDA-approved drug to treat VHL-associated diseases including advanced-stage ccRCC. An increased understanding of hypoxia signalling in kidney cancer came from the discovery of novel VHL protein (pVHL) targets, and mechanisms of synthetic lethality with VHL mutations. These breakthroughs can pave the way for the development of innovative and potent combination therapies in kidney cancer.
Collapse
Affiliation(s)
- Chengheng Liao
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Lianxin Hu
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Qing Zhang
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
- Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
| |
Collapse
|
2
|
Meo C, de Nigris F. Clinical Potential of YY1-Hypoxia Axis for Vascular Normalization and to Improve Immunotherapy. Cancers (Basel) 2024; 16:491. [PMID: 38339244 PMCID: PMC10854702 DOI: 10.3390/cancers16030491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/12/2024] [Accepted: 01/19/2024] [Indexed: 02/12/2024] Open
Abstract
Abnormal vasculature in solid tumors causes poor blood perfusion, hypoxia, low pH, and immune evasion. It also shapes the tumor microenvironment and affects response to immunotherapy. The combination of antiangiogenic therapy and immunotherapy has emerged as a promising approach to normalize vasculature and unlock the full potential of immunotherapy. However, the unpredictable and redundant mechanisms of vascularization and immune suppression triggered by tumor-specific hypoxic microenvironments indicate that such combination therapies need to be further evaluated to improve patient outcomes. Here, we provide an overview of the interplay between tumor angiogenesis and immune modulation and review the function and mechanism of the YY1-HIF axis that regulates the vascular and immune tumor microenvironment. Furthermore, we discuss the potential of targeting YY1 and other strategies, such as nanocarrier delivery systems and engineered immune cells (CAR-T), to normalize tumor vascularization and re-establish an immune-permissive microenvironment to enhance the efficacy of cancer therapy.
Collapse
Affiliation(s)
| | - Filomena de Nigris
- Department of Precision Medicine, School of Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy;
| |
Collapse
|
3
|
Kao TW, Bai GH, Wang TL, Shih IM, Chuang CM, Lo CL, Tsai MC, Chiu LY, Lin CC, Shen YA. Novel cancer treatment paradigm targeting hypoxia-induced factor in conjunction with current therapies to overcome resistance. J Exp Clin Cancer Res 2023; 42:171. [PMID: 37460927 DOI: 10.1186/s13046-023-02724-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 05/29/2023] [Indexed: 07/20/2023] Open
Abstract
Chemotherapy, radiotherapy, targeted therapy, and immunotherapy are established cancer treatment modalities that are widely used due to their demonstrated efficacy against tumors and favorable safety profiles or tolerability. Nevertheless, treatment resistance continues to be one of the most pressing unsolved conundrums in cancer treatment. Hypoxia-inducible factors (HIFs) are a family of transcription factors that regulate cellular responses to hypoxia by activating genes involved in various adaptations, including erythropoiesis, glucose metabolism, angiogenesis, cell proliferation, and apoptosis. Despite this critical function, overexpression of HIFs has been observed in numerous cancers, leading to resistance to therapy and disease progression. In recent years, much effort has been poured into developing innovative cancer treatments that target the HIF pathway. Combining HIF inhibitors with current cancer therapies to increase anti-tumor activity and diminish treatment resistance is one strategy for combating therapeutic resistance. This review focuses on how HIF inhibitors could be applied in conjunction with current cancer treatments, including those now being evaluated in clinical trials, to usher in a new era of cancer therapy.
Collapse
Affiliation(s)
- Ting-Wan Kao
- Department of Pathology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 110301, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, 110301, Taiwan
| | - Geng-Hao Bai
- Department of Internal Medicine, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei City, 100225, Taiwan
| | - Tian-Li Wang
- Departments of Pathology, Oncology and Gynecology and Obstetrics, Johns Hopkins Medical Institutions, 1550 Orleans StreetRoom 306, Baltimore, MD, CRB221231, USA
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ie-Ming Shih
- Departments of Pathology, Oncology and Gynecology and Obstetrics, Johns Hopkins Medical Institutions, 1550 Orleans StreetRoom 306, Baltimore, MD, CRB221231, USA
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Chi-Mu Chuang
- Faculty of Medicine, School of Medicine, National Yang-Ming Chiao Tung University, Taipei, 112304, Taiwan
- Department of Obstetrics and Gynecology, Taipei Veterans General Hospital, Taipei, 112201, Taiwan
- Department of Midwifery and Women Health Care, National Taipei University of Nursing and Health Sciences, Taipei, 112303, Taiwan
| | - Chun-Liang Lo
- Department of Biomedical Engineering, National Yang-Ming Chiao Tung University, Taipei, 112304, Taiwan
- Medical Device Innovation and Translation Center, National Yang Ming Chiao Tung University, Taipei, 112304, Taiwan
| | - Meng-Chen Tsai
- Department of General Medicine, Taipei Medical University Hospital, Taipei, 110301, Taiwan
| | - Li-Yun Chiu
- Department of General Medicine, Mackay Memorial Hospital, Taipei, 104217, Taiwan
| | - Chu-Chien Lin
- Department of Pathology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 110301, Taiwan
- School of Medicine, College of Medicine, Taipei Medical University, Taipei City, 110301, Taiwan
| | - Yao-An Shen
- Department of Pathology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 110301, Taiwan.
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, 110301, Taiwan.
- International Master/Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei, 110301, Taiwan.
| |
Collapse
|
4
|
Delcuratolo MD, Tucci M, Turco F, Di Stefano RF, Ungaro A, Audisio M, Samuelly A, Brusa F, Audisio A, Di Maio M, Scagliotti GV, Buttigliero C. Therapeutic sequencing in advanced renal cell carcinoma: How to choose considering clinical and biological factors. Crit Rev Oncol Hematol 2023; 181:103881. [PMID: 36427772 DOI: 10.1016/j.critrevonc.2022.103881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 10/26/2022] [Accepted: 11/21/2022] [Indexed: 11/26/2022] Open
Abstract
In the last fifteen years a better understanding of the biological processes promoting tumour growth and progression led to an impressive revolution in metastatic renal cell carcinoma (mRCC) treatment landscape. Angiogenesis plays a critical role in the pathogenesis of RCC. These biological evidences led to targeted therapies interfering with vascular endothelial growth factor and mammalian target of rapamycin pathway. Another big step in the RCC therapeutic landscape was recently made because of the understanding of the interplay between angiogenesis and immune cells. Dual immune checkpoint inhibitors (ICIs) and ICIs plus tyrosine kinase inhibitors (TKI) combinations have been approved considering overall survival benefit compared to targeted therapies as first line treatment. We summarize the activity and the biological rationale of ICIs combinations as mRCC first line therapy. Additionally, we review the clinical and biological criteria useful to guide clinicians in the choice of treatment sequencing focusing on ICIs combinations resistance mechanisms.
Collapse
Affiliation(s)
- Marco Donatello Delcuratolo
- Department of Oncology, University of Turin, at Division of Medical Oncology, San Luigi Gonzaga Hospital, Regione Gonzole 10, Orbassano, Turin 10043, Italy
| | - Marcello Tucci
- Medical Oncology Department, Cardinal Massaia Hospital, Asti 14100, Italy.
| | - Fabio Turco
- Department of Oncology, University of Turin, at Division of Medical Oncology, San Luigi Gonzaga Hospital, Regione Gonzole 10, Orbassano, Turin 10043, Italy
| | - Rosario Francesco Di Stefano
- Department of Oncology, University of Turin, at Division of Medical Oncology, San Luigi Gonzaga Hospital, Regione Gonzole 10, Orbassano, Turin 10043, Italy
| | - Antonio Ungaro
- Department of Oncology, University of Turin, at Division of Medical Oncology, San Luigi Gonzaga Hospital, Regione Gonzole 10, Orbassano, Turin 10043, Italy
| | - Marco Audisio
- Department of Oncology, University of Turin, at Division of Medical Oncology, San Luigi Gonzaga Hospital, Regione Gonzole 10, Orbassano, Turin 10043, Italy
| | - Alessandro Samuelly
- Department of Oncology, University of Turin, at Division of Medical Oncology, San Luigi Gonzaga Hospital, Regione Gonzole 10, Orbassano, Turin 10043, Italy
| | - Federica Brusa
- Medical Oncology Department, Cardinal Massaia Hospital, Asti 14100, Italy
| | - Alessandro Audisio
- Department of Oncology, University of Turin, at Division of Medical Oncology, San Luigi Gonzaga Hospital, Regione Gonzole 10, Orbassano, Turin 10043, Italy
| | - Massimo Di Maio
- Department of Oncology, University of Turin, at Division of Medical Oncology, Ordine Mauriziano Hospital, Via Magellano 1, Turin 10028, Italy
| | - Giorgio Vittorio Scagliotti
- Department of Oncology, University of Turin, at Division of Medical Oncology, San Luigi Gonzaga Hospital, Regione Gonzole 10, Orbassano, Turin 10043, Italy
| | - Consuelo Buttigliero
- Department of Oncology, University of Turin, at Division of Medical Oncology, San Luigi Gonzaga Hospital, Regione Gonzole 10, Orbassano, Turin 10043, Italy
| |
Collapse
|
5
|
Wang Y, Liu X, Huang W, Liang J, Chen Y. The intricate interplay between HIFs, ROS, and the ubiquitin system in the tumor hypoxic microenvironment. Pharmacol Ther 2022; 240:108303. [PMID: 36328089 DOI: 10.1016/j.pharmthera.2022.108303] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 10/16/2022] [Accepted: 10/26/2022] [Indexed: 11/09/2022]
Abstract
Alterations in protein ubiquitination and hypoxia-inducible factor (HIF) signaling both contribute to tumorigenesis and tumor progression. Ubiquitination is a dynamic process that is coordinately regulated by E3 ligases and deubiquitinases (DUBs), which have emerged as attractive therapeutic targets. HIF expression and transcriptional activity are usually increased in tumors, leading to poor clinical outcomes. Reactive oxygen species (ROS) are upregulated in tumors and have multiple effects on HIF signaling and the ubiquitin system. A growing body of evidence has shown that multiple E3 ligases and UBDs function synergistically to control the expression and activity of HIF, thereby allowing cancer cells to cope with the hypoxic microenvironment. Conversely, several E3 ligases and DUBs are regulated by hypoxia and/or HIF signaling. Hypoxia also induces ROS production, which in turn modulates the stability or activity of HIF, E3 ligases, and DUBs. Understanding the complex networks between E3 ligase, DUBs, ROS, and HIF will provide insights into the fundamental mechanism of the cellular response to hypoxia and help identify novel molecular targets for cancer treatment. We review the current knowledge on the comprehensive relationship between E3 ligase, DUBs, ROS, and HIF signaling, with a particular focus on the use of E3 ligase or DUB inhibitors in cancer.
Collapse
Affiliation(s)
- Yijie Wang
- Institute of Biomedical Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Center for Cell Structure and Function, College of Life Sciences, Shandong Normal University, Jinan, Shandong 250014, China
| | - Xiong Liu
- School of Medicine, Jinan University, Guangzhou, Guangdong 510632, China
| | - Weixiao Huang
- School of Medicine, Jinan University, Guangzhou, Guangdong 510632, China
| | - Junjie Liang
- The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510630, China.
| | - Yan Chen
- Institute of Biomedical Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Center for Cell Structure and Function, College of Life Sciences, Shandong Normal University, Jinan, Shandong 250014, China; School of Medicine, Jinan University, Guangzhou, Guangdong 510632, China.
| |
Collapse
|
6
|
Coronel-Hernández J, Delgado-Waldo I, Cantú de León D, López-Camarillo C, Jacobo-Herrera N, Ramos-Payán R, Pérez-Plasencia C. HypoxaMIRs: Key Regulators of Hallmarks of Colorectal Cancer. Cells 2022; 11:1895. [PMID: 35741024 PMCID: PMC9221210 DOI: 10.3390/cells11121895] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/03/2022] [Accepted: 06/07/2022] [Indexed: 01/27/2023] Open
Abstract
Hypoxia in cancer is a thoroughly studied phenomenon, and the logical cause of the reduction in oxygen tension is tumor growth itself. While sustained hypoxia leads to death by necrosis in cells, there is an exquisitely regulated mechanism that rescues hypoxic cells from their fatal fate. The accumulation in the cytoplasm of the transcription factor HIF-1α, which, under normoxic conditions, is marked for degradation by a group of oxygen-sensing proteins known as prolyl hydroxylases (PHDs) in association with the von Hippel-Lindau anti-oncogene (VHL) is critical for the cell, as it regulates different mechanisms through the genes it induces. A group of microRNAs whose expression is regulated by HIF, collectively called hypoxaMIRs, have been recognized. In this review, we deal with the hypoxaMIRs that have been shown to be expressed in colorectal cancer. Subsequently, using data mining, we analyze a panel of hypoxaMIRs expressed in both normal and tumor tissues obtained from TCGA. Finally, we assess the impact of these hypoxaMIRs on cancer hallmarks through their target genes.
Collapse
Affiliation(s)
- Jossimar Coronel-Hernández
- Genomics Laboratory, The National Cancer Institute of México, Tlalpan, Mexico City 14080, Mexico; (I.D.-W.); (D.C.d.L.)
- Functional Genomics Laboratory, Biomedicine Unit, FES-IZTACALA, UNAM, Tlalnepantla 54090, Mexico
| | - Izamary Delgado-Waldo
- Genomics Laboratory, The National Cancer Institute of México, Tlalpan, Mexico City 14080, Mexico; (I.D.-W.); (D.C.d.L.)
| | - David Cantú de León
- Genomics Laboratory, The National Cancer Institute of México, Tlalpan, Mexico City 14080, Mexico; (I.D.-W.); (D.C.d.L.)
| | - César López-Camarillo
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México, Mexico City 03100, Mexico;
| | - Nadia Jacobo-Herrera
- Biochemistry Unit, Institute of Medical Sciences and Nutrition, Salvador Zubirán, Tlalpan, Mexico City 14080, Mexico;
| | - Rosalío Ramos-Payán
- Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa, Culiacan City 80030, Mexico;
| | - Carlos Pérez-Plasencia
- Genomics Laboratory, The National Cancer Institute of México, Tlalpan, Mexico City 14080, Mexico; (I.D.-W.); (D.C.d.L.)
- Functional Genomics Laboratory, Biomedicine Unit, FES-IZTACALA, UNAM, Tlalnepantla 54090, Mexico
| |
Collapse
|
7
|
Ye H, Wu K, Liu Y, Zhu Y, Luo H, Zou W. Zinc oxide nanoparticle attenuates chemotherapy resistance by inducing cell stemness progression of colorectal cancer via miR-1321/HIF-2α axis. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.103938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
8
|
Integrated mRNA and miRNA Transcriptomic Analyses Reveals Divergent Mechanisms of Sunitinib Resistance in Clear Cell Renal Cell Carcinoma (ccRCC). Cancers (Basel) 2021; 13:cancers13174401. [PMID: 34503211 PMCID: PMC8430814 DOI: 10.3390/cancers13174401] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/26/2021] [Accepted: 08/27/2021] [Indexed: 12/31/2022] Open
Abstract
Simple Summary Clear cell renal cell carcinoma (ccRCC) is a frequent cancer that causes more than 100,000 deaths every year. Treatment with drugs that target enzymes that help tumours grow such as sunitinib have greatly improved the prospects for ccRCC patients, however a large proportion of patients become resistant. We created sunitinib resistant cell lines and identified consequent changes in gene (and miRNA) expression by microarray analyses. Using this approach, we identified different pathways of resistance suggesting that tumour cells have many ways to overcome sunitinib treatment. We were able to overcome resistance in cells by inhibiting a protein, PD-L1, that is targeted by many immunotherapeutics currently in use for ccRCC patients suggesting a combination of immunotherapy and sunitinib may benefit patients. In addition, we identified miRNAs that are common to multiple resistance mechanisms suggesting they may be useful targets for future studies. Abstract The anti-angiogenic therapy sunitinib remains the standard first-line treatment for meta static clear cell renal cell carcinoma (ccRCC). However, acquired resistance develops in nearly all responsive patients and represents a major source of treatment failure. We used an integrated miRNA and mRNA transcriptomic approach to identify miRNA:target gene interactions involved in sunitinib resistance. Through the generation of stably resistant clones in three ccRCC cell lines (786-O, A498 and Caki-1), we identified non-overlapping miRNA:target gene networks, suggesting divergent mechanisms of sunitinib resistance. Surprisingly, even though the genes involved in these networks were different, they shared targeting by multiple members of the miR-17~92 cluster. In 786-O cells, targeted genes were related to hypoxia/angiogenic pathways, whereas, in Caki-1 cells, they were related to inflammatory/proliferation pathways. The immunotherapy target PD-L1 was consistently up-regulated in resistant cells, and we demonstrated that the silencing of this gene resulted in an increase in sensitivity to sunitinib treatment only in 786-O-resistant cells, suggesting that some ccRCC patients might benefit from combination therapy with PD-L1 checkpoint inhibitors. In summary, we demonstrate that, although there are clearly divergent mechanisms of sunitinib resistance in ccRCC subtypes, the commonality of miRNAs in multiple pathways could be targeted to overcome sunitinib resistance.
Collapse
|
9
|
Nachbargauer S, Bruchbacher A, Fajkovic H, Remzi M, Schmidinger M. Sunitinib Rechallenge in Patients With Metastatic Renal Cell Carcinoma. Clin Genitourin Cancer 2019; 18:e277-e283. [PMID: 31902715 DOI: 10.1016/j.clgc.2019.11.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 11/02/2019] [Accepted: 11/27/2019] [Indexed: 01/10/2023]
Abstract
BACKGROUND Sunitinib has been the standard of care for patients with metastatic renal cell carcinoma (mRCC). However, nearly all patients will eventually develop resistance. Before the introduction of novel agents, few treatment options remained after sunitinib failure. Sunitinib rechallenge is a strategy based on the presumption that resistance might be only temporary. The aim of this analysis was to evaluate the efficacy and safety of sunitinib rechallenge in patients with mRCC. PATIENTS AND METHODS Patients who had undergone sunitinib rechallenge (SU2) at the Medical University of Vienna from 2010 to 2017 were identified for the present retrospective study. The primary endpoint was the treatment duration with rechallenge (TDSU2). The secondary endpoints included the treatment duration with upfront sunitinib (TDSU1), progression-free survival (PFSSU1 and PFSSU2), overall survival (OSSU1 and OSSU2), the objective response rate in both settings (ORRSU1 and ORRSU2), and toxicity. RESULTS A total of 31 patients were eligible. The median TDSU2 was 7.2 months, and the median TDSU1 was 17.8 months. The median OSSU1 and OSSU2 was 57.9 months and 14.7 months, respectively. The median PFSSU1 and PFSSU2 was 14.2 months and 5.6 months, respectively. The ORRSU1 and ORRSU2 was 34% and 16%, and another 48% and 42% achieved stable disease (SD), respectively. Fatigue and hypertension were the most common adverse events. CONCLUSIONS Sunitinib rechallenge appears to benefit patients in later treatment lines. With the abundance of novel treatment options available, this approach might appear less relevant. However, novel agents are not yet available everywhere. Thus, sunitinib rechallenge could be an additional strategy to improve the outcomes of patients with mRCC.
Collapse
Affiliation(s)
- Sebastian Nachbargauer
- Clinical Division of Oncology and Comprehensive Cancer Center, Department of Medicine I, Medical University of Vienna, Vienna, Austria.
| | - Andreas Bruchbacher
- Clinical Division of Oncology and Comprehensive Cancer Center, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Harun Fajkovic
- Department of Urology, Medical University of Vienna, Vienna, Austria
| | - Mesut Remzi
- Department of Urology, Medical University of Vienna, Vienna, Austria
| | - Manuela Schmidinger
- Clinical Division of Oncology and Comprehensive Cancer Center, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
10
|
Drug resistance in papillary RCC: from putative mechanisms to clinical practicalities. Nat Rev Urol 2019; 16:655-673. [PMID: 31602010 DOI: 10.1038/s41585-019-0233-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/29/2019] [Indexed: 11/08/2022]
Abstract
Papillary renal cell carcinoma (pRCC) is the second most common renal cell carcinoma (RCC) subtype and accounts for 10-15% of all RCCs. Despite clinical need, few pharmacogenomics studies in pRCC have been performed. Moreover, current research fails to adequately include pRCC laboratory models, such as the ACHN or Caki-2 pRCC cell lines. The molecular mechanisms involved in pRCC development and drug resistance are more diverse than in clear-cell RCC, in which inactivation of VHL occurs in the majority of tumours. Drug resistance to multiple therapies in pRCC occurs via genetic alteration (such as mutations resulting in abnormal receptor tyrosine kinase activation or RALBP1 inhibition), dysregulation of signalling pathways (such as GSK3β-EIF4EBP1, PI3K-AKT and the MAPK or interleukin signalling pathways), deregulation of cellular processes (such as resistance to apoptosis or epithelial-to-mesenchymal transition) and interactions between the cell and its environment (for example, through activation of matrix metalloproteinases). Improved understanding of resistance mechanisms will facilitate drug discovery and provide new effective therapies. Further studies on novel resistance biomarkers are needed to improve patient prognosis and stratification as well as drug development.
Collapse
|
11
|
Mallikarjuna P, Raviprakash TS, Aripaka K, Ljungberg B, Landström M. Interactions between TGF-β type I receptor and hypoxia-inducible factor-α mediates a synergistic crosstalk leading to poor prognosis for patients with clear cell renal cell carcinoma. Cell Cycle 2019; 18:2141-2156. [PMID: 31339433 PMCID: PMC6986558 DOI: 10.1080/15384101.2019.1642069] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
To investigate the significance of expression of HIF-1α, HIF-2α, and SNAIL1 proteins; and TGF-β signaling pathway proteins in ccRCC, their relation with clinicopathological parameters and patient's survival were examined. We also investigated potential crosstalk between HIF-α and TGF-β signaling pathway, including the TGF-β type 1 receptor (ALK5-FL) and the intracellular domain of ALK5 (ALK5-ICD). Tissue samples from 154 ccRCC patients and comparable adjacent kidney cortex samples from 38 patients were analyzed for HIF-1α/2α, TGF-β signaling components, and SNAIL1 proteins by immunoblot. Protein expression of HIF-1α and HIF-2α were significantly higher, while SNAIL1 had similar expression levels in ccRCC compared with the kidney cortex. HIF-2α associated with poor cancer-specific survival, while HIF-1α and SNAIL1 did not associate with survival. Moreover, HIF-2α positively correlated with ALK5-ICD, pSMAD2/3, and PAI-1; HIF-1α positively correlated with pSMAD2/3; SNAIL1 positively correlated with ALK5-FL, ALK5-ICD, pSMAD2/3, PAI-1, and HIF-2α. Intriguingly, in vitro experiments performed under normoxic conditions revealed that ALK5 interacts with HIF-1α and HIF-2α, and promotes their expression and the expression of their target genes GLUT1 and CA9, in a VHL dependent manner. We found that ALK5 induces expression of HIF-1α and HIF-2α, through its kinase activity. Under hypoxic conditions, HIF-α proteins correlated with the activated TGF-β signaling pathway. In conclusion, we reveal that ALK5 plays a pivotal role in synergistic crosstalk between TGF-β signaling and hypoxia pathway, and that the interaction between ALK5 and HIF-α contributes to tumor progression.
Collapse
Affiliation(s)
| | | | - Karthik Aripaka
- a Department of Medical Biosciences, Pathology , Umeå , Sweden
| | - Börje Ljungberg
- b Department of Surgical and Perioperative Sciences, Urology and Andrology, Umeå University , Umeå , Sweden
| | | |
Collapse
|
12
|
Abstract
PURPOSE OF REVIEW In this review, the importance of the hypoxia inducible factor (HIF) pathway in tumorigenesis and cancer treatment outcomes will be discussed. The outcomes of phase II and III clinical trials of direct HIF inhibitors in the treatment of cancer will be reviewed. RECENT FINDINGS The HIF signaling pathway is activated by tumor-induced hypoxia or by inactivating mutations of the VHL gene. HIF is a transcription factor which regulates the expression of genes involved in adjusting mechanisms to hypoxia such as angiogenesis or apoptosis as well as tumor growth, invasion, and metastasis. The HIF pathway has a key role in development of resistance to different treatment modalities and higher expression of the HIF molecule is associated with poor prognosis. Clinical studies of the HIF inhibitors in patients with advanced/refractory cancers suggest benefit and warrant further studies of the HIF inhibitors either as a single agent or in combination with other therapeutic agents.
Collapse
Affiliation(s)
- Jaleh Fallah
- Department of Hematology and Medical Oncology, Cleveland Clinic Taussig Cancer Institute, 9500 Euclid Avenue, Desk CA60, Cleveland, OH, 44195, USA
| | - Brian I Rini
- Department of Hematology and Medical Oncology, Cleveland Clinic Taussig Cancer Institute, 9500 Euclid Avenue, Desk CA60, Cleveland, OH, 44195, USA.
| |
Collapse
|
13
|
Zong S, Li J, Yang L, Huang Q, Ye Z, Hou G, Ye M. Synergistic antitumor effect of polysaccharide from Lachnum sp. in combination with cyclophosphamide in hepatocellular carcinoma. Carbohydr Polym 2018; 196:33-46. [PMID: 29891303 DOI: 10.1016/j.carbpol.2018.05.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 04/28/2018] [Accepted: 05/02/2018] [Indexed: 02/07/2023]
Abstract
Combination therapy with chemotherapeutics is attracting increasing attention as an important treatment option for hepatocellular carcinoma (HCC) due to its complex pathological characteristics. In this study, as a new therapy strategy, combination treatment of LEP-2a (a non-toxic polysaccharide from Lachnum sp.) with cyclophosphamide (CTX) was investigated. Results showed that combination treatment with LEP-2a and CTX processed a significantly synergistic anti-tumor effect in H22 tumor-bearing mice through Fas/FasL mediated caspase-dependent death pathway and mitochondria apoptosis pathway. Moreover, our study indicated that LEP-2a played a crucial role in enhancement of immune response, inhibition of tumor angiogenesis and down-regulation of survival associated proteins. Notably, side effects induced by CTX were relieved after LEP-2a treatment. These results support the conception that LEP-2a has the potential as an ideal adjuvant agent for a more effective combination therapy with CTX against HCC.
Collapse
Affiliation(s)
- Shuai Zong
- School of Food Science and Engineering, Hefei University of Technology, Hefei, Anhui 230009, PR China
| | - Jinglei Li
- School of Food Science and Engineering, Hefei University of Technology, Hefei, Anhui 230009, PR China
| | - Liu Yang
- School of Food Science and Engineering, Hefei University of Technology, Hefei, Anhui 230009, PR China
| | - Qianli Huang
- School of Biological and Medical Engineering, Hefei University of Technology, Hefei, Anhui 230009, PR China
| | - Ziyang Ye
- School of Food Science and Engineering, Hefei University of Technology, Hefei, Anhui 230009, PR China
| | - Guohua Hou
- School of Food Science and Engineering, Hefei University of Technology, Hefei, Anhui 230009, PR China
| | - Ming Ye
- School of Food Science and Engineering, Hefei University of Technology, Hefei, Anhui 230009, PR China.
| |
Collapse
|
14
|
Lai Y, Zhao Z, Zeng T, Liang X, Chen D, Duan X, Zeng G, Wu W. Crosstalk between VEGFR and other receptor tyrosine kinases for TKI therapy of metastatic renal cell carcinoma. Cancer Cell Int 2018. [PMID: 29527128 PMCID: PMC5838927 DOI: 10.1186/s12935-018-0530-2] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) is the most common subtype of renal cell carcinoma (RCC), and is frequently accompanied by the genetic features of von Hippel–Lindau (VHL) loss. VHL loss increases the expression of hypoxia-inducible factors (HIFs) and their targets, including epidermal growth factor (EGF), vascular endothelial growth factor (VEGF), and platelet-derived growth factor (PDGF). The primary treatment for metastatic RCC (mRCC) is molecular-targeted therapy, especially anti-angiogenic therapy. VEGF monoclonal antibodies and VEGF receptor (VEGFR) tyrosine kinase inhibitors (TKIs) are the main drugs used in anti-angiogenic therapy. However, crosstalk between VEGFR and other tyrosine kinase or downstream pathways produce resistance to TKI treatment, and the multi-target inhibitors, HIF inhibitors or combination strategies are promising strategies for mRCC. HIFs are upstream of the crosstalk between the growth factors, and these factors may regulate the expression of VEGR, EGF, PDGF and other growth factors. The frequent VHL loss in ccRCC increases HIF expression, and HIFs may be an ideal candidate to overcome the TKI resistance. The combination of HIF inhibitors and immune checkpoint inhibitors is also anticipated. Various clinical trials of programmed cell death protein 1 inhibitors are planned. The present study reviews the effects of current and potential TKIs on mRCC, with a focus on VEGF/VEGFR and other targets for mRCC therapy.
Collapse
Affiliation(s)
- Yongchang Lai
- Department of Urology, Minimally Invasive Surgery Center, Guangzhou Urology Research Institute, Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Kangda Road 1#, Haizhu District, Guangzhou, 510230 Guangdong China
| | - Zhijian Zhao
- Department of Urology, Minimally Invasive Surgery Center, Guangzhou Urology Research Institute, Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Kangda Road 1#, Haizhu District, Guangzhou, 510230 Guangdong China
| | - Tao Zeng
- Department of Urology, Minimally Invasive Surgery Center, Guangzhou Urology Research Institute, Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Kangda Road 1#, Haizhu District, Guangzhou, 510230 Guangdong China
| | - Xiongfa Liang
- Department of Urology, Minimally Invasive Surgery Center, Guangzhou Urology Research Institute, Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Kangda Road 1#, Haizhu District, Guangzhou, 510230 Guangdong China
| | - Dong Chen
- Department of Urology, Minimally Invasive Surgery Center, Guangzhou Urology Research Institute, Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Kangda Road 1#, Haizhu District, Guangzhou, 510230 Guangdong China
| | - Xiaolu Duan
- Department of Urology, Minimally Invasive Surgery Center, Guangzhou Urology Research Institute, Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Kangda Road 1#, Haizhu District, Guangzhou, 510230 Guangdong China
| | - Guohua Zeng
- Department of Urology, Minimally Invasive Surgery Center, Guangzhou Urology Research Institute, Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Kangda Road 1#, Haizhu District, Guangzhou, 510230 Guangdong China
| | - Wenqi Wu
- Department of Urology, Minimally Invasive Surgery Center, Guangzhou Urology Research Institute, Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Kangda Road 1#, Haizhu District, Guangzhou, 510230 Guangdong China
| |
Collapse
|
15
|
Jiang L, Shi S, Shi Q, Zhang H, Xia Y, Zhong T. MicroRNA-519d-3p Inhibits Proliferation and Promotes Apoptosis by Targeting HIF-2α in Cervical Cancer Under Hypoxic Conditions. Oncol Res 2018; 26:1055-1062. [PMID: 29321085 PMCID: PMC7844701 DOI: 10.3727/096504018x15152056890500] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
HIF-2α knockdown inhibits proliferation, arrests the cell cycle, and promotes apoptosis and autophagy under hypoxic conditions in cervical cancer. However, the upstream regulatory mechanism of HIF-2α expression is unclear. MicroRNAs (miRNAs) degrade target mRNAs by binding to the 3′-untranslated region of mRNAs. In this study, we investigated the role of miRNAs in the regulation of HIF-2α expression in cervical cancer under hypoxic conditions. miRNAs regulating HIF-2α expression were predicted using TargetScan and miRanda and were determined in cervical cancer under hypoxic conditions by qRT-PCR. Additionally, the targeted regulation of HIF-2α by miR-519d-3p was evaluated by Western blot and luciferase reporter assays. Effects of miR-519d-3p and HIF-2α on cell proliferation, cell cycle, and apoptosis were analyzed by CCK-8 and flow cytometry assays, respectively. miR-106a-5p, miR-17-5p, miR-519d-3p, miR-526b-3p, and miR-20b-5p are potentially regulatory miRNAs that bound to the HIF-2α 3′-untranslated region as per TargetScan and miRanda predictions. Expression of the five miRNAs was inhibited in HeLa cells under hypoxic conditions compared to normoxic conditions, and the expression of miR-519d-3p was lower than that of other miRNAs. Luciferase reporter assays showed that HIF-2α was a target of miR-519d-3p. Additionally, miR-519d-3p overexpression inhibited cell proliferation, arrested the cell cycle transition from the G1 stage to the S stage, and promoted cell apoptosis under hypoxic conditions in cervical cancer. HIF-2α overexpression partially reversed the effect of miR-519d-3p. In conclusion, miR-519d-3p overexpression suppressed proliferation, inhibited the cell cycle, and promoted apoptosis of HeLa cells by targeting HIF-2α under hypoxic conditions.
Collapse
Affiliation(s)
- Lixia Jiang
- Department of Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, P.R. China
| | - Shaohua Shi
- Department of Information Technology, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, P.R. China
| | - Qiaofa Shi
- Department of Immunology, Medical College of Nanchang University, Nanchang, Jiangxi, P.R. China
| | - Huijuan Zhang
- Department of Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, P.R. China
| | - Yu Xia
- Gannan Medical University, Ganzhou, Jiangxi, P.R. China
| | - Tianyu Zhong
- Department of Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, P.R. China
| |
Collapse
|
16
|
Lan H, Zeng J, Chen G, Huang H. Survival prediction of kidney renal papillary cell carcinoma by comprehensive LncRNA characterization. Oncotarget 2017; 8:110811-110829. [PMID: 29340018 PMCID: PMC5762286 DOI: 10.18632/oncotarget.22732] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 11/09/2017] [Indexed: 02/07/2023] Open
Abstract
Kidney renal papillary cell carcinoma (KIRP) accounts for 10%-15% of renal cell carcinoma (RCC), patients with KIRP tend to have a poor prognosis, and there was a lack of effective prognostic indicators for this type of cancer. Currently, owing to the availability of The Cancer Genome Atlas (TCGA), long non-coding RNAs (LncRNAs) have been discovered to indicate a prognostic value in some tumors. In that regard, we analyzed lncRNA-sequencing data of KIRP in TCGA, and among 780 differentially-expressed lncRNAs, we selected 37 lncRNAs which were able to assist the prognosis. In addition, by using the multivariate cox regression analysis, the prognosis index (PI) that consisted of 7 lncRNAs (including AFAP1-AS1, GAS6-AS1, RP11-1C8.7, RP11-21L19.1, RP11-503C24.1, RP11-536I6.2, and RP11-63A11.1) could predict the progression and outcomes of KIRP with accuracy. More importantly, the PI was considered an independent indicator for prognostication of KIRP. Moreover, having categorized patients with KIRP into cohorts of high risk and low risk, according to the PI, we found that the key genes and pathways varied in these two groups. Overall, these LncRNAs, especially the PI, may be conceived as biomarkers and helpful for determining the different pathological stages for KIRP patients. However, their biological functions need to be further confirmed.
Collapse
Affiliation(s)
- Huihua Lan
- Department of Laboratory Medicine, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China
| | - Jianghui Zeng
- Department of Laboratory Medicine, The Third Affiliated Hospital of Guangxi Medical University/The Second People's Hospital of the City of Nanning, Nanning, Guangxi, China
| | - Gang Chen
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Huayi Huang
- Department of Laboratory Medicine, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China.,Department of Surgical Oncology, Roswell Park Cancer Institute, Buffalo, New York, USA
| |
Collapse
|