1
|
Wang Z, Duan H, Hao F, Hao P, Zhao W, Gao Y, Gu Y, Song J, Li X, Yang Z. Circuit reconstruction of newborn neurons after spinal cord injury in adult rats via an NT3-chitosan scaffold. Prog Neurobiol 2023; 220:102375. [PMID: 36410665 DOI: 10.1016/j.pneurobio.2022.102375] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 11/07/2022] [Accepted: 11/15/2022] [Indexed: 11/22/2022]
Abstract
An implanted neurotrophin-3 (NT3)-chitosan scaffold can recruit endogenous neural stem cells to migrate to a lesion region and differentiate into mature neurons after adult spinal cord injury (SCI). However, the identities of these newborn neurons and whether they can form functional synapses and circuits to promote recovery after paraplegia remain unknown. By using combined advanced technologies, we revealed here that the newborn neurons of several subtypes received synaptic input from the corticospinal tract (CST), rubrospinal tract (RST), and supraspinal tracts. They formed a functional neural circuit at the injured spinal region, further driving the local circuits beneath the lesion. Our results showed that the NT3-chitosan scaffold facilitated the maturation of spinal neurons and the reestablishment of the spinal neural circuit in the lesion region 12 weeks after SCI. Transsynaptic virus experiments revealed that these newborn spinal neurons received synaptic connections from the CST and RST and drove the neural circuit beneath the lesion via newly formed synapses. These re-established circuits successfully recovered the formation and function of the neuromuscular junction (NMJ) beneath the lesion spinal segments. These findings suggest that the NT3-chitosan scaffold promotes the formation of relay neural circuits to accommodate various types of brain descending inputs and facilitate functional recovery after paraplegia.
Collapse
Affiliation(s)
- Zijue Wang
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Hongmei Duan
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Fei Hao
- Beijing Key Laboratory for Biomaterials and Neural Regeneration, School of Engineering Medicine, Beihang University, Beijing 100191, China
| | - Peng Hao
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Wen Zhao
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Yudan Gao
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Yiming Gu
- Physical Education Department, Capital University of Economics and Business, Beijing 100070, China
| | - Jianren Song
- Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China; Clinical Center for Brain and Spinal Cord Research, Tongji University, Shanghai 200092, China.
| | - Xiaoguang Li
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China; Department of Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China.
| | - Zhaoyang Yang
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
2
|
Huang Y, Zhang Y, He Z, Manyande A, Wu D, Feng M, Xiang H. The connectome from the cerebral cortex to skeletal muscle using viral transneuronal tracers: a review. Am J Transl Res 2022; 14:4864-4879. [PMID: 35958450 PMCID: PMC9360884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 06/22/2022] [Indexed: 06/15/2023]
Abstract
Connectomics has developed from an initial observation under an electron microscope to the present well-known medical imaging research approach. The emergence of the most popular transneuronal tracers has further advanced connectomics research. Researchers use the virus trans-nerve tracing method to trace the whole brain, mark the brain nerve circuit and nerve connection structure, and construct a complete nerve conduction pathway. This review assesses current methods of studying cortical to muscle connections using viral neuronal tracers and demonstrates their application in disease diagnosis and prognosis.
Collapse
Affiliation(s)
- Yan Huang
- Tongji Hospital of Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, Hubei, P. R. China
- Department of Interventional Therapy, The First Affiliated Hospital of Dalian Medical UniversityDalian 116000, Liaoning, P. R. China
| | - Yunhua Zhang
- Hubei Provincial Hospital of Traditional Chinese MedicineWuhan 430061, Hubei, P. R. China
- Clinical Medical College of Hubei University of Chinese MedicineWuhan 430061, Hubei, P. R. China
- Hubei Province Academy of Traditional Chinese MedicineWuhan 430061, Hubei, P. R. China
| | - Zhigang He
- Tongji Hospital of Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, Hubei, P. R. China
| | - Anne Manyande
- School of Human and Social Sciences, University of West LondonLondon, UK
| | - Duozhi Wu
- Department of Anesthesiology, Hainan General HospitalHaikou 570311, Hainan, P. R. China
| | - Maohui Feng
- Department of Gastrointestinal Surgery, Wuhan Peritoneal Cancer Clinical Medical Research Center, Zhongnan Hospital of Wuhan University, Hubei Key Laboratory of Tumor Biological Behaviors and Hubei Cancer Clinical Study CenterWuhan 430071, Hubei, P. R. China
| | - Hongbing Xiang
- Tongji Hospital of Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, Hubei, P. R. China
| |
Collapse
|
3
|
Feng M, Xiang B, Fan L, Wang Q, Xu W, Xiang H. Interrogating autonomic peripheral nervous system neurons with viruses - A literature review. J Neurosci Methods 2020; 346:108958. [PMID: 32979424 DOI: 10.1016/j.jneumeth.2020.108958] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 09/19/2020] [Accepted: 09/19/2020] [Indexed: 12/11/2022]
Abstract
How rich functionality emerges from the rather invariant structural architecture of the peripheral autonomic nervous system remains one of the major mysteries in neuroscience. The high incidence of patients with neural circuit-related autonomic nervous system diseases highlights the importance of fundamental research, among others with neurotracing methods, into autonomic neuron functionality. Due to the emergence of neurotropic virus-based tracing techniques in recent years the access to neuronal connectivity in the peripheral autonomic nervous system has greatly been improved. This review is devoted to the anatomical distribution of neural circuits in the periphery of the autonomous nervous system and to the interaction between the autonomic nervous system and vital peripheral organs or tissues. The experimental evidence available at present has greatly expanded our understanding of autonomic peripheral nervous system neurons.
Collapse
Affiliation(s)
- Maohui Feng
- Department of Oncology, Wuhan Peritoneal Cancer Clinical Medical Research Center, Zhongnan Hospital of Wuhan University, Hubei Key Laboratory of Tumor Biological Behaviors and Hubei Cancer Clinical Study Center, Wuhan 430071, PR China
| | - Boqi Xiang
- University of California-Davis, Davis, CA 95616, USA
| | - Li Fan
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, PR China
| | - Qian Wang
- Department Anesthesiology and Pain Medicine, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Weiguo Xu
- Department of Orthopedics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - HongBing Xiang
- Department Anesthesiology and Pain Medicine, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China.
| |
Collapse
|
4
|
Fan L, Xiang B, Xiong J, He Z, Xiang H. Use of viruses for interrogating viscera-specific projections in central nervous system. J Neurosci Methods 2020; 341:108757. [PMID: 32371062 DOI: 10.1016/j.jneumeth.2020.108757] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 04/28/2020] [Accepted: 04/28/2020] [Indexed: 12/18/2022]
Abstract
Each internal organ may perform many different functions under central regulation, yet how these processes are coordinated is poorly understood. The last three decades have witnessed a renaissance in tract tracing with genetically engineered strains of viruses that rapidly interrogate viscera-specific projections in the CNS. The application of novel methods to study cell type-specific projections through trans-synaptically transmitted virus 'label' highlights projections exclusively originating from neurons expressing a very specific molecular phenotype. This has opened the door to neuroanatomical studies interrogating organ-specific projections in the CNS at an unprecedented scale. In this contribution to the Special Issue we present an overview of the present state and of future opportunities in charting viscera-brain specific connectivity and in linking brain circuits to internal organ function.
Collapse
Affiliation(s)
- Li Fan
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, PR China
| | - Boqi Xiang
- University of California-Davis, Davis, CA 95616, USA
| | - Jun Xiong
- Hepatobiliary Surgery Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, PR China
| | - Zhigang He
- Department of Critical Care Medicine, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 Hubei, PR China
| | - Hongbing Xiang
- Department of Anesthesiology and Pain Medicine, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 Hubei, PR China.
| |
Collapse
|
5
|
Han DJ, He ZG, Yang H. Melanocortin-4 receptor in subthalamic nucleus is involved in the modulation of nociception. AMERICAN JOURNAL OF CLINICAL AND EXPERIMENTAL IMMUNOLOGY 2018; 7:76-80. [PMID: 30245921 PMCID: PMC6146155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 08/06/2018] [Indexed: 06/08/2023]
Abstract
Deep brain stimulation of the subthalamic nucleus (STN-DBS) stimulation produces significant improvement of overall pain related to Parkinson disease; however, the mechanisms underlying analgesic effects of STN-DBS are still unknown. This report describes direct neuroanatomical evidence for the central melanocortinergic-opioidergic circuits in the STN. We investigated melanocortin-4 receptor (MC4R) and mu-opioid receptor (MOR)-positive expression of the STN in MC4R-GFP transgenic mice using fluorescence immunohistochemical detection. Immunohistochemistry showed a large number of MC4R-GFP- and MOR-positive neurons within the STN region, and approximately 50% of MC4R-GFP-positive neurons coexpressed MOR. The results of this study showed direct neuroanatomical evidence for the central melanocortinergic-opioidergic signaling in the STN region. These findings contribute to the view of melanocortinergic-opioidergic circuits in the subthalamic nucleus as a reliable source of modulating of nociception with therapeutic potential for alleviating pain.
Collapse
Affiliation(s)
- Dong-Ji Han
- Department of Anesthesiology and Pain Medicine, Tongji Hospital of Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, Hubei, PR China
| | - Zhi-Gang He
- Department of Emergency Medicine, Tongji Hospital of Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, Hubei, PR China
| | - Hui Yang
- Department of Anesthesiology and Pain Medicine, Tongji Hospital of Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, Hubei, PR China
| |
Collapse
|
6
|
He ZG, Wang Q, Xie RS, Li YS, Hong QX, Xiang HB. Neuroanatomical autonomic substrates of brainstem-gut circuitry identified using transsynaptic tract-tracing with pseudorabies virus recombinants. AMERICAN JOURNAL OF CLINICAL AND EXPERIMENTAL IMMUNOLOGY 2018; 7:16-24. [PMID: 29755854 PMCID: PMC5944814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Accepted: 02/12/2018] [Indexed: 06/08/2023]
Abstract
To investigate autonomic substrates of brainstem-gut circuitry identified using trans-synaptic tracing with pseudorabies virus (PRV)-152, a strain that expresses enhanced green fluorescent protein, and PRV-614, a strain that expresses enhanced red fluorescent protein, injecting into the rat rectum wall. 3-7 days after PRV-152 injection, spinal cord and brainstem were removed and sectioned, and processed for PRV-152 visualization using immunofluorescence labeling against PRV-152. 6 days after PRV-614 injection, brainstem was sectioned and the neurochemical phenotype of PRV-614-positive neurons was identified using double immunocytochemical labeling against PRV-614 and TPH. We observed that the largest number of PRV-152- or PRV-614-positive neurons was located in the gigantocellular reticular nucleus (Gi), lateral paragigantocellular (LPGi), rostral ventrolateral reticular nucleus (RVL), solitary tract nucleus (Sol), locus coeruleus (LC), raphe magnus nucleus (RMg), subcoeruleus nucleus (SubCD). Double-labeled PRV-614/tryptophan hydroxylase (TPH) neurons were concentrated in the RMg, LPGi and Sol. These brainstem neurons are candidates for relaying autonomic command signals to the gut. The autonomic substrate of brainstem-gut circuitry likely plays an important role in mediating different aspects of stress behaviors.
Collapse
Affiliation(s)
- Zhi-Gang He
- Department of Emergency Medicine, Tongji Hospital of Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, Hubei, PR China
- Department of Anesthesiology and Pain Medicine, Tongji Hospital of Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, Hubei, PR China
| | - Quan Wang
- Department of Anesthesiology and Pain Medicine, Tongji Hospital of Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, Hubei, PR China
| | - Run-Shan Xie
- Class Nine, Grade Two, Wuhan Hantie Senior Middle SchoolWuhan 430012, Hubei, PR China
| | - Yong-Sheng Li
- Department of Emergency Medicine, Tongji Hospital of Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, Hubei, PR China
| | - Qing-Xiong Hong
- Department of Anesthesiology, Guangdong Provincial Hospital of Chinese MedicineGuangzhou 510120, PR China
| | - Hong-Bing Xiang
- Department of Anesthesiology and Pain Medicine, Tongji Hospital of Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, Hubei, PR China
| |
Collapse
|
7
|
Direct and indirect nigrofugal projections to the nucleus reticularis pontis caudalis mediate in the motor execution of the acoustic startle reflex. Brain Struct Funct 2018; 223:2733-2751. [DOI: 10.1007/s00429-018-1654-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 03/17/2018] [Indexed: 11/25/2022]
|