1
|
Anderberg RH, Andersson EA, Bucher V, Preissner KT, Mallard C, Ek CJ. Treatment with RNase alleviates brain injury but not neuroinflammation in neonatal hypoxia/ischemia. J Neurosci Res 2024; 102:e25329. [PMID: 38597144 DOI: 10.1002/jnr.25329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 03/14/2024] [Accepted: 03/30/2024] [Indexed: 04/11/2024]
Abstract
There is a need for new treatments to reduce brain injuries derived from neonatal hypoxia/ischemia. The only viable option used in the clinic today in infants born at term is therapeutic hypothermia, which has a limited efficacy. Treatments with exogenous RNase have shown great promise in a range of different adult animal models including stroke, ischemia/reperfusion injury, or experimental heart transplantation, often by conferring vascular protective and anti-inflammatory effects. However, any neuroprotective function of RNase treatment in the neonate remains unknown. Using a well-established model of neonatal hypoxic/ischemic brain injury, we evaluated the influence of RNase treatment on RNase activity, gray and white matter tissue loss, blood-brain barrier function, as well as levels and expression of inflammatory cytokines in the brain up to 6 h after the injury using multiplex immunoassay and RT-PCR. Intraperitoneal treatment with RNase increased RNase activity in both plasma and cerebropinal fluids. The RNase treatment resulted in a reduction of brain tissue loss but did not affect the blood-brain barrier function and had only a minor modulatory effect on the inflammatory response. It is concluded that RNase treatment may be promising as a neuroprotective regimen, whereas the mechanistic effects of this treatment appear to be different in the neonate compared to the adult and need further investigation.
Collapse
Affiliation(s)
- Rozita H Anderberg
- Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - E Axel Andersson
- Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Valentina Bucher
- Department of Obstetrics and Gynecology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Klaus T Preissner
- Department of Cardiology, Medical School, Kerckhoff-Heart Research Institute, Justus-Liebig-University, Giessen, Germany
| | - Carina Mallard
- Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - C Joakim Ek
- Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
2
|
Zhang YH, Peng F, Zhang L, Kang K, Yang M, Chen C, Yu H. LONG NONCODING RNA UPREGULATES ADAPTER SHCA PROTEIN EXPRESSION TO PROMOTE COGNITIVE IMPAIRMENT AFTER CARDIAC ARREST AND RESUSCITATION. Shock 2022; 58:169-178. [PMID: 35953462 DOI: 10.1097/shk.0000000000001964] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
ABSTRACT Aim: More patients are resuscitated from cardiac arrest and cardiopulmonary resuscitation (CA/CPR) due to advances in medical care. However, the burden now lies with post-cardiac arrest cognitive impairment in CA/CPR survivors. Based on our previous study, we aimed to further confirm the correlation between the long noncoding RNA-promoting ShcA (lncRNA-PS)/Src homology and collagen A (ShcA) axis and CA/CPR-induced cognitive impairment in molecular, cellular, and tissue levels. Methods and Results: The in vivo experiments were based on a mouse model of CA/CPR, while oxygen-glucose deprivation and reoxygenation was used as a cell model in vitro. Conditional ShcA suppression in neurons of the hippocampal CA1 region was achieved by cyclization recombinase of bacteriophage P1 recognizing DNA fragment locus of x-over P1 site (Cre/LoxP recombination system). Genetic manipulation of HT22 was achieved by lentivirus targeting lncRNA-PS and ShcA. Neurological function score was remarkably decreased, and cognitive function was affected after restoration of spontaneous circulation. LncRNA-PS and ShcA overexpression after CA/CPR, mainly happened in neurons of hippocampal CA1 region, was observed by in situ hybridization and immunofluorescence. Neuronal ShcA knockdown in hippocampal CA1 region before CA/CPR attenuated cognitive impairment after CA/CPR. ShcA deficiency protected HT22 cell line against oxygen-glucose deprivation and reoxygenation by inhibiting inflammation and apoptosis. In vitro upregulation of lncRNA-PS elevated ShcA expression, which was reversed by knockdown of ShcA. Conclusions: This study revealed that lncRNA-PS/ShcA axis is critically involved in the pathogenesis of cognitive impairment after CA/CPR. By inhibiting ShcA expression in neurons of the hippocampal CA1 region could improve the survival outcomes in mice after CA/CPR.
Collapse
|
3
|
Chen C, Liu C, Niu Z, Li M, Zhang Y, Gao R, Chen H, Wang Q, Zhang S, Zhou R, Gan L, Zhang Z, Zhu T, Yu H, Liu J. RNA-seq analysis of the key long noncoding RNAs and mRNAs related to cognitive impairment after cardiac arrest and cardiopulmonary resuscitation. Aging (Albany NY) 2020; 12:14490-14505. [PMID: 32693388 PMCID: PMC7425488 DOI: 10.18632/aging.103495] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 05/27/2020] [Indexed: 02/05/2023]
Abstract
Cardiac arrest (CA) is the leading cause of death around the world. Survivors after CA and cardiopulmonary resuscitation (CPR) develop moderate to severe cognitive impairment up to 60% at 3 months. Accumulating evidence demonstrated that long non-coding RNAs (lncRNAs) played a pivotal role in ischemic brain injury. This study aimed to identify potential key lncRNAs associated with early cognitive deficits after CA/CPR. LncRNA and mRNA expression profiles of the hippocampus in CA/CPR or sham group were analyzed via high-throughput RNA sequencing, which exhibited 1920 lncRNAs and 1162 mRNAs were differentially expressed. These differentially expressed genes were confirmed to be primarily associated with inflammatory or apoptotic signaling pathways through GO and KEGG pathway enrichment analysis and coding-noncoding co-expression network analysis. Among which, five key pairs of lncRNA-mRNA were further analyzed by qRT-PCR and western blot. We found that the lncRNANONMMUT113601.1 and mRNA Shc1, an inflammation and apoptosis-associated gene, exhibited the most significant changes in hippocampus of CA/CPR mice. Furthermore, we found that the correlations between this lncRNA and mRNA mainly happened in neurons of hippocampus by in situ hybridization. These results suggested that the critical pairs of lncRNA-mRNA may act as essential regulators in early cognitive deficits after resuscitation.
Collapse
Affiliation(s)
- Chan Chen
- Department of Anesthesiology, Laboratory of Anesthesia and Critical Care Medicine, Translational Neuroscience Center, West China Hospital, Sichuan University and The Research Units of West China, Chinese Academy of Medical Sciences, Chengdu, Sichuan, China
| | - Changliang Liu
- Department of Anesthesiology, Laboratory of Anesthesia and Critical Care Medicine, Translational Neuroscience Center, West China Hospital, Sichuan University and The Research Units of West China, Chinese Academy of Medical Sciences, Chengdu, Sichuan, China
| | - Zhendong Niu
- Department of Emergency Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ming Li
- Department of Anesthesiology, Laboratory of Anesthesia and Critical Care Medicine, Translational Neuroscience Center, West China Hospital, Sichuan University and The Research Units of West China, Chinese Academy of Medical Sciences, Chengdu, Sichuan, China
| | - Yuhan Zhang
- Department of Anesthesiology, Laboratory of Anesthesia and Critical Care Medicine, Translational Neuroscience Center, West China Hospital, Sichuan University and The Research Units of West China, Chinese Academy of Medical Sciences, Chengdu, Sichuan, China
| | - Rui Gao
- Department of Anesthesiology, Laboratory of Anesthesia and Critical Care Medicine, Translational Neuroscience Center, West China Hospital, Sichuan University and The Research Units of West China, Chinese Academy of Medical Sciences, Chengdu, Sichuan, China
| | - Hai Chen
- Department of Anesthesiology, Laboratory of Anesthesia and Critical Care Medicine, Translational Neuroscience Center, West China Hospital, Sichuan University and The Research Units of West China, Chinese Academy of Medical Sciences, Chengdu, Sichuan, China
| | - Qiao Wang
- Department of Anesthesiology, Laboratory of Anesthesia and Critical Care Medicine, Translational Neuroscience Center, West China Hospital, Sichuan University and The Research Units of West China, Chinese Academy of Medical Sciences, Chengdu, Sichuan, China
| | - Shu Zhang
- Department of Emergency Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ronghua Zhou
- Department of Anesthesiology, Laboratory of Anesthesia and Critical Care Medicine, Translational Neuroscience Center, West China Hospital, Sichuan University and The Research Units of West China, Chinese Academy of Medical Sciences, Chengdu, Sichuan, China
| | - Lu Gan
- Department of Anesthesiology, Laboratory of Anesthesia and Critical Care Medicine, Translational Neuroscience Center, West China Hospital, Sichuan University and The Research Units of West China, Chinese Academy of Medical Sciences, Chengdu, Sichuan, China
| | - Zheng Zhang
- Department of Anesthesiology, Laboratory of Anesthesia and Critical Care Medicine, Translational Neuroscience Center, West China Hospital, Sichuan University and The Research Units of West China, Chinese Academy of Medical Sciences, Chengdu, Sichuan, China
| | - Tao Zhu
- Department of Anesthesiology, Laboratory of Anesthesia and Critical Care Medicine, Translational Neuroscience Center, West China Hospital, Sichuan University and The Research Units of West China, Chinese Academy of Medical Sciences, Chengdu, Sichuan, China
| | - Hai Yu
- Department of Anesthesiology, Laboratory of Anesthesia and Critical Care Medicine, Translational Neuroscience Center, West China Hospital, Sichuan University and The Research Units of West China, Chinese Academy of Medical Sciences, Chengdu, Sichuan, China
| | - Jin Liu
- Department of Anesthesiology, Laboratory of Anesthesia and Critical Care Medicine, Translational Neuroscience Center, West China Hospital, Sichuan University and The Research Units of West China, Chinese Academy of Medical Sciences, Chengdu, Sichuan, China
| |
Collapse
|
4
|
Gao R, Chen C, Zhao Q, Li M, Wang Q, Zhou L, Chen E, Chen H, Zhang Y, Cai X, Liu C, Cheng X, Zhang S, Mao X, Qiu Y, Gan L, Yu H, Liu J, Zhu T. Identification of the Potential Key Circular RNAs in Elderly Patients With Postoperative Cognitive Dysfunction. Front Aging Neurosci 2020; 12:165. [PMID: 32655392 PMCID: PMC7324535 DOI: 10.3389/fnagi.2020.00165] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 05/13/2020] [Indexed: 02/05/2023] Open
Abstract
Background Postoperative cognitive dysfunction (POCD) is one of the severe complications after surgery, inducing low life quality and high mortality, especially in elderly patients. However, the underlying molecular mechanism of POCD remains largely unknown, and the ideal biomarker for clinical diagnosis and prognosis is lacking. Circular RNAs (circRNAs), as a unique class of non-coding RNAs, were characterized by its stability and conservativeness, serving as novel biomarkers in various diseases. Nevertheless, the role of circRNAs in the occurrence of POCD remains elusive. Methods To investigate the differentially expressed circRNAs in the serum of POCD patients and its potential role in the development of POCD, we performed a circRNA microarray to screen the differentially expressed circRNAs in the serum samples from three patients of the POCD group and three paired patients of the non-POCD group. Subsequently, quantitative real-time polymerase chain reaction analysis (qRT-PCR) was utilized to verify the microarray data with the serum samples from 10 paired patients. Cytoscape software was used to construct the circRNA–miRNA–mRNA network for circRNAs with different expression levels as well as the target genes. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses showed the biological functions of the differentially expressed circRNAs target genes. Results In total, we have analyzed 10,198 circRNAs through the microarray. Compared with the non-POCD patient group, there were 210 differentially expressed circRNAs with 133 upregulated and 77 downregulated in the POCD group (≥2-fold differential expression, P ≤ 0.05). The qRT-PCR confirmed 10 circRNAs with different expressed levels, and the results were consistent with the microarray findings. Among them, hsa_circRNA_001145, hsa_circRNA_101138, and hsa_circRNA_061570 had the highest magnitude of change. The GO analysis showed that the differentially expressed circRNAs were associated with the regulation of the developmental process, cell-to-cell adhesion, and nervous system development. The KEGG analysis showed that the target genes of circRNAs were enriched in the MAPK signaling pathway and RAS signaling pathway. According to the targetscan7.1 and mirdbV5 databases, the circRNA–miRNA–mRNA network was constructed, and these results provided a vital landscape of circRNA expression profile in POCD. Conclusions Our study provides an essential perspective for the differential expression of circRNAs in POCD patients. Further studies need to be performed to explore their potential therapeutic roles in the development of POCD.
Collapse
Affiliation(s)
- Rui Gao
- Department of Anesthesiology and Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, China
| | - Chan Chen
- Department of Anesthesiology and Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, China
| | - Qi Zhao
- Department of Anesthesiology and Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, China
| | - Ming Li
- Department of Anesthesiology and Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, China
| | - Qiao Wang
- Department of Anesthesiology and Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, China
| | - Lu Zhou
- Department of Anesthesiology and Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, China
| | - Erya Chen
- Department of Anesthesiology and Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, China
| | - Hai Chen
- Department of Anesthesiology and Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yue Zhang
- Department of Anesthesiology and Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xingwei Cai
- Department of Anesthesiology and Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, China
| | - Changliang Liu
- Department of Anesthesiology and Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xu Cheng
- Department of Anesthesiology and Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, China
| | - Shu Zhang
- Department of Emergency Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaobo Mao
- Department of Neurology, Institute of Cell Engineering, School of Medicine, Johns Hopkins University, Baltimore, MD, United States
| | - Yanhua Qiu
- Department of Anesthesiology and Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, China
| | - Lu Gan
- Department of Anesthesiology and Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, China
| | - Hai Yu
- Department of Anesthesiology and Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, China
| | - Jin Liu
- Department of Anesthesiology and Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, China
| | - Tao Zhu
- Department of Anesthesiology and Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
5
|
Chen C, Gao R, Li M, Wang Q, Chen H, Zhang S, Mao X, Behensky A, Zhang Z, Gan L, Li T, Liao R, Li Q, Yu H, Yang J, Zhu T, Liu J. Extracellular RNAs-TLR3 signaling contributes to cognitive decline in a mouse model of postoperative cognitive dysfunction. Brain Behav Immun 2019; 80:439-451. [PMID: 30980952 DOI: 10.1016/j.bbi.2019.04.024] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Revised: 03/23/2019] [Accepted: 04/09/2019] [Indexed: 01/28/2023] Open
Abstract
Postoperative cognitive dysfunction (POCD) is considered a severe complication after surgery among elderly patients. Toll-like receptor 3 (TLR3) has recently been reported to play an important role in hippocampus-dependent working memory. However, the role of TLR3 in the development of POCD remains unclear. In the current study, we hypothesized that increased extracellular RNAs (exRNAs) during anesthesia and surgical operation, especially double stranded RNAs (dsRNAs), would activate TLR3 signaling pathways and mediate POCD. Using a mouse model of POCD, 20-22 months wild-type (WT) mice were undergoing unilateral nephrectomy and increased TLR3 expression levels and co-localization with neuronal and microglial cells were found in the surgery group compared with the sham group. Compared with WT mice, TLR3 knockout (KO, -/-) mice had improved hippocampus-dependent memory and attenuated production of inflammatory cytokines and apoptosis. Increased exRNAs and/or co-localization with TLR3 were found in both in vitro and in vivo models. Of note, TLR3/dsRNA complex inhibitor administration reduced hippocampal dsRNA level and TLR3 expression, attenuated hippocampal inflammatory cytokines production and apoptosis, and thus improved hippocampus-dependent memory. Our results indicate that exRNAs, especially dsRNAs, present under stressful conditions may trigger TLR3 activation and initiate the downstream inflammatory and apoptotic signaling, and play a substantial role in the development of POCD.
Collapse
Affiliation(s)
- Chan Chen
- Department of Anesthesiology and Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Rui Gao
- Department of Anesthesiology and Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Ming Li
- Department of Anesthesiology and Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Qiao Wang
- Department of Anesthesiology and Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Hai Chen
- Department of Anesthesiology and Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Shu Zhang
- Department of Emergency Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Xiaobo Mao
- Institute of Cell Engineering, Department of Neurology, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Adam Behensky
- Institute of Cell Engineering, Department of Neurology, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Zheng Zhang
- Department of Anesthesiology and Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Lu Gan
- Department of Anesthesiology and Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Tao Li
- Department of Anesthesiology and Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Ren Liao
- Department of Anesthesiology and Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Qian Li
- Department of Anesthesiology and Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Hai Yu
- Department of Anesthesiology and Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Jing Yang
- Department of Anesthesiology and Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Tao Zhu
- Department of Anesthesiology and Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Jin Liu
- Department of Anesthesiology and Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
| |
Collapse
|
6
|
Lu J, Liu LJ, Zhu JL, Shen Y, Zhuang ZW, Zhu CL. Hypothermic properties of dexmedetomidine provide neuroprotection in rats following cerebral ischemia-reperfusion injury. Exp Ther Med 2019; 18:817-825. [PMID: 31258715 DOI: 10.3892/etm.2019.7613] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 04/18/2019] [Indexed: 01/04/2023] Open
Abstract
Dexmedetomidine (Dex) is a sedative and analgesic agent that is widely administered to patients admitted to the intensive care unit, and has been demonstrated to result in hypothermia. Many patients have been revealed to benefit from therapeutic hypothermia, which can mitigate cerebral ischemia/reperfusion (I/R) injury following successful cardiopulmonary resuscitation. However, studies investigating the efficacy of Dex in I/R treatment is lacking. The present study aimed to investigate the efficacy of Dex in mitigating neuronal damage, and to determine the possible mechanism of its effects in a rat model of cardiac arrest (CA). CA was induced in Sprague-Dawley rats by asphyxiation for 5 min. Following successful resuscitation, the surviving rats were randomly divided into two treatment groups; one group was intraperitoneally administered with Dex (D group), whereas the control group was treated with normal saline (N group). Critical parameters, including core temperature and blood pressure were monitored following return of spontaneous circulation (ROSC). Arterial blood samples were collected at 10 min after surgery (baseline) 30 and 120 min post-ROSC; and neurological deficit scores (NDS) of the rats were taken 12 or 24 h after ROSC prior to euthanasia. The hippocampal tissue was then removed for analysis by histology, electron microscopy and western blotting. Rats in the D group exhibited a lower core temperature and higher NDS scores compared with the N group (P<0.05). In addition, Dex injection resulted in reduced expression of apoptotic and autophagy-associated factors in the hippocampus (P<0.05). Dex treatment induced hypothermia and improved neurological function in rats after ROSC following resuscitation from CA by inhibiting neuronal apoptosis and reducing autophagy, which suggested that Dex may be a potential therapy option for patients with CA.
Collapse
Affiliation(s)
- Jian Lu
- Department of Emergency and Critical Care Medicine, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215007, P.R. China.,Department of Emergency and Critical Care Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, Jiangsu 215002, P.R. China
| | - Li-Jun Liu
- Department of Emergency and Critical Care Medicine, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215007, P.R. China
| | - Jian-Liang Zhu
- Department of Emergency and Critical Care Medicine, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215007, P.R. China
| | - Yi Shen
- Department of Emergency and Critical Care Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, Jiangsu 215002, P.R. China
| | - Zhi-Wei Zhuang
- Department of Emergency and Critical Care Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, Jiangsu 215002, P.R. China
| | - Chang-Lai Zhu
- Key Laboratory of Neuroregeneration, Nantong Medical College of Nantong University, Nantong, Jiangsu 226200, P.R. China
| |
Collapse
|
7
|
The Nox1/Nox4 inhibitor attenuates acute lung injury induced by ischemia-reperfusion in mice. PLoS One 2018; 13:e0209444. [PMID: 30571757 PMCID: PMC6301701 DOI: 10.1371/journal.pone.0209444] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Accepted: 11/27/2018] [Indexed: 02/05/2023] Open
Abstract
Lung ischemia and reperfusion injury (LIRI) were mediated by several processes including over-production of reactive oxygen species (ROS) and inflammatory activation. ROS generated by nicotinamide adenine dinucletide phosphate (NADPH) oxidase (Nox) may play a pivotal role in pathophysiological changes in a range of disease. However, it was poorly understood in LIRI. Thus, the purpose of our study was to explore whether GKT137831, as a special dual inhibitor of Nox1 and 4, could alleviate LIRI in mice model and explore the minimal dose. According to the protocol, this study was divided into two parts. The first part was to determine the minimal dose of Nox1/4 inhibitor in attenuating LIRI via histopathology and apoptosis analysis. Eighteen C57BL/6J male wild-type mice were randomly divided in to sham, 2.5Nox+sham, 5.0Nox+sham, IR, 2.5Nox+IR and 5.0Nox+IR groups. According to the different group, mice were pretreated with corresponding dose of Nox1/4 inhibitors or normal saline. After LIRI, the results showed 5.0mg/kg Nox1/4 inhibitor could be considered as the minimal dose to alleviate injury by decreasing of lung injury score and the number of TUNEL-positive cells. The second part was to further verify the benefit of 5.0mg/kg Nox1/4 inhibitor in lung protective effects. Thirty-seven C57BL/6J male wild-type mice were divided in to sham, IR and 5.0Nox+IR groups randomly. The results showed that expressions of inflammatory, autophagy cytokines were markedly elevated and PH value was declined after LIRI. However, 5.0 mg/kg Nox1/4 inhibitor significantly attenuated cytokine production as reflected by immunohistochemistry, western blotting and Q-PCR analysis. In conclusion, our findings suggested that 5.0mg/kg Nox1/4 inhibitor contributed to protect lung tissue damage after LIRI via the suppression of inflammatory and autophagy activation.
Collapse
|