1
|
Theofilis P, Kalaitzidis R. Navigating nephrotoxic waters: A comprehensive overview of contrast-induced acute kidney injury prevention. World J Radiol 2024; 16:168-183. [PMID: 38983842 PMCID: PMC11229940 DOI: 10.4329/wjr.v16.i6.168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 05/19/2024] [Accepted: 06/17/2024] [Indexed: 06/26/2024] Open
Abstract
Contrast-induced acute kidney injury (CI-AKI) is the third leading cause of acute kidney injury deriving from the intravascular administration of contrast media in diagnostic and therapeutic procedures and leading to longer in-hospital stay and increased short and long-term mortality. Its pathophysiology, although not well-established, revolves around medullary hypoxia paired with the direct toxicity of the substance to the kidney. Critically ill patients, as well as those with pre-existing renal disease and cardiovascular comorbidities, are more susceptible to CI-AKI. Despite the continuous research in the field of CI-AKI prevention, clinical practice is based mostly on periprocedural hydration. In this review, all the investigated methods of prevention are presented, with an emphasis on the latest evidence regarding the potential of RenalGuard and contrast removal systems for CI-AKI prevention in high-risk individuals.
Collapse
Affiliation(s)
- Panagiotis Theofilis
- Center for Nephrology "G Papadakis", General Hospital of Nikaia-Piraeus "Agios Panteleimon", Nikaia-Piraeus 18454, Greece
| | - Rigas Kalaitzidis
- Center for Nephrology "G Papadakis", General Hospital of Nikaia-Piraeus "Agios Panteleimon", Nikaia-Piraeus 18454, Greece
| |
Collapse
|
2
|
Zhao BH, Ruze A, Zhao L, Li QL, Tang J, Xiefukaiti N, Gai MT, Deng AX, Shan XF, Gao XM. The role and mechanisms of microvascular damage in the ischemic myocardium. Cell Mol Life Sci 2023; 80:341. [PMID: 37898977 PMCID: PMC11073328 DOI: 10.1007/s00018-023-04998-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 09/08/2023] [Accepted: 10/02/2023] [Indexed: 10/31/2023]
Abstract
Following myocardial ischemic injury, the most effective clinical intervention is timely restoration of blood perfusion to ischemic but viable myocardium to reduce irreversible myocardial necrosis, limit infarct size, and prevent cardiac insufficiency. However, reperfusion itself may exacerbate cell death and myocardial injury, a process commonly referred to as ischemia/reperfusion (I/R) injury, which primarily involves cardiomyocytes and cardiac microvascular endothelial cells (CMECs) and is characterized by myocardial stunning, microvascular damage (MVD), reperfusion arrhythmia, and lethal reperfusion injury. MVD caused by I/R has been a neglected problem compared to myocardial injury. Clinically, the incidence of microvascular angina and/or no-reflow due to ineffective coronary perfusion accounts for 5-50% in patients after acute revascularization. MVD limiting drug diffusion into injured myocardium, is strongly associated with the development of heart failure. CMECs account for > 60% of the cardiac cellular components, and their role in myocardial I/R injury cannot be ignored. There are many studies on microvascular obstruction, but few studies on microvascular leakage, which may be mainly due to the lack of corresponding detection methods. In this review, we summarize the clinical manifestations, related mechanisms of MVD during myocardial I/R, laboratory and clinical examination means, as well as the research progress on potential therapies for MVD in recent years. Better understanding the characteristics and risk factors of MVD in patients after hemodynamic reconstruction is of great significance for managing MVD, preventing heart failure and improving patient prognosis.
Collapse
Affiliation(s)
- Bang-Hao Zhao
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asian, Department of Cardiology, the First Affiliated Hospital of Xinjiang Medical University, Clinical Medical Research Institute of Xinjiang Medical University, 137 Liyushan South Road, Urumqi, 830054, China
- Xinjiang Key Laboratory of Medical Animal Model Research, Urumqi, China
| | - Amanguli Ruze
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asian, Department of Cardiology, the First Affiliated Hospital of Xinjiang Medical University, Clinical Medical Research Institute of Xinjiang Medical University, 137 Liyushan South Road, Urumqi, 830054, China
- Xinjiang Key Laboratory of Medical Animal Model Research, Urumqi, China
| | - Ling Zhao
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asian, Department of Cardiology, the First Affiliated Hospital of Xinjiang Medical University, Clinical Medical Research Institute of Xinjiang Medical University, 137 Liyushan South Road, Urumqi, 830054, China
- Xinjiang Key Laboratory of Medical Animal Model Research, Urumqi, China
| | - Qiu-Lin Li
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asian, Department of Cardiology, the First Affiliated Hospital of Xinjiang Medical University, Clinical Medical Research Institute of Xinjiang Medical University, 137 Liyushan South Road, Urumqi, 830054, China
- Xinjiang Key Laboratory of Medical Animal Model Research, Urumqi, China
| | - Jing Tang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asian, Department of Cardiology, the First Affiliated Hospital of Xinjiang Medical University, Clinical Medical Research Institute of Xinjiang Medical University, 137 Liyushan South Road, Urumqi, 830054, China
- Xinjiang Key Laboratory of Medical Animal Model Research, Urumqi, China
| | - Nilupaer Xiefukaiti
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asian, Department of Cardiology, the First Affiliated Hospital of Xinjiang Medical University, Clinical Medical Research Institute of Xinjiang Medical University, 137 Liyushan South Road, Urumqi, 830054, China
- Xinjiang Key Laboratory of Medical Animal Model Research, Urumqi, China
| | - Min-Tao Gai
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asian, Department of Cardiology, the First Affiliated Hospital of Xinjiang Medical University, Clinical Medical Research Institute of Xinjiang Medical University, 137 Liyushan South Road, Urumqi, 830054, China
- Xinjiang Key Laboratory of Medical Animal Model Research, Urumqi, China
| | - An-Xia Deng
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asian, Department of Cardiology, the First Affiliated Hospital of Xinjiang Medical University, Clinical Medical Research Institute of Xinjiang Medical University, 137 Liyushan South Road, Urumqi, 830054, China
- Xinjiang Key Laboratory of Medical Animal Model Research, Urumqi, China
| | - Xue-Feng Shan
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asian, Department of Cardiology, the First Affiliated Hospital of Xinjiang Medical University, Clinical Medical Research Institute of Xinjiang Medical University, 137 Liyushan South Road, Urumqi, 830054, China
- Xinjiang Key Laboratory of Medical Animal Model Research, Urumqi, China
| | - Xiao-Ming Gao
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asian, Department of Cardiology, the First Affiliated Hospital of Xinjiang Medical University, Clinical Medical Research Institute of Xinjiang Medical University, 137 Liyushan South Road, Urumqi, 830054, China.
- Xinjiang Key Laboratory of Medical Animal Model Research, Urumqi, China.
| |
Collapse
|
3
|
Chen G, Zhang J, Sheng M, Zhang S, Wu Q, Liu L, Yu B, Kou J. Serum of limb remote ischemic postconditioning inhibits fMLP-triggered activation and reactive oxygen species releasing of rat neutrophils. Redox Rep 2021; 26:176-183. [PMID: 34663202 PMCID: PMC8530488 DOI: 10.1080/13510002.2021.1982515] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Objectives The study explores the protective role of the peripheral serum of limb remote ischemic postconditioning (LRIP) in reducing the reactive oxygen species (ROS) levels and neutrophil activation, which are responsible for the deleterious reperfusion injury. Methods LRIP was induced in Sprague–Dawley rats by three cycles of 5 min occlusion /5 min reperfusion on the left hind limb. The blood samples were collected before LRIP or 0 and 1 h after LRIP (named SerumSham, SerumLRIP0, SerumLRIP1, respectively). The effects of LRIP serum on ROS level and neutrophils activation were determined. The expression of MyD88-TRAF6-MAPKs and PI3K/AKT pathways in neutrophils were examined. Results When compared with SerumSham, SerumLRIP0 and SerumLRIP1 significantly reduced the ROS released from neutrophils activated by fMLP. Meanwhile, the mRNA expression levels of NADPH oxidase subunit p22phox and multiple ROS-producing related key proteins, such as NADPH oxidase subunit p47phox ser 304, ser 345. MyD88, p-ERK, p-JNK and p-P38 expression of neutrophils were downregulated by SerumLRIP0 and SerumLRIP1. SerumLRIP1 also downregulated p47phox mRNA expression and tumor necrosis factor receptor-associated factor 6 (TRAF6) protein expression. Conclusion LRIP serum protects against ROS level and neutrophils activation involving the MyD88-TRAF6-MAPKs. This finding provides new insight into the understanding of LRIP mechanisms.
Collapse
Affiliation(s)
- Gangling Chen
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, People's Republic of China.,State Key Laboratory of Natural Products, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Chinese Material Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Jiangwei Zhang
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, People's Republic of China.,State Key Laboratory of Natural Products, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Chinese Material Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Mingyue Sheng
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, People's Republic of China.,State Key Laboratory of Natural Products, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Chinese Material Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Sanli Zhang
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, People's Republic of China.,State Key Laboratory of Natural Products, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Chinese Material Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Qi Wu
- State Key Laboratory of Natural Medicines, Research Department of Pharmacognosy, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Lei Liu
- Department of Anesthesiology, Center for Translational Research in Neurodegenerative Disease and McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Boyang Yu
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, People's Republic of China.,State Key Laboratory of Natural Products, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Chinese Material Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Junping Kou
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, People's Republic of China.,State Key Laboratory of Natural Products, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Chinese Material Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, People's Republic of China
| |
Collapse
|
4
|
Li J, Fan X, Wang Q, Gong Y, Guo L. Long Noncoding RNA PRNCR1 Reduces Renal Epithelial Cell Apoptosis in Cisplatin-Induced AKI by Regulating miR-182-5p/EZH1. Kidney Blood Press Res 2021; 46:162-172. [PMID: 33647908 DOI: 10.1159/000510157] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 07/11/2020] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND/AIMS This study was designed to examine the role of long noncoding RNA PRNCR1 in cisplatin-induced acute kidney injury (AKI) in vitro and in vivo. METHODS The expression levels of PRNCR1 and miR-182-5p in cisplatin-induced AKI mice were examined. HK-2 cells were treated with cisplatin to induce cell damage. Then, the effects of PRNCR1 and miR-182-5p on cisplatin-stimulated HK-2 cell viability and apoptosis were detected by the CCK-8 and annexin V-FITC/PI method. Target genes of PRNCR1 and miR-182-5p were analyzed by bioinformatics analysis and luciferase. RESULTS The expression level of PRNCR1 was significantly reduced in cisplatin-induced AKI mice. In addition, overexpression of PRNCR1 attenuated the damage of cisplatin to HK-2. The expression level of miR-182-5p was significantly raised in cisplatin-induced AKI mice. MiR-182-5p was negatively regulated by PRNCR1 and leaded to an upregulation of EZH1 expression. Overexpression of PRNCR1 attenuated cisplatin-induced apoptosis by downregulating the miR-182-5p/EZH1 axis. CONCLUSION LncPRNCR1 reduced the apoptosis of renal epithelial cells induced by cisplatin by modulating miR-182-5p/EZH1.
Collapse
Affiliation(s)
- Jing Li
- Department of Nephrology, Affiliated Hospital of Hebei University, Baoding, China
| | - Xing Fan
- Department of Nephrology, Affiliated Hospital of Hebei University, Baoding, China
| | - Qian Wang
- Department of Nephrology, Affiliated Hospital of Hebei University, Baoding, China
| | - Youlan Gong
- Department of Nephrology, Affiliated Hospital of Hebei University, Baoding, China
| | - Li Guo
- Department of Nephrology, Affiliated Hospital of Hebei University, Baoding, China,
| |
Collapse
|
5
|
Li CY, Ma W, Liu KP, Yang JW, Wang XB, Wu Z, Zhang T, Wang JW, Liu W, Liu J, Liang Y, Zhang XK, Li JJ, Guo JH, Li LY. Advances in intervention methods and brain protection mechanisms of in situ and remote ischemic postconditioning. Metab Brain Dis 2021; 36:53-65. [PMID: 33044640 DOI: 10.1007/s11011-020-00562-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 03/05/2020] [Indexed: 01/01/2023]
Abstract
Ischemic postconditioning (PostC) conventionally refers to a series of brief blood vessel occlusions and reperfusions, which can induce an endogenous neuroprotective effect and reduce cerebral ischemia/reperfusion (I/R) injury. Depending on the site of adaptive ischemic intervention, PostC can be classified as in situ ischemic postconditioning (ISPostC) and remote ischemic postconditioning (RIPostC). Many studies have shown that ISPostC and RIPostC can reduce cerebral IS injury through protective mechanisms that increase cerebral blood flow after reperfusion, decrease antioxidant stress and anti-neuronal apoptosis, reduce brain edema, and regulate autophagy as well as Akt, MAPK, PKC, and KATP channel cell signaling pathways. However, few studies have compared the intervention methods, protective mechanisms, and cell signaling pathways of ISPostC and RIPostC interventions. Thus, in this article, we compare the history, common intervention methods, neuroprotective mechanisms, and cell signaling pathways of ISPostC and RIPostC.
Collapse
Affiliation(s)
- Chun-Yan Li
- Institute of Neuroscience, Kunming Medical University, Kunming, 650500, Yunnan, China
| | - Wei Ma
- Institute of Neuroscience, Kunming Medical University, Kunming, 650500, Yunnan, China
| | - Kuang-Pin Liu
- Institute of Neuroscience, Kunming Medical University, Kunming, 650500, Yunnan, China
| | - Jin-Wei Yang
- Second Department of General Surgery, First People's Hospital of Yunnan Province, Kunming, 650032, Yunnan, China
| | - Xian-Bin Wang
- Institute of Neuroscience, Kunming Medical University, Kunming, 650500, Yunnan, China
| | - Zhen Wu
- Second Department of General Surgery, First People's Hospital of Yunnan Province, Kunming, 650032, Yunnan, China
| | - Tong Zhang
- Second Department of General Surgery, First People's Hospital of Yunnan Province, Kunming, 650032, Yunnan, China
| | - Jia-Wei Wang
- Second Department of General Surgery, First People's Hospital of Yunnan Province, Kunming, 650032, Yunnan, China
| | - Wei Liu
- Institute of Neuroscience, Kunming Medical University, Kunming, 650500, Yunnan, China
| | - Jie Liu
- Institute of Neuroscience, Kunming Medical University, Kunming, 650500, Yunnan, China
| | - Yu Liang
- Institute of Neuroscience, Kunming Medical University, Kunming, 650500, Yunnan, China
| | - Xing-Kui Zhang
- Institute of Neuroscience, Kunming Medical University, Kunming, 650500, Yunnan, China
| | - Jun-Jun Li
- Institute of Neuroscience, Kunming Medical University, Kunming, 650500, Yunnan, China
| | - Jian-Hui Guo
- Second Department of General Surgery, First People's Hospital of Yunnan Province, Kunming, 650032, Yunnan, China.
| | - Li-Yan Li
- Institute of Neuroscience, Kunming Medical University, Kunming, 650500, Yunnan, China.
| |
Collapse
|
6
|
Molinari L, Sakhuja A, Kellum JA. Perioperative Renoprotection: General Mechanisms and Treatment Approaches. Anesth Analg 2020; 131:1679-1692. [PMID: 33186157 DOI: 10.1213/ane.0000000000005107] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In the perioperative setting, acute kidney injury (AKI) is a frequent complication, and AKI itself is associated with adverse outcomes such as higher risk of chronic kidney disease and mortality. Various risk factors are associated with perioperative AKI, and identifying them is crucial to early interventions addressing modifiable risk and increasing monitoring for nonmodifiable risk. Different mechanisms are involved in the development of postoperative AKI, frequently picturing a multifactorial etiology. For these reasons, no single renoprotective strategy will be effective for all surgical patients, and efforts have been attempted to prevent kidney injury in different ways. Some renoprotective strategies and treatments have proven to be useful, some are no longer recommended because they are ineffective or even harmful, and some strategies are still under investigation to identify the best timing, setting, and patients for whom they could be beneficial. With this review, we aim to provide an overview of recent findings from studies examining epidemiology, risk factors, and mechanisms of perioperative AKI, as well as different renoprotective strategies and treatments presented in the literature.
Collapse
Affiliation(s)
- Luca Molinari
- From the Department of Critical Care Medicine, Center for Critical Care Nephrology, University of Pittsburgh, Pittsburgh, Pennsylvania.,Dipartimento di Medicina Traslazionale, Università degli Studi del Piemonte Orientale, Novara, Italy
| | - Ankit Sakhuja
- From the Department of Critical Care Medicine, Center for Critical Care Nephrology, University of Pittsburgh, Pittsburgh, Pennsylvania.,Division of Cardiovascular Critical Care, Department of Cardiovascular and Thoracic Surgery, West Virginia University, Morgantown, West Virginia
| | - John A Kellum
- From the Department of Critical Care Medicine, Center for Critical Care Nephrology, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
7
|
Belabbas D, Koch C, Chaudru S, Lederlin M, Laviolle B, Le Pabic E, Boulmier D, Heautot JF, Mahe G. Effects of Remote Ischemic Pre-Conditioning to Prevent Contrast-Induced Nephropathy after Intravenous Contrast Medium Injection: A Randomized Controlled Trial. Korean J Radiol 2020; 21:1230-1238. [PMID: 32729273 PMCID: PMC7462761 DOI: 10.3348/kjr.2019.0916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 02/22/2020] [Accepted: 03/31/2020] [Indexed: 11/15/2022] Open
Abstract
Objective We aimed to assess the effects of remote ischemic pre-conditioning (RIPC) on the incidence of contrast-induced nephropathy (CIN) after an intravenous (IV) or intra-arterial injection of contrast medium (CM) in patient and control groups. Materials and Methods This prospective, randomized, single-blinded, controlled trial included 26 patients who were hospitalized for the evaluation of the feasibility of transcatheter aortic valve implantation and underwent investigations including contrast-enhanced computed tomography (CT), with Mehran risk scores greater than or equal to six. All the patients underwent four cycles of five minute-blood pressure cuff inflation followed by five minutes of total deflation. In the RIPC group (n = 13), the cuff was inflated to 50 mm Hg above the patient's systolic blood pressure (SBP); in the control group (n = 13), it was inflated to 10 mm Hg below the patient's SBP. The primary endpoint was the occurrence of CIN. Additionally, variation in the serum levels of cystatin C was assessed. Results One case of CIN was observed in the control group, whereas no cases were detected in the RIPC group (p = 0.48, analysis of 25 patients). Mean creatinine values at the baseline, 24 hours after injection of CM, and 48 hours after injection of CM were 88 ± 32 µmol/L, 91 ± 28 µmol/L and 82 ± 29 µmol/L, respectively (p = 0.73) in the RIPC group, whereas in the control group, they were 100 ± 36 µmol/L, 110 ± 36 µmol/L, and 105 ± 34 µmol/L, respectively (p = 0.78). Cystatin C values (median [Q1, Q3]) at the baseline, 24 hours after injection of CM, and 48 hours after injection of CM were 1.10 [1.08, 1.18] mg/L, 1.17 [0.97, 1.35] mg/L, and 1.12 [0.99, 1.24] mg/L, respectively (p = 0.88) in the RIPC group, whereas they were 1.11 [0.97, 1.28] mg/L, 1.13 [1.08, 1.25] mg/L, and 1.16 [1.03, 1.31] mg/L, respectively (p = 0.93), in the control group. Conclusion The risk of CIN after an IV injection of CM is very low in patients with Mehran risk score greater than or equal to six and even in the patients who are unable to receive preventive hyperhydration. Hence, the Mehran risk score may not be an appropriate method for the estimation of the risk of CIN after IV CM injection.
Collapse
Affiliation(s)
- Dihia Belabbas
- Vascular Medicine Unit, Department of Radiology, University Hospital Pontchaillou, Rennes, France
| | - Caroline Koch
- Department of Radiodology, Toulouse University Hospital, Toulouse, France
| | - Ségolène Chaudru
- Vascular Medicine Unit, Department of Radiology, University Hospital Pontchaillou, Rennes, France
| | - Mathieu Lederlin
- Vascular Medicine Unit, Department of Radiology, University Hospital Pontchaillou, Rennes, France
| | - Bruno Laviolle
- Vascular Medicine Unit, Department of Radiology, University Hospital Pontchaillou, Rennes, France
| | - Estelle Le Pabic
- Vascular Medicine Unit, Department of Radiology, University Hospital Pontchaillou, Rennes, France
| | - Dominique Boulmier
- Vascular Medicine Unit, Department of Radiology, University Hospital Pontchaillou, Rennes, France
| | - Jean François Heautot
- Vascular Medicine Unit, Department of Radiology, University Hospital Pontchaillou, Rennes, France
| | - Guillaume Mahe
- Vascular Medicine Unit, Department of Radiology, University Hospital Pontchaillou, Rennes, France.
| |
Collapse
|
8
|
Gardner RN, Sabino-Carvalho JL, Kim J, Vianna LC, Lang JA. Two weeks of remote ischaemic preconditioning alters sympathovagal balance in healthy humans. Exp Physiol 2020; 105:1500-1506. [PMID: 32691505 DOI: 10.1113/ep088789] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 07/17/2020] [Indexed: 12/16/2022]
Abstract
NEW FINDINGS What is the central question of this study? Delayed cardiovascular responses occur following a single bout of remote ischaemic preconditioning (RIPC). Is heart rate variability (HRV), a surrogate marker of cardiac vagal control, able to detect a delayed effect after a single bout of RIPC? Do repeated bouts of RIPC further alter HRV? What is the main finding and its importance? Indices of HRV indicated a shift in sympathovagal balance toward greater parasympathetic activity following 2 weeks of RIPC but not after a single bout of RIPC. Thus, repeated bouts of RIPC were necessary to elicit changes in autonomic function. ABSTRACT Remote ischaemic preconditioning (RIPC), induced by brief periods of ischaemia followed by reperfusion, protects against ischaemia-reperfusion injury and improves microvascular function. However, the effect of RIPC on autonomic function remains unclear. We hypothesized that RIPC, administered as a single bout or repeated over a 2-week period, will increase markers of cardiac vagal control measured by heart rate variability (HRV). Thirty-two young adults performed a single bout (n = 13), repeated bouts (n = 11), or served as a time control (n = 8). RIPC sessions consisted of four repetitions of 5 min unilateral brachial artery occlusion interspersed by 5 min of reperfusion. For the single bout protocol, resting lead II electrocardiogram (ECG) was collected before and 24, 48, 72 and 168 h post-RIPC. The repeated bout protocol consisted of three 4-day periods of RIPC training, each interspersed by a 1-day break. Similar to time controls, ECG was collected before and 24 h after the last RIPC bout. HRV was analysed by power spectral density and symbolic dynamics using 350-beat ECG segments. After a single bout of RIPC, no changes in HRV were observed at any time point (P > 0.05). After 2 weeks of repeated RIPC, the percentage of zero-variation fragments (baseline = 13.1 ± 1.9%, post-RIPC = 6.9 ± 1.5%, P < 0.05) and the LF/HF ratio decreased (baseline = 1.1 ± 0.2, post-RIPC = 0.7 ± 0.1, P < 0.01), whereas the percentage of two-variation fragments increased (baseline = 42.9 ± 3.6%, post-RIPC = 52.5 ± 3.0%, P < 0.01). These data indicate that repeated RIPC is necessary to elicit changes in sympathovagal balance, specifically resulting in increased vagal and decreased sympathetic activity.
Collapse
Affiliation(s)
| | - Jeann L Sabino-Carvalho
- Department of Kinesiology, Iowa State University, Ames, IA, USA.,Faculty of Physical Education, University of Brasília, Distrito Federal, Brazil
| | - Jahyun Kim
- Department of Kinesiology, Iowa State University, Ames, IA, USA
| | - Lauro C Vianna
- Faculty of Physical Education, University of Brasília, Distrito Federal, Brazil
| | - James A Lang
- Department of Kinesiology, Iowa State University, Ames, IA, USA
| |
Collapse
|
9
|
Chen C, Sun L, Zhang W, Tang Y, Li X, Jing R, Liu T. Limb ischemic preconditioning ameliorates renal microcirculation through activation of PI3K/Akt/eNOS signaling pathway after acute kidney injury. Eur J Med Res 2020; 25:10. [PMID: 32192513 PMCID: PMC7081586 DOI: 10.1186/s40001-020-00407-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 02/24/2020] [Indexed: 12/12/2022] Open
Abstract
Purpose Contrast-induced acute kidney injury (CI-AKI) resulting from administration of iodinated contrast media (CM) is the third leading cause of hospital-acquired acute kidney injury and is associated with substantial morbidity and mortality. Deteriorated renal microcirculation plays an important role in CI-AKI. Limb ischemic preconditioning (LIPC), where brief and non-injurious ischemia/reperfusion is applied to a limb prior to the administration of the contrast agent, is emerging as a promising strategy for CI-AKI prevention. However, it is not known whether the renal protection of LIPC against CI-AKI is mediated by regulation of renal microcirculation and the molecular mechanisms remain largely unknown. Methods In this study, we examined the renal cortical and medullary blood flow in a stable CI-AKI model using 5/6-nephrectomized (NE) rat. The LIPC and sham procedures were performed prior to the injection of CM. Furthermore, we analyzed renal medulla hypoxia using in vivo labeling of hypoxyprobe. Pharmacological inhibitions and western blotting were used to determine the underlying molecular mechanisms. Results In this study, we found LIPC significantly ameliorated CM-induced reduction of medullary blood flow and attenuated CM-induced hypoxia. PI3K inhibitor (wortmannin) treatment blocked the regulation of medullary blood flow and the attenuation of hypoxia of LIPC. Phosphorylation of Akt/eNOS was significantly decreased via wortmannin treatment compared with LIPC. Nitric oxide synthase-inhibitor [Nω-nitro-l-arginine methyl ester (L-NAME)] treatment abolished the above effects and decreased phosphorylation of eNOS, but not Akt. Conclusions Collectively, the results demonstrate that LIPC ameliorates CM-induced renal vasocontraction and is mediated by activation of PI3K/Akt/eNOS signaling pathway.
Collapse
Affiliation(s)
- Cheng Chen
- Division of Nephrology, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, 213003, Jiangsu, China
| | - Li Sun
- Division of Nephrology, Xuyi People's Hospital, Huaian, 211700, Jiangsu, China
| | - Wanfen Zhang
- Division of Nephrology, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, 213003, Jiangsu, China
| | - Yushang Tang
- Division of Nephrology, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, 213003, Jiangsu, China
| | - Xiaoping Li
- Division of Nephrology, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, 213003, Jiangsu, China
| | - Ran Jing
- Division of Nephrology, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, 213003, Jiangsu, China
| | - Tongqiang Liu
- Division of Nephrology, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, 213003, Jiangsu, China.
| |
Collapse
|
10
|
Zhan B, Zhu B, Hu J, Huang Q, Bao H, Huang X, Cheng X. The efficacy of remote ischemic conditioning in preventing contrast-induced nephropathy among patients undergoing coronary angiography or intervention: An updated systematic review and meta-analysis. Ann Noninvasive Electrocardiol 2020; 25:e12706. [PMID: 31605431 PMCID: PMC7358796 DOI: 10.1111/anec.12706] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 08/19/2019] [Accepted: 08/26/2019] [Indexed: 11/26/2022] Open
Abstract
Background Numerous trials have investigated the effect of remote ischemic conditioning (RIC) in preventing contrast‐induced nephropathy (CIN) in patients receiving contrast medium (CM). This meta analysis aims to validate the role of RIC in preventing CIN. Methods We searched the PubMed, EMBASE, and Web of Science databases for eligible randomized controlled trials (RCTs) published before April 27, 2019. Two investigators independently extracted basic characteristics from each study. Odds ratios (ORs) with corresponding 95% confidence intervals (CIs) were used to examine the treatment effect. Results A total of 18 studies comprising 2,503 patients were included in our meta‐analysis. Compared with conventional therapy, RIC significantly reduced the risk of CIN (OR = 0.43, 95% CI: 0.33, 0.56, p < .05). Subgroup analyses showed that the protective effect of RIC was stronger in the low‐osmolar contrast media group (OR = 0.32; 95% CI: 0.23, 0.45, p < .05) and the nondiabetic group (OR = 0.39; 95% CI: 0.29, 0.53 p < .05). RIC also significantly reduced major adverse cardiovascular events within the first 6 months (OR = 0.39; p < .05), but the influence was not present after long‐term follow‐up. Conclusions Our meta‐analysis showed that RIC could effectively reduce CIN risk and decrease the short‐term incidence of relevant adverse events. Furthermore, the effects of CIN are more pronounced in nondiabetic patients and with the use of low‐osmolar contrast medium. This meta‐analysis of small trials suggests a possible protective effect of RIC on contrast‐induced nephropathy and favors the performance of a large randomized trial to further investigate this strategy.
Collapse
Affiliation(s)
- Biming Zhan
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Bo Zhu
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jianxin Hu
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Qianghui Huang
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Huihui Bao
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xiao Huang
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xiaoshu Cheng
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
11
|
Zhou C, Liu J, Ge Y, Zhu Y, Zhou L, Xu L, Xu Z, Wu R, Jia R. Remote Ischemic Preconditioning Ameliorates Renal Fibrosis After Ischemia-Reperfusion Injury via Transforming Growth Factor beta1 (TGF-β1) Signalling Pathway in Rats. Med Sci Monit 2020; 26:e919185. [PMID: 32024811 PMCID: PMC7020740 DOI: 10.12659/msm.919185] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Background The present study was conducted to explore the influence of remote ischemic preconditioning (RIPC) on the adjustment of renal fibrosis after ischemia-reperfusion injury (IRI). Material/Methods Male Sprague-Dawley rats were randomly assigned to 3 groups following right-side nephrectomy: the Sham group (without renal artery clamping), the IRI group (45 min left renal artery clamping), and the RIPC group (rats were treated daily with 3 cycles of 5 min of limb ischemia and 5 min of reperfusion on 3 consecutive days before left renal artery occlusion). After 3 months of reperfusion, the renal function and the extent of tubular injury and renal fibrosis were assessed. The expressions of transforming growth factor beta1 (TGF-β1), p-Smad2, Smad2, p-Smad3, and Smad3 were also evaluated. Results There was no significant difference in renal function and tubular damage among the 3 groups after 45 min of kidney ischemia followed by 3 months of reperfusion. However, an obvious increase of extracellular matrix components and α-SMA could be observed in the kidney tissues of the IRI group, and the changes were significantly ameliorated in rats treated with enhanced RIPC. Compared with the IRI group, the expression of TGF-β1 and the level of p-Smad2 and p-Smad3 were decreased after the intervention of enhanced RIPC. Conclusions Enhanced RIPC ameliorated renal fibrosis after IRI in rats, which appears to be associated with inhibition of the TGF-β1/p-Smad2/3 signalling pathway.
Collapse
Affiliation(s)
- Changcheng Zhou
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China (mainland)
| | - Jingyu Liu
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China (mainland)
| | - Yuzheng Ge
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China (mainland)
| | - Yunpeng Zhu
- Department of Urology, People's Hospital of Ma'Anshan, Maanshan, Anhui, China (mainland)
| | - Liuhua Zhou
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China (mainland)
| | - Luwei Xu
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China (mainland)
| | - Zheng Xu
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China (mainland)
| | - Ran Wu
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China (mainland)
| | - Ruipeng Jia
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China (mainland)
| |
Collapse
|
12
|
Doeppner TR, Zechmeister B, Kaltwasser B, Jin F, Zheng X, Majid A, Venkataramani V, Bähr M, Hermann DM. Very Delayed Remote Ischemic Post-conditioning Induces Sustained Neurological Recovery by Mechanisms Involving Enhanced Angioneurogenesis and Peripheral Immunosuppression Reversal. Front Cell Neurosci 2018; 12:383. [PMID: 30420796 PMCID: PMC6216109 DOI: 10.3389/fncel.2018.00383] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 10/08/2018] [Indexed: 01/06/2023] Open
Abstract
Ischemic conditioning is defined as a transient and subcritical period of ischemia integrated in an experimental paradigm that involves a stimulus of injurious ischemia, activating endogenous tissue repair mechanisms that lead to cellular protection under pathological conditions like stroke. Whereas ischemic pre-conditioning is irrelevant for stroke treatment, ischemic post-conditioning, and especially non-invasive remote ischemic post-conditioning (rPostC) is an innovative and potential strategy for stroke treatment. Although rPostC has been shown to induce neuroprotection in stroke models before, resulting in some clinical trials on the way, fundamental questions with regard to its therapeutic time frame and its underlying mechanisms remain elusive. Hence, we herein used a model of non-invasive rPostC of hind limbs after cerebral ischemia in male C57BL6 mice, studying the optimal timing for the application of rPostC and its underlying mechanisms for up to 3 months. Mice undergoing rPostC underwent three different paradigms, starting with the first cycle of rPostC 12 h, 24 h, or 5 days after stroke induction, which is a very delayed time point of rPostC that has not been studied elsewhere. rPostC as applied within 24 h post-stroke induces reduction of infarct volume on day three. On the contrary, very delayed rPostC does not yield reduction of infarct volume on day seven when first applied on day five, albeit long-term brain injury is significantly reduced. Likewise, very delayed rPostC yields sustained neurological recovery, whereas early rPostC (i.e., <24 h) results in transient neuroprotection only. The latter is mediated via heat shock protein 70 that is a well-known signaling protein involved in the pathophysiological cellular cascade of cerebral ischemia, leading to decreased proteasomal activity and decreased post-stroke inflammation. Very delayed rPostC on day five, however, induces a pleiotropic effect, among which a stimulation of angioneurogenesis, a modulation of the ischemic extracellular milieu, and a reversal of the stroke-induced immunosuppression occur. As such, very delayed rPostC appears to be an attractive tool for future adjuvant stroke treatment that deserves further preclinical attention before large clinical trials are in order, which so far have predominantly focused on early rPostC only.
Collapse
Affiliation(s)
- Thorsten R Doeppner
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Bozena Zechmeister
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Britta Kaltwasser
- Department of Neurology, University Duisburg-Essen Medical School, Essen, Germany
| | - Fengyan Jin
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Xuan Zheng
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Arshad Majid
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, United Kingdom
| | - Vivek Venkataramani
- Department of Hematology & Oncology, University Medical Center Göttingen, Göttingen, Germany.,Institute of Pathology, University Medical Center Göttingen, Göttingen, Germany
| | - Mathias Bähr
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Dirk M Hermann
- Department of Neurology, University Duisburg-Essen Medical School, Essen, Germany
| |
Collapse
|
13
|
Contrast medium induced acute kidney injury: a narrative review. J Nephrol 2018; 31:797-812. [DOI: 10.1007/s40620-018-0498-y] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 05/14/2018] [Indexed: 12/24/2022]
|