1
|
Wang N, Yang Y, Wang H, Li Y, Wang M, Li Q. Cinobufagin modulates vasculogenic mimicry and tumor-associated macrophages to inhibit ovarian cancer progression. Eur J Pharmacol 2025; 987:177157. [PMID: 39617163 DOI: 10.1016/j.ejphar.2024.177157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 11/14/2024] [Accepted: 11/27/2024] [Indexed: 12/12/2024]
Abstract
BACKGROUND Ovarian cancer is among the most prevalent malignant tumors affecting women. While conventional therapies like surgery do provide some measure of disease control, they are accompanied by evident side effects that may readily result in drug resistance. Cinobufagin (HCS) is a water-soluble active component extracted from the dried skin of the Bufo gargarizans. Clinical studies have demonstrated its significant anti-tumor effects. METHODS Transcriptome sequencing identified Forkhead Box S1 (FOXS1)-related targets, and Western blot analysis evaluated the expression levels of vasculogenic mimicry (VM)-related proteins and pathway proteins after cinobufagin intervention. Immunofluorescence and ELISA were used to detect the effects of cinobufagin on M1 and M2 macrophage markers. Additionally, a co-culture model of Skov3 cells and macrophages was established to study the effects of cinobufagin on tumor-associated macrophage polarization. RESULTS Cinobufagin significantly inhibited the growth of Skov3 ovarian cancer cells both in vitro and in vivo. Additionally, cinobufagin decreased the expression levels of VM-related proteins, thereby affecting vasculogenesis both in vitro and in vivo. Transcriptomic analysis revealed that the regulation of the FOXS1 gene contributed to this inhibitory effect. In the co-culture system, we found that cinobufagin inhibited IL-4-induced M2 macrophage polarization. Overexpression of FOXS1 in Skov3 cells enhanced the activity of the C-C motif chemokine ligand 2/receptor 2 (CCL2/CCR2) pathway, which was suppressed by cinobufagin, thus affecting the tumor microenvironment. CONCLUSION Cinobufagin suppressed vasculogenic mimicry by regulating the FOXS1 gene and inhibited M2 macrophage polarization through the CCL2/CCR2 pathway, thereby affecting the tumor microenvironment.
Collapse
Affiliation(s)
- Ning Wang
- Key Laboratory of Xin'an Medicine, Anhui Province Key Laboratory of R&D of Chinese Medicine, Ministry of Education, Anhui University of Traditional Chinese Medicine, 103 Meishan Road, Shushan District, Hefei City, Anhui Province, 230038, China
| | - Yuting Yang
- Key Laboratory of Xin'an Medicine, Anhui Province Key Laboratory of R&D of Chinese Medicine, Ministry of Education, Anhui University of Traditional Chinese Medicine, 103 Meishan Road, Shushan District, Hefei City, Anhui Province, 230038, China
| | - Hainan Wang
- Key Laboratory of Xin'an Medicine, Anhui Province Key Laboratory of R&D of Chinese Medicine, Ministry of Education, Anhui University of Traditional Chinese Medicine, 103 Meishan Road, Shushan District, Hefei City, Anhui Province, 230038, China
| | - Yueyue Li
- Key Laboratory of Xin'an Medicine, Anhui Province Key Laboratory of R&D of Chinese Medicine, Ministry of Education, Anhui University of Traditional Chinese Medicine, 103 Meishan Road, Shushan District, Hefei City, Anhui Province, 230038, China
| | - Meng Wang
- Key Laboratory of Xin'an Medicine, Anhui Province Key Laboratory of R&D of Chinese Medicine, Ministry of Education, Anhui University of Traditional Chinese Medicine, 103 Meishan Road, Shushan District, Hefei City, Anhui Province, 230038, China.
| | - Qinglin Li
- Key Laboratory of Xin'an Medicine, Anhui Province Key Laboratory of R&D of Chinese Medicine, Ministry of Education, Anhui University of Traditional Chinese Medicine, 103 Meishan Road, Shushan District, Hefei City, Anhui Province, 230038, China; Anhui Academy of Traditional Chinese Medicine Bozhou Branch, Bozhou City, Anhui Province, 236800, China.
| |
Collapse
|
2
|
Li M, Wang Y, Chen Y, Dong L, Liu J, Dong Y, Yang Q, Cai W, Li Q, Peng B, Li Y, Weng X, Wang Y, Zhu X, Gong Z, Chen Y. A comprehensive review on pharmacokinetic mechanism of herb-herb/drug interactions in Chinese herbal formula. Pharmacol Ther 2024; 264:108728. [PMID: 39389315 DOI: 10.1016/j.pharmthera.2024.108728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 07/16/2024] [Accepted: 09/24/2024] [Indexed: 10/12/2024]
Abstract
Oral administration of Chinese Herbal Medicine (CHM) faces various challenges in reaching the target organs including absorption and conversion in the gastrointestinal tract, hepatic metabolism via the portal vein, and eventual systemic circulation. During this process, factors such as gut microbes, physical or chemical barriers, metabolic enzymes, and transporters play crucial roles. Particularly, interactions between different herbs in CHM have been observed both in vitro and in vivo. In vitro, interactions typically manifest as detectable physical or chemical changes, such as facilitating solubilization or producing precipitates when decoctions of multiple herbs are administered. In vivo, such interactions cause alterations in the ADME (absorption, distribution, metabolism, and excretion) profile on metabolic enzymes or transporters in the body, leading to competition, antagonism, inhibition, or activation. These interactions ultimately contribute to differences in the therapeutic and pharmacological effects of multi-herb formulas in CHM. Over the past two thousand years, China has cultivated profound expertise and solid theoretical frameworks over the scientific use of herbs. The combination of multiple herbs in one decoction has been frequently employed to synergistically enhance therapeutic efficacy or mitigate toxic and side effects in clinical settings. Additionally combining herbs with increased toxicity or decreased effect is also regarded as a remedy, a practice that should be approached with caution according to Traditional Chinese Medicine (TCM) physicians. Such historical records and practices serve as a foundation for predicting favorable multi-herb combinations and their potential risks. However, systematic data that are available to support the clinical practice and the exploration of novel herbal formulas remain limited. Therefore, this review aims to summarize the pharmacokinetic interactions and mechanisms of herb-herb or herb-drug combinations from existing works, and to offer guidance as well as evidence for optimizing CHM and developing new medicines with CHM characteristics.
Collapse
Affiliation(s)
- Mengting Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China
| | - Yanli Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yi Chen
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China
| | - Lijinchuan Dong
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Jieyuan Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yu Dong
- Guang'an men hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Qing Yang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Weiyan Cai
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Qi Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Bo Peng
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yujie Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Xiaogang Weng
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yajie Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Xiaoxin Zhu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Zipeng Gong
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China.
| | - Ying Chen
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| |
Collapse
|
3
|
Bu X, Feng H, Yan Z. Ginsenoside Rg3 enhances the anticancer effects of 5-fluorouracil in colorectal cancer and reduces drug resistance and the Hedgehog pathway activation. Arab J Gastroenterol 2024; 25:437-443. [PMID: 39500672 DOI: 10.1016/j.ajg.2024.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 09/09/2024] [Accepted: 09/27/2024] [Indexed: 12/02/2024]
Abstract
BACKGROUND AND STUDY AIMS This study aimed to ascertain the inhibitory effect of ginsenoside Rg3 (Rg3) combined with 5-fluorouracil (5-FU) on 5-FU-resistant cells HCT116/5-FU and its molecular mechanism. MATERIAL AND METHODS The HCT116 cell line resistant to 5-FU (HCT116/5-FU) was established by repeated exposure to gradually increasing 5-FU concentrations. The effects of different concentrations of Rg3 and 5-FU on colorectal cancer (CRC) cell proliferation were evaluated, and suitable concentrations were screened for subsequent experiments. The treatment efficacy of Rg3 and 5-FU alone and in combination with CRC cell activity was observed, and the inhibitory effect of Rg3 and 5-FU on the Hedgehog pathway was verified. Finally, the effects of Rg3 and 5-Fu on in vivo tumor formation were evaluated in vivo. RESULTS Rg3 enhanced the therapeutic efficacy of 5-FU in HCT116 cells by inducing apoptosis and suppressing cell activities and epithelial-mesenchymal transition (EMT), showing strong anti-tumor effects. Rg3 enhances the chemosensitivity of drug-resistant HCT116/5-FU cells to 5-FU. Additionally, the expression of Hedgehog pathway-relevant proteins (PTCH1, PTCH2, GLI1, and SHH) was increased in drug-resistant HCT116/5-FU cells, and Rg3 and 5-FU co-treatment downregulated the expression of PTCH1, PTCH2, GLI1, and SHH proteins in HCT116/5-FU cells. Rg3 reversed 5-FU resistance via by modulating the Hedgehog pathway. Rg3, in combination with 5-FU, repressed human CRC xenograft growth in nude mice, suppressed the expression of the proliferative nuclear factor KI67 in tumors, and promoted apoptosis. CONCLUSION Rg3 enhances the anticancer effects of 5-FU in CRC cells that are sensitive and resistant to 5-FU, and its mechanism of action may be related to the inhibition of Hedgehog pathway activation.
Collapse
Affiliation(s)
- Xiaoqian Bu
- Department of Cancer Center, Shanxi Bethune Hospital, Taiyuan 030032, Shanxi Province, China
| | - Huizhi Feng
- Department of Gastroenterology, Shanxi Cancer Hospital, Taiyuan 030013, Shanxi Province, China
| | - Zhengzheng Yan
- Department of General Surgery, Shanxi Bethune Hospital, Taiyuan 030032, Shanxi Province, China.
| |
Collapse
|
4
|
Gao Y, Shelling AN, Nolan E, Porter D, Leung E, Wu Z. Liposome-enabled bufalin and doxorubicin combination therapy for trastuzumab-resistant breast cancer with a focus on cancer stem cells. J Liposome Res 2024; 34:489-506. [PMID: 38269490 DOI: 10.1080/08982104.2024.2305866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 01/10/2024] [Indexed: 01/26/2024]
Abstract
Breast cancer stem cells (BCSCs) play a key role in therapeutic resistance in breast cancer treatments and disease recurrence. This study aimed to develop a combination therapy loaded with pH-sensitive liposomes to kill both BCSCs and the okbulk cancer cells using trastuzumab-sensitive and resistant human epidermal growth factor receptor 2 positive (HER2+) breast cancer cell models. The anti-BCSCs effect and cytotoxicity of all-trans retinoic acid, salinomycin, and bufalin alone or in combination with doxorubicin were compared in HER2+ cell line BT-474 and a validated trastuzumab-resistant cell line, BT-474R. The most potent anti-BCSC agent was selected and loaded into a pH-sensitive liposome system. The effects of the liposomal combination on BCSCs and bulk cancer cells were assessed. Compared with BT-474, the aldehyde dehydrogenase positive BCSC population was elevated in BT-474R (3.9 vs. 23.1%). Bufalin was the most potent agent and suppressed tumorigenesis of BCSCs by ∼50%, and showed strong synergism with doxorubicin in both BT-474 and BT-474R cell lines. The liposomal combination of bufalin and doxorubicin significantly reduced the BCSC population size by 85%, and inhibited both tumorigenesis and self-renewal, although it had little effect on the migration and invasiveness. The cytotoxicity against the bulk cancer cells was also enhanced by the liposomal combination than either formulation alone in both cell lines (p < 0.001). The liposomal bufalin and doxorubicin combination therapy may effectively target both BCSCs and bulk cancer cells for a better outcome in trastuzumab-resistant HER2+ breast cancer.
Collapse
Affiliation(s)
- Yu Gao
- Faculty of Medical and Health Sciences, School of Pharmacy, The University of Auckland, Auckland, New Zealand
| | - Andrew N Shelling
- Faculty of Medical and Health Sciences, School of Medicine, The University of Auckland, Auckland, New Zealand
| | - Emma Nolan
- Faculty of Medical and Health Sciences, Auckland Cancer Society Research Centre, The University of Auckland, Auckland, New Zealand
| | - David Porter
- Auckland Regional Cancer and Blood Service, Auckland City Hospital, Auckland, New Zealand
| | - Euphemia Leung
- Faculty of Medical and Health Sciences, Auckland Cancer Society Research Centre, The University of Auckland, Auckland, New Zealand
| | - Zimei Wu
- Faculty of Medical and Health Sciences, School of Pharmacy, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
5
|
Tian H, Zhao F, Yue BS, Zhai BT. Combinational Antitumor Strategies Based on the Active Ingredients of Toad Skin and Toad Venom. Drug Des Devel Ther 2024; 18:3549-3594. [PMID: 39139676 PMCID: PMC11321342 DOI: 10.2147/dddt.s469832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 07/25/2024] [Indexed: 08/15/2024] Open
Abstract
A multidrug combination strategy is an important mean to improve the treatment of cancer and is the mainstream scheme of clinical cancer treatment. The active ingredients of traditional Chinese medicine, represented by toad skin and toad venom, have the advantages of high efficiency, low toxicity, wide action and multiple targets and have become ideal targets in combined treatment strategies for tumors in recent years. Toad skin and toad venom are traditional Chinese animal medicines derived from Bufo bufo gargarizans Cantor or Bufo melanostictus Schneider that have shown excellent therapeutic effects on the treatment of various cancers and cancer pain as adjuvant antitumor drugs in clinical practice. The involved mechanisms include inducing apoptosis, arresting the cell cycle, inhibiting cell proliferation, migration and invasion, inhibiting tumor angiogenesis, reversing the multidrug resistance of tumor cells, and regulating multiple signaling pathways and targets. Moreover, a multidrug combination strategy based on a nanodelivery system can realize the precise loading of the active ingredients of toad skin or toad venom and other antitumor drugs and carry drugs to overcome physiological and pathological barriers, complete efficient enrichment in tumor tissues, and achieve targeted delivery to tumor cells and the controlled release of drugs, thus enhancing antitumor efficacy and reducing toxicity and side effects. This article reviewed the clinical efficacy and safety of the combination of toad skin and toad venom with chemotherapeutic drugs, targeted drugs, analgesics and other drugs; evaluated the effects and mechanisms of the combination of toad skin and toad venom with chemotherapy, targeted therapy, radiotherapy or hyperthermia, traditional Chinese medicine, signaling pathway inhibitors and other therapies in cell and animal models; and summarized the codelivery strategies for the active ingredients of toad skin and toad venom with chemotherapeutic drugs, small-molecule targeted drugs, monoclonal antibodies, active ingredients of traditional Chinese medicine, and photodynamic and photothermal therapeutic drugs to provide a basis for the rational drug use of toad skin and toad venom in the clinic and the development of novel drug delivery systems.
Collapse
Affiliation(s)
- Huan Tian
- Department of Pharmacy, Xi’an Hospital of Traditional Chinese Medicine, Xi’an, People’s Republic of China
| | - Feng Zhao
- Department of Pharmacy, Xi’an Hospital of Traditional Chinese Medicine, Xi’an, People’s Republic of China
| | - Bao-Sen Yue
- Department of Pharmacy, Xi’an Hospital of Traditional Chinese Medicine, Xi’an, People’s Republic of China
| | - Bing-Tao Zhai
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xi’an, People’s Republic of China
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Xi’an, People’s Republic of China
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Xi’an, People’s Republic of China
- Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Xi’an, People’s Republic of China
| |
Collapse
|
6
|
Miao L, Liu Y, Ali NM, Dong Y, Zhang B, Cui X. Bufalin serves as a pharmaceutic that mitigates drug resistance. Drug Metab Rev 2023:1-10. [PMID: 37114332 DOI: 10.1080/03602532.2023.2206065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
Intrinsic or acquired drug resistance of tumor cells is the main cause of tumor chemotherapy failure and tumor-related death. Bufalin (BF) is the main active monomer component extracted from the Traditional Chinese Medicine Toad venom (secretions of glands behind the ears and epidermis of bufo gargarizans and Bufo Melanostictus Schneider). It is a cardiotonic steroid with broad-spectrum anti-cancer effects and has been widely used against various malignant tumors in clinical practice. Pharmacological studies also found that BF has the effect of reversing drug resistance, which provides a new perspective for the application of Traditional Chinese Medicine as a chemosensitizer in cancer therapy. This article provides an extensive search and summary of published research on mitigating drug resistance to BF and reviews its potential mechanisms.
Collapse
Affiliation(s)
- Linxuan Miao
- Department of Oncology, The First Affiliated Hospital of Dalian Medical University, Dalian, P.R. China
| | - Ying Liu
- Department of Oncology, The First Affiliated Hospital of Dalian Medical University, Dalian, P.R. China
- Department of Oncology, Affiliated Zhongshan Hospital of Dalian University, Dalian, P.R. China
| | - Nasra Mohamoud Ali
- Department of Oncology, The First Affiliated Hospital of Dalian Medical University, Dalian, P.R. China
| | - Yan Dong
- Department of Oncology, The First Affiliated Hospital of Dalian Medical University, Dalian, P.R. China
| | - Bin Zhang
- Department of Oncology, The First Affiliated Hospital of Dalian Medical University, Dalian, P.R. China
| | - Xiaonan Cui
- Department of Oncology, The First Affiliated Hospital of Dalian Medical University, Dalian, P.R. China
| |
Collapse
|
7
|
Martins-Gomes C, Silva AM. Natural Products as a Tool to Modulate the Activity and Expression of Multidrug Resistance Proteins of Intestinal Barrier. J Xenobiot 2023; 13:172-192. [PMID: 37092502 PMCID: PMC10123636 DOI: 10.3390/jox13020014] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/13/2023] [Accepted: 03/21/2023] [Indexed: 03/29/2023] Open
Abstract
The role of intestinal barrier homeostasis in an individual’s general well-being has been widely addressed by the scientific community. Colorectal cancer is among the illnesses that most affect this biological barrier. While chemotherapy is the first choice to treat this type of cancer, multidrug resistance (MDR) is the major setback against the commonly used drugs, with the ATP-binding cassette transporters (ABC transporters) being the major players. The role of P-glycoprotein (P-gp), multidrug resistance protein 1 (MRP1), or breast cancer resistance protein (ABCG2) in the efflux of chemotherapeutic drugs is well described in cancer cells, highlighting these proteins as interesting druggable targets to reverse MDR, decrease drug dosage, and consequently undesired toxicity. Natural products, especially phytochemicals, have a wide diversity of chemical structures, and some particular classes, such as phenolic acids, flavonoids, or pentacyclic triterpenoids, have been reported as inhibitors of P-gp, MRP1, and ABCG2, being able to sensitize cancer cells to chemotherapy drugs. Nevertheless, ABC transporters play a vital role in the cell’s defense against xenobiotics, and some phytochemicals have also been shown to induce the transporters’ activity. A balance must be obtained between xenobiotic efflux in non-tumor cells and bioaccumulation of chemotherapy drugs in cancer cells, in which ABC transporters are essential and natural products play a pivotal role that must be further analyzed. This review summarizes the knowledge concerning the nomenclature and function of ABC-transporters, emphasizing their role in the intestinal barrier cells. In addition, it also focuses on the role of natural products commonly found in food products, e.g., phytochemicals, as modulators of ABC-transporter activity and expression, which are promising nutraceutical molecules to formulate new drug combinations to overcome multidrug resistance.
Collapse
|
8
|
Bufalin reverses ABCB1-mediated resistance to docetaxel in breast cancer. Heliyon 2023; 9:e13840. [PMID: 36879978 PMCID: PMC9984844 DOI: 10.1016/j.heliyon.2023.e13840] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 02/06/2023] [Accepted: 02/14/2023] [Indexed: 02/22/2023] Open
Abstract
Background Docetaxel (DCT) is widely used in clinical practice, but the drug resistance of breast cancer patients has become an important reason to limit its clinical efficacy. Chan'su is a commonly used traditional Chinese medicine for the treatment of breast cancer. Bufalin (BUF) is a bioactive polyhydroxy steroid extracted from chan'su and has strong antitumor activity, but there are few studies on reversing drug resistance in breast cancer. The aim of this study is to determine whether BUF can reverse the drug resistance to DCT and restore efficacy in breast cancer. Methodology The reversal index of BUF was detected by Cell Counting Kit-8 (CCK-8) assays. The effects of BUF on enhancing the apoptosis of DCT were detected by flow cytometry and Western Blot (WB), and the main differential expression levels of sensitive and resistant strains were detected by high-throughput sequencing. Rhodamine 123 assay, WB and ATP Binding Cassette Subfamily B Member 1 (ABCB1) ATPase activity experiments were used to detect the effect of BUF on ABCB1. The nude mouse orthotopic model was constructed to investigate the reversal effect of BUF on DCT resistance in vivo. Results With BUF intervention, the sensitivity of drug-resistant cell lines to DCT was increased. BUF can inhibit the expression of ABCB1 protein, increase the drug accumulation of DCT in drug-resistant strains, and reduce the ATPase activity of ABCB1. Animal experiments show that BUF can inhibit the growth of drug-resistant tumors in an orthotopic model of breast cancer and decrease the expression of ABCB1. Conclusion BUF can reverse ABCB1-mediated docetaxel resistance in breast cancer.
Collapse
|
9
|
Chemistry and the Potential Antiviral, Anticancer, and Anti-Inflammatory Activities of Cardiotonic Steroids Derived from Toads. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27196586. [PMID: 36235123 PMCID: PMC9571018 DOI: 10.3390/molecules27196586] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/30/2022] [Accepted: 09/30/2022] [Indexed: 11/06/2022]
Abstract
Cardiotonic steroids (CTS) were first documented by ancient Egyptians more than 3000 years ago. Cardiotonic steroids are a group of steroid hormones that circulate in the blood of amphibians and toads and can also be extracted from natural products such as plants, herbs, and marines. It is well known that cardiotonic steroids reveal effects against congestive heart failure and atrial fibrillation; therefore, the term "cardiotonic" has been coined. Cardiotonic steroids are divided into two distinct groups: cardenolides (plant-derived) and bufadienolides (mainly of animal origin). Cardenolides have an unsaturated five-membered lactone ring attached to the steroid nucleus at position 17; bufadienolides have a doubly unsaturated six-membered lactone ring. Cancer is a leading cause of mortality in humans all over the world. In 2040, the global cancer load is expected to be 28.4 million cases, which would be a 47% increase from 2020. Moreover, viruses and inflammations also have a very nebative impact on human health and lead to mortality. In the current review, we focus on the chemistry, antiviral and anti-cancer activities of cardiotonic steroids from the naturally derived (toads) venom to combat these chronic devastating health problems. The databases of different research engines (Google Scholar, PubMed, Science Direct, and Sci-Finder) were screened using different combinations of the following terms: “cardiotonic steroids”, “anti-inflammatory”, “antiviral”, “anticancer”, “toad venom”, “bufadienolides”, and “poison chemical composition”. Various cardiotonic steroids were isolated from diverse toad species and exhibited superior anti-inflammatory, anticancer, and antiviral activities in in vivo and in vitro models such as marinobufagenin, gammabufotalin, resibufogenin, and bufalin. These steroids are especially difficult to identify. However, several compounds and their bioactivities were identified by using different molecular and biotechnological techniques. Biotechnology is a new tool to fully or partially generate upscaled quantities of natural products, which are otherwise only available at trace amounts in organisms.
Collapse
|
10
|
Yuan B, Li J, Miyashita SI, Kikuchi H, Xuan M, Matsuzaki H, Iwata N, Kamiuchi S, Sunaga K, Sakamoto T, Hibino Y, Okazaki M. Enhanced Cytotoxic Effects of Arenite in Combination with Active Bufadienolide Compounds against Human Glioblastoma Cell Line U-87. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27196577. [PMID: 36235115 PMCID: PMC9571627 DOI: 10.3390/molecules27196577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 09/25/2022] [Accepted: 09/29/2022] [Indexed: 11/16/2022]
Abstract
The cytotoxicity of a trivalent arsenic derivative (arsenite, AsIII) combined with arenobufagin or gamabufotalin was evaluated in human U-87 glioblastoma cells. Synergistic cytotoxicity with upregulated intracellular arsenic levels was observed, when treated with AsIII combined with arenobufagin instead of gamabufotalin. Apoptosis and the activation of caspase-9/-8/-3 were induced by AsIII and further strengthened by arenobufagin. The magnitude of increase in the activities of caspase-9/-3 was much greater than that of caspase-8, suggesting that the intrinsic pathway played a much more important role in the apoptosis. An increase in the number of necrotic cells, enhanced LDH leakage, and intensified G2/M phase arrest were observed. A remarkable increase in the expression level of γH2AX, a DNA damage marker, was induced by AsIII+arenobufagin. Concomitantly, the activation of autophagy was observed, suggesting that autophagic cell death associated with DNA damage was partially attributed to the cytotoxicity of AsIII+arenobufagin. Suppression of Notch signaling was confirmed in the combined regimen-treated cells, suggesting that inactivation of Jagged1/Notch signaling would probably contribute to the synergistic cytotoxic effect of AsIII+arenobufagin. Given that both AsIII and arenobufagin are capable of penetrating into the blood-brain barrier, our findings may provide fundamental insight into the clinical application of the combined regimen for glioblastoma.
Collapse
Affiliation(s)
- Bo Yuan
- Laboratory of Pharmacology, Graduate School of Pharmaceutical Sciences, Josai University, Keyakidai, Sakado 350-0295, Saitama, Japan
- Correspondence: ; Tel./Fax: +81-49-271-8026
| | - Jingmei Li
- Laboratory of Immunobiochemistry, Graduate School of Pharmaceutical Sciences, Josai University, Keyakidai, Sakado 350-0295, Saitama, Japan
| | - Shin-Ich Miyashita
- National Institute of Advanced Industrial Science and Technology (AIST), AIST Tsukuba Central 3, 1-1-1 Umezono, Tsukuba 305-8563, Ibaraki, Japan
| | - Hidetomo Kikuchi
- Laboratory of Pharmacotherapy, Graduate School of Pharmaceutical Sciences, Josai University, Keyakidai, Sakado 350-0295, Saitama, Japan
| | - Meiyan Xuan
- Laboratory of Organic and Medicinal Chemistry; Graduate School of Pharmaceutical Sciences, Josai University, Keyakidai, Sakado 350-0295, Saitama, Japan
| | - Hirokazu Matsuzaki
- Laboratory of Pharmacology, Graduate School of Pharmaceutical Sciences, Josai University, Keyakidai, Sakado 350-0295, Saitama, Japan
| | - Naohiro Iwata
- Laboratory of Immunobiochemistry, Graduate School of Pharmaceutical Sciences, Josai University, Keyakidai, Sakado 350-0295, Saitama, Japan
| | - Shinya Kamiuchi
- Laboratory of Immunobiochemistry, Graduate School of Pharmaceutical Sciences, Josai University, Keyakidai, Sakado 350-0295, Saitama, Japan
| | - Katsuyoshi Sunaga
- Laboratory of Pharmacotherapy, Graduate School of Pharmaceutical Sciences, Josai University, Keyakidai, Sakado 350-0295, Saitama, Japan
| | - Takeshi Sakamoto
- Laboratory of Organic and Medicinal Chemistry; Graduate School of Pharmaceutical Sciences, Josai University, Keyakidai, Sakado 350-0295, Saitama, Japan
| | - Yasuhide Hibino
- Laboratory of Immunobiochemistry, Graduate School of Pharmaceutical Sciences, Josai University, Keyakidai, Sakado 350-0295, Saitama, Japan
| | - Mari Okazaki
- Laboratory of Pharmacology, Graduate School of Pharmaceutical Sciences, Josai University, Keyakidai, Sakado 350-0295, Saitama, Japan
| |
Collapse
|
11
|
Soumoy L, Ghanem GE, Saussez S, Journe F. Bufalin for an innovative therapeutic approach against cancer. Pharmacol Res 2022; 184:106442. [PMID: 36096424 DOI: 10.1016/j.phrs.2022.106442] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/30/2022] [Accepted: 09/07/2022] [Indexed: 11/19/2022]
Abstract
Bufalin is an endogenous cardiotonic steroid, first discovered in toad venom but also found in the plasma of healthy humans, with anti-tumour activities in different cancer types. The current review is focused on its mechanisms of action and highlights its very large spectrum of effects both in vitro and in vivo. All leads to the conclusion that bufalin mediates its effects by affecting all the hallmarks of cancer and seems restricted to cancer cells avoiding side effects. Bufalin decreases cancer cell proliferation by acting on the cell cycle and inducing different mechanisms of cell death including apoptosis, necroptosis, autophagy and senescence. Bufalin also moderates metastasis formation by blocking migration and invasion as well as angiogenesis and by inducing a phenotype switch towards differentiation and decreasing cancer cell stemness. Regarding its various mechanisms of action in cancer cells, bufalin blocks overactivated signalling pathways and modifies cell metabolism. Moreover, bufalin gained lately a huge interest in the field of drug resistance by both reversing various drug resistance mechanisms and affecting the immune microenvironment. Together, these data support bufalin as a quite promising new anti-cancer drug candidate.
Collapse
Affiliation(s)
- Laura Soumoy
- Laboratory of Human Anatomy & Experimental Oncology, Faculty of Medicine and Pharmacy, University of Mons (UMONS), 7000 Mons, Belgium.
| | - Ghanem E Ghanem
- Laboratory of Clinical and Experimental Oncology, Institut Jules Bordet, Université Libre de Bruxelles (ULB), 1000 Brussels, Belgium
| | - Sven Saussez
- Laboratory of Human Anatomy & Experimental Oncology, Faculty of Medicine and Pharmacy, University of Mons (UMONS), 7000 Mons, Belgium
| | - Fabrice Journe
- Laboratory of Human Anatomy & Experimental Oncology, Faculty of Medicine and Pharmacy, University of Mons (UMONS), 7000 Mons, Belgium; Laboratory of Clinical and Experimental Oncology, Institut Jules Bordet, Université Libre de Bruxelles (ULB), 1000 Brussels, Belgium.
| |
Collapse
|
12
|
Abdelaal MR, Ibrahim E, Elnagar MR, Soror SH, Haffez H. Augmented Therapeutic Potential of EC-Synthetic Retinoids in Caco-2 Cancer Cells Using an In Vitro Approach. Int J Mol Sci 2022; 23:ijms23169442. [PMID: 36012706 PMCID: PMC9409216 DOI: 10.3390/ijms23169442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 07/29/2022] [Accepted: 08/05/2022] [Indexed: 11/16/2022] Open
Abstract
Colorectal cancer therapies have produced promising clinical responses, but tumor cells rapidly develop resistance to these drugs. It has been previously shown that EC19 and EC23, two EC-synthetic retinoids, have single-agent preclinical anticancer activity in colorectal carcinoma. Here, isobologram analysis revealed that they have synergistic cytotoxicity with retinoic acid receptor (RAR) isoform-selective agonistic retinoids such as AC261066 (RARβ2-selective agonist) and CD437 (RARγ-selective agonist) in Caco-2 cells. This synergism was confirmed by calculating the combination index (lower than 1) and the dose reduction index (higher than 1). Flow cytometry of combinatorial IC50 (the concentration causing 50% cell death) confirmed the cell cycle arrest at the SubG0-G1 phase with potentiated apoptotic and necrotic effects. The reported synergistic anticancer activity can be attributed to their ability to reduce the expression of ATP-binding cassette (ABC) transporters including P-glycoprotein (P-gp1), breast cancer resistance protein (BCRP) and multi-drug resistance-associated protein-1 (MRP1) and Heat Shock Protein 70 (Hsp70). This adds up to the apoptosis-promoting activity of EC19 and EC23, as shown by the increased Caspase-3/7 activities and DNA fragmentation leading to DNA double-strand breaks. This study sheds the light on the possible use of EC-synthetic retinoids in the rescue of multi-drug resistance in colorectal cancer using Caco-2 as a model and suggests new promising combinations between different synthetic retinoids. The current in vitro results pave the way for future studies on these compounds as possible cures for colorectal carcinoma.
Collapse
Affiliation(s)
- Mohamed R. Abdelaal
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy, Helwan University, Cairo 11795, Egypt
- Center of Scientific Excellence “Helwan Structural Biology Research, (HSBR)”, Helwan University, Cairo 11795, Egypt
| | - Esraa Ibrahim
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy, Helwan University, Cairo 11795, Egypt
- Center of Scientific Excellence “Helwan Structural Biology Research, (HSBR)”, Helwan University, Cairo 11795, Egypt
| | - Mohamed R. Elnagar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Cairo 11823, Egypt
| | - Sameh H. Soror
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy, Helwan University, Cairo 11795, Egypt
- Center of Scientific Excellence “Helwan Structural Biology Research, (HSBR)”, Helwan University, Cairo 11795, Egypt
| | - Hesham Haffez
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy, Helwan University, Cairo 11795, Egypt
- Center of Scientific Excellence “Helwan Structural Biology Research, (HSBR)”, Helwan University, Cairo 11795, Egypt
- Correspondence: ; Tel.: +20-1094-970-173
| |
Collapse
|
13
|
Positive Effect of α-Asaronol on the Incidence of Post-Stroke Epilepsy for Rat with Cerebral Ischemia-Reperfusion Injury. Molecules 2022; 27:molecules27061984. [PMID: 35335346 PMCID: PMC8952411 DOI: 10.3390/molecules27061984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/14/2022] [Accepted: 03/17/2022] [Indexed: 11/30/2022] Open
Abstract
In the present study, we confirmed that α-asaronol, which is a product of the active metabolites of alpha Asarone, did not affect n-butylphthalide efficacy when n-butylphthalide and α-asaronol were co-administered to rats with cerebral ischemia-reperfusion injury. Our research revealed that the co-administration of α-asaronol and n-butylphthalide could further improve neurological function, reduce brain infarct volume, increase the number of Nissl bodies, and decrease the ratios of apoptotic cells and the expression of the caspase-3 protein for cerebral ischemia-reperfusion injury model compared to n-butylphthalide alone. Additionally, α-asaronol could significantly decrease the incidence of post-stroke epilepsy versus n-butylphthalide. This study provides valuable data for the follow-up prodrug research of α-asaronol and n-butylphthalide.
Collapse
|
14
|
Liu Y, Lu X, Zhang Z, Jiang S, Lv H. mPEG-Cholic acid/TPGS mixed micelles for combined delivery of paclitaxel and bufalin to treat hepatocellular carcinoma. Pharm Dev Technol 2022; 27:215-227. [PMID: 35105263 DOI: 10.1080/10837450.2022.2037140] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
In this study, amphiphilic block copolymer mPEG-cholic acid was synthesized in conjunction with TPGS as stabilizer to prepare multifunctional micelles. The formed polymeric micelles (PCTm) were used for the delivery of paclitaxel (PTX) and bufalin (BF). PEG group could enhance solubility and extend circulation time, while cholic acid groups achieved the liver targeted function. Combinations of these approaches could realize a synergistic therapeutic effect in the treatment of advanced hepatocellular carcinoma. CLSM in vitro results demonstrated that drug capsulation into PCTm could enhance cellular uptake. FCM results confirmed the uptake amount of C6/PCTm was 7.5-fold higher than that of free C6 after incubation for 2 h. Competitive inhibition test proved the Na+-taurocholate co-transporting polypeptide (NTCP) involved in the uptake mechanism of PCTm. Meanwhile, in vivo imaging assays demonstrated that the fluorescence intensity of Cy5.5/PCTm was higher than that of free Cy5.5 on liver and tumor with extended circulation time to 48 h. In addition, in vivo studies confirmed that the combined therapy exhibited the strongest tumor inhibition rate of 82.29% with lower systemic toxicity. Hence, these results indicated that PCTm could provide a promising strategy for targeting hepatocellular carcinoma and achieve the goal of the synergism and attenuation.
Collapse
Affiliation(s)
- Yujia Liu
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Xiaoyu Lu
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Zhenhai Zhang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.,Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China
| | - Shulong Jiang
- Clinical Medical Laboratory Center, Jining No. 1 People's Hospital, Jining, Shandong 272000, China
| | - Huixia Lv
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
15
|
Pu B, Yu X, Cao Y, Li Y, Tang L, Xia J. miR-381 Reverses Multidrug Resistance by Negative Regulation of the CTNNB1/ABCB1 Pathway in HepG2/Dox Cells, and the Diagnostic and Prognostic Values of CTNNB1/ ABCB1 Are Identified in Patients with LIHC. DNA Cell Biol 2021; 40:1584-1596. [PMID: 34931867 DOI: 10.1089/dna.2021.0689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Multidrug resistance (MDR) is the biggest challenge in cancer therapy. In this study, we explored the molecular mechanism of MDR in human liver cancer and explored the related diagnostic and prognostic values of the targeted genes in patients with hepatocellular carcinoma. We constructed a multidrug-resistant liver cancer cell line, HepG2/Dox, using the parental subline HepG2. The (3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide) (MTT) assay was used to test the viability of the liver cancer cells. Western blotting was performed to test the expression of ABCB1, β-catenin, and β-actin. Luciferase assays were performed to confirm the relationship between miR-381 and its target genes. The diagnostic and prognostic values of target genes were analyzed using publicly available data from The Cancer Genome Atlas. The Mann-Whitney U test and logistic regression were performed to evaluate the association between ABCB1 or CTNNB1 expression and clinical features in patients with liver hepatocellular carcinoma (LIHC). Finally, Kaplan-Meier and Cox regression analyses were performed to test the effect of ABCB1 or CTNNB1 expression on the overall survival of patients with LIHC. ABCB1 expression was upregulated in HepG2/Dox cells. ABCB1 was found to be a direct target of hsa-miR-381 and was negatively regulated by has-miR-381. Moreover, hsa-miR-381 directly targeted the CTNNB1 3' UTR and decreased the luciferase activity of CTNNB1. Transfection with miR-183 partially reversed chemotherapeutic drug resistance by downregulating the expression of ABCB1 and CTNNB1 in HepG2/Dox cells. Spearman's analysis results showed that CTNNB1 and ABCB1 were positively correlated in patients with liver cancer, and increased CTNNB1 and ABCB1 expression occurred in patients with liver cancer. High expression of ABCB1 and CTNNB1 indicated poor prognosis in patients with liver cancer; however, neither ABCB1 nor CTNNB1 expression was an independent diagnostic factor in patients with LIHC. Overexpression of hsa-miR-381 partially reversed the MDR of HepG2 cells by directly targeting and negatively regulating the expression of CTTNB1 and ABCB1. Moreover, high expression of ABCB1 or CTNNB1 indicated poor prognosis in patients with liver cancer.
Collapse
Affiliation(s)
- Bangming Pu
- Hepatobiliary Surgery Department, and The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Xiaolan Yu
- Department of Obstetrics and Gynecology, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Yong Cao
- Experimental Medicine Center, The Affiliated Hospital of SouthWest Medical University, Luzhou, China
| | - Yan Li
- Experimental Medicine Center, The Affiliated Hospital of SouthWest Medical University, Luzhou, China
| | - Li Tang
- Experimental Medicine Center, The Affiliated Hospital of SouthWest Medical University, Luzhou, China
| | - Jiyi Xia
- School of Medical Information and Engineering, Southwest Medical University, Luzhou, China
| |
Collapse
|
16
|
Bufalin targets the SRC-3/MIF pathway in chemoresistant cells to regulate M2 macrophage polarization in colorectal cancer. Cancer Lett 2021; 513:63-74. [PMID: 34000344 DOI: 10.1016/j.canlet.2021.05.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 04/30/2021] [Accepted: 05/06/2021] [Indexed: 12/23/2022]
Abstract
M2-polarized macrophages are one of critical factors in tumour chemoresistance. An increasing number of studies have shown that M2 macrophage polarization can be promoted by chemoresistance. A large number of evidences indicate that Bufalin has significant antitumour effect, previous studies have found that Bufalin can reduce the polarization of M2 macrophages to play an anti-tumour effect in vivo, but the mechanism remains unclear. In our study, we found that Bufalin reduced the polarization of M2 macrophages induced by chemoresistant cells both in vivo and in vitro; however, Bufalin had no obvious direct effect on M2 macrophage polarization. Furthermore, we demonstrated that Bufalin targeted the SRC-3 protein to reduce MIF release in chemoresistant cells in order to regulate the polarization of M2 macrophages. More interestingly, we also found that Cinobufacini, Bufalin is its main active monomer, which its could regulate the polarization of M2 macrophages to enhance the anti-tumour effect of oxaliplatin in vivo and in the clinic. Overall, this study provides a theoretical basis for the clinical application of drugs containing Bufalin as the main active ingredient in combination with established chemotherapy for the treatment of colorectal cancer.
Collapse
|
17
|
Ortíz R, Quiñonero F, García-Pinel B, Fuel M, Mesas C, Cabeza L, Melguizo C, Prados J. Nanomedicine to Overcome Multidrug Resistance Mechanisms in Colon and Pancreatic Cancer: Recent Progress. Cancers (Basel) 2021; 13:2058. [PMID: 33923200 PMCID: PMC8123136 DOI: 10.3390/cancers13092058] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 04/22/2021] [Accepted: 04/22/2021] [Indexed: 12/24/2022] Open
Abstract
The development of drug resistance is one of the main causes of cancer treatment failure. This phenomenon occurs very frequently in different types of cancer, including colon and pancreatic cancers. However, the underlying molecular mechanisms are not fully understood. In recent years, nanomedicine has improved the delivery and efficacy of drugs, and has decreased their side effects. In addition, it has allowed to design drugs capable of avoiding certain resistance mechanisms of tumors. In this article, we review the main resistance mechanisms in colon and pancreatic cancers, along with the most relevant strategies offered by nanodrugs to overcome this obstacle. These strategies include the inhibition of efflux pumps, the use of specific targets, the development of nanomedicines affecting the environment of cancer-specific tissues, the modulation of DNA repair mechanisms or RNA (miRNA), and specific approaches to damage cancer stem cells, among others. This review aims to illustrate how advanced nanoformulations, including polymeric conjugates, micelles, dendrimers, liposomes, metallic and carbon-based nanoparticles, are allowing to overcome one of the main limitations in the treatment of colon and pancreatic cancers. The future development of nanomedicine opens new horizons for cancer treatment.
Collapse
Affiliation(s)
- Raúl Ortíz
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain; (R.O.); (F.Q.); (B.G.-P.); (M.F.); (C.M.); (L.C.); (J.P.)
- Department of Anatomy and Embriology, Faculty of Medicine, University of Granada, 18071 Granada, Spain
- Instituto Biosanitario de Granada (ibs.GRANADA), 18014 Granada, Spain
| | - Francisco Quiñonero
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain; (R.O.); (F.Q.); (B.G.-P.); (M.F.); (C.M.); (L.C.); (J.P.)
- Department of Anatomy and Embriology, Faculty of Medicine, University of Granada, 18071 Granada, Spain
- Instituto Biosanitario de Granada (ibs.GRANADA), 18014 Granada, Spain
| | - Beatriz García-Pinel
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain; (R.O.); (F.Q.); (B.G.-P.); (M.F.); (C.M.); (L.C.); (J.P.)
- Department of Anatomy and Embriology, Faculty of Medicine, University of Granada, 18071 Granada, Spain
- Instituto Biosanitario de Granada (ibs.GRANADA), 18014 Granada, Spain
| | - Marco Fuel
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain; (R.O.); (F.Q.); (B.G.-P.); (M.F.); (C.M.); (L.C.); (J.P.)
- Instituto Biosanitario de Granada (ibs.GRANADA), 18014 Granada, Spain
| | - Cristina Mesas
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain; (R.O.); (F.Q.); (B.G.-P.); (M.F.); (C.M.); (L.C.); (J.P.)
- Department of Anatomy and Embriology, Faculty of Medicine, University of Granada, 18071 Granada, Spain
- Instituto Biosanitario de Granada (ibs.GRANADA), 18014 Granada, Spain
| | - Laura Cabeza
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain; (R.O.); (F.Q.); (B.G.-P.); (M.F.); (C.M.); (L.C.); (J.P.)
- Department of Anatomy and Embriology, Faculty of Medicine, University of Granada, 18071 Granada, Spain
- Instituto Biosanitario de Granada (ibs.GRANADA), 18014 Granada, Spain
| | - Consolación Melguizo
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain; (R.O.); (F.Q.); (B.G.-P.); (M.F.); (C.M.); (L.C.); (J.P.)
- Department of Anatomy and Embriology, Faculty of Medicine, University of Granada, 18071 Granada, Spain
- Instituto Biosanitario de Granada (ibs.GRANADA), 18014 Granada, Spain
| | - Jose Prados
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain; (R.O.); (F.Q.); (B.G.-P.); (M.F.); (C.M.); (L.C.); (J.P.)
- Department of Anatomy and Embriology, Faculty of Medicine, University of Granada, 18071 Granada, Spain
- Instituto Biosanitario de Granada (ibs.GRANADA), 18014 Granada, Spain
| |
Collapse
|
18
|
Manna D, Sarkar D. Multifunctional Role of Astrocyte Elevated Gene-1 (AEG-1) in Cancer: Focus on Drug Resistance. Cancers (Basel) 2021; 13:cancers13081792. [PMID: 33918653 PMCID: PMC8069505 DOI: 10.3390/cancers13081792] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 03/31/2021] [Accepted: 04/04/2021] [Indexed: 12/15/2022] Open
Abstract
Simple Summary Chemotherapy is a major mode of treatment for cancers. However, cancer cells adapt to survive in stressful conditions and in many cases, they are inherently resistant to chemotherapy. Additionally, after initial response to chemotherapy, the surviving cancer cells acquire new alterations making them chemoresistant. Genes that help adapt the cancer cells to cope with stress often contribute to chemoresistance and one such gene is Astrocyte elevated gene-1 (AEG-1). AEG-1 levels are increased in all cancers studied to date and AEG-1 contributes to the development of highly aggressive, metastatic cancers. In this review, we provide a comprehensive description of the mechanism by which AEG-1 augments tumor development with special focus on its ability to regulate chemoresistance. We also discuss potential ways to inhibit AEG-1 to overcome chemoresistance. Abstract Cancer development results from the acquisition of numerous genetic and epigenetic alterations in cancer cells themselves, as well as continuous changes in their microenvironment. The plasticity of cancer cells allows them to continuously adapt to selective pressures brought forth by exogenous environmental stresses, the internal milieu of the tumor and cancer treatment itself. Resistance to treatment, either inherent or acquired after the commencement of treatment, is a major obstacle an oncologist confronts in an endeavor to efficiently manage the disease. Resistance to chemotherapy, chemoresistance, is an important hallmark of aggressive cancers, and driver oncogene-induced signaling pathways and molecular abnormalities create the platform for chemoresistance. The oncogene Astrocyte elevated gene-1/Metadherin (AEG-1/MTDH) is overexpressed in a diverse array of cancers, and its overexpression promotes all the hallmarks of cancer, such as proliferation, invasion, metastasis, angiogenesis and chemoresistance. The present review provides a comprehensive description of the molecular mechanism by which AEG-1 promotes tumorigenesis, with a special emphasis on its ability to regulate chemoresistance.
Collapse
|
19
|
Bufalin down-regulates Axl expression to inhibit cell proliferation and induce apoptosis in non-small-cell lung cancer cells. Biosci Rep 2021; 40:222485. [PMID: 32219334 PMCID: PMC7146032 DOI: 10.1042/bsr20193959] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 03/16/2020] [Accepted: 03/26/2020] [Indexed: 12/29/2022] Open
Abstract
Axl, a member of the TAM (Tyro3, AXL, Mer) receptor tyrosine kinase family, plays critical roles in cell growth, proliferation, apoptosis, and migration. In the present study, we demonstrated that the anti-cancer activity of bufalin, a major bioactive component of the Chinese traditional medicine Chan Su, is mediated by the down-regulation of Axl in non-small-cell lung cancer (NSCLC) cells. We observed the inhibitory effect of bufalin on the proliferation of A549 and H460 NSCLC cells and the clonogenicity of these cells was reduced by bufalin treatment in a dose-dependent manner. Next, we found that the protein level of Axl was decreased in proportion to the concentration of bufalin in both A549 and H460 cells. Moreover, the promoter activity of the Axl gene was decreased by bufalin in a dose- and time-dependent manner, indicating that bufalin down-regulates Axl gene expression at the transcriptional level. We further examined if the anti-proliferative property of bufalin is influenced by Axl at the protein level. Axl overexpression attenuated the effect of bufalin in inhibiting cell proliferation and colony formation and inducing apoptosis in H460 cells, while knockdown of Axl gene expression induced the opposite effect. Taken together, our data indicate that the anti-proliferative and pro-apoptotic effects of bufalin were associated with the protein level of Axl, suggesting that Axl is a potent therapeutic target of bufalin in suppressing proliferation and inducing apoptosis in NSCLC cells.
Collapse
|
20
|
Gao HL, Gupta P, Cui Q, Ashar YV, Wu ZX, Zeng L, Lei ZN, Teng QX, Ashby CR, Guan Y, Chen ZS. Sapitinib Reverses Anticancer Drug Resistance in Colon Cancer Cells Overexpressing the ABCB1 Transporter. Front Oncol 2020; 10:574861. [PMID: 33163405 PMCID: PMC7581728 DOI: 10.3389/fonc.2020.574861] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 09/23/2020] [Indexed: 12/23/2022] Open
Abstract
The efficacy of anti-cancer drugs in patients can be attenuated by the development of multi-drug resistance (MDR) due to ATP-binding cassette (ABC) transporters overexpression. In this in vitro study, we determined the reversal efficacy of the epidermal growth factor receptor (EFGR) inhibitor, saptinib, in SW620 and SW720/Ad300 colon cancer cells and HEK293/ABCB1 cells which overexpress the ABCB1 transporter. Sapitinib significantly increased the efficacy of paclitaxel and doxorubicin in ABCB1 overexpressing cells without altering the expression or the subcellular location of the ABCB1 transporter. Sapitinib significantly increased the accumulation of [3H]-paclitaxel in SW620/AD300 cells probably by stimulating ATPase activity which could competitively inhibit the uptake of [3H]-paclitaxel. Furthermore, sapitinib inhibited the growth of resistant multicellular tumor spheroids (MCTS). The docking study indicated that sapitinib interacted with the efflux site of ABCB1 transporter by π-π interaction and two hydrogen bonds. In conclusion, our study suggests that sapitinib surmounts MDR mediated by ABCB1 transporter in cancer cells.
Collapse
Affiliation(s)
- Hai-Ling Gao
- Department of Histology and Embryology, Weifang Medical University, Weifang, China.,Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, United States
| | - Pranav Gupta
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, United States
| | - Qingbin Cui
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, United States
| | - Yunali V Ashar
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, United States
| | - Zhuo-Xun Wu
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, United States
| | - Leli Zeng
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, United States.,Tomas Lindahl Nobel Laureate Laboratory, Research Centre, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Zi-Ning Lei
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, United States
| | - Qiu-Xu Teng
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, United States
| | - Charles R Ashby
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, United States
| | - Yingjun Guan
- Department of Histology and Embryology, Weifang Medical University, Weifang, China
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, United States
| |
Collapse
|
21
|
Dong B, Yang Z, Ju Q, Zhu S, Wang Y, Zou H, Sun C, Zhu C. Anticancer Effects of Fufang Yiliu Yin Formula on Colorectal Cancer Through Modulation of the PI3K/Akt Pathway and BCL-2 Family Proteins. Front Cell Dev Biol 2020; 8:704. [PMID: 32850824 PMCID: PMC7431655 DOI: 10.3389/fcell.2020.00704] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 07/10/2020] [Indexed: 12/15/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most common malignant tumors in China. Fufang Yiliu Yin (FYY) is a traditional Chinese medicine formula used in clinical practice for cancer treatment, but its effectiveness and mechanism of action in human CRC are unclear. In this study, we investigated the antitumor effect of FYY on HCT116 and SW480 human CRC cell lines in vitro and evaluated the underlying molecular mechanism. A subcutaneous xenograft mouse model was used to confirm the antitumor effect in vivo. The components and targets of FYY were collected from the Traditional Chinese Medicine Systems Pharmacology Database (TCMSP) database. CRC targets were collected via the GeneCards and OMIM databases. Protein–protein interactions were explored using the STRING platform. Cytoscape was used to construct drug–disease–target networks. KEGG and GO analyses were performed to investigate common FYY and CRC targets. FYY significantly inhibited cell proliferation and induced HCT116 and SW480 cell apoptosis. Cell proliferation was blocked at the G0/G1 phase, while cell apoptosis was promoted at the early stage. According to the network pharmacological analysis, quercetin and kaempferol were the most bioactive compounds of FYY. The key targets of FYY were cyclin-D1, MAPK8, and EGFR. GO analysis showed that core targets included the apoptotic signaling pathway, response to steroid hormone, and cellular response to organic cyclic compound. The KEGG pathway analysis showed that FYY may affect CRC through the PI3K/Akt pathway. In vitro, FYY significantly inhibited tumor growth. Pathway analysis confirmed that FYY induced cell apoptosis by modulating PI3K/Akt signaling and BCL-2 family proteins. Hence, our findings indicate that FYY may be a promising adjuvant therapy for CRC.
Collapse
Affiliation(s)
- Bingzi Dong
- Shandong Key Laboratory of Digital Medicine and Computer Assisted Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Zhenjie Yang
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China.,Department of General Surgery, Anqiu People's Hospital, Anqiu, China
| | - Qiang Ju
- Department of Blood Transfusion, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Shigao Zhu
- Department of General Medicine, Weifang Hospital of Traditional Chinese Medicine, Weifang, China
| | - Yixiu Wang
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Hao Zou
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Chuandong Sun
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Chengzhan Zhu
- Shandong Key Laboratory of Digital Medicine and Computer Assisted Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China.,Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
22
|
Deng LJ, Li Y, Qi M, Liu JS, Wang S, Hu LJ, Lei YH, Jiang RW, Chen WM, Qi Q, Tian HY, Han WL, Wu BJ, Chen JX, Ye WC, Zhang DM. Molecular mechanisms of bufadienolides and their novel strategies for cancer treatment. Eur J Pharmacol 2020; 887:173379. [PMID: 32758567 DOI: 10.1016/j.ejphar.2020.173379] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 07/05/2020] [Accepted: 07/13/2020] [Indexed: 12/16/2022]
Abstract
Bufadienolides are cardioactive C24 steroids with an α-pyrone ring at position C17. In the last ten years, accumulating studies have revealed the anticancer activities of bufadienolides and their underlying mechanisms, such as induction of autophagy and apoptosis, cell cycle disruption, inhibition of angiogenesis, epithelial-mesenchymal transition (EMT) and stemness, and multidrug resistance reversal. As Na+/K+-ATPase inhibitors, bufadienolides have inevitable cardiotoxicity. Short half-lives, poor stability, low plasma concentration and oral bioavailability in vivo are obstacles for their applications as drugs. To improve the drug potency of bufadienolides and reduce their side effects, prodrug strategies and drug delivery systems such as liposomes and nanoparticles have been applied. Therefore, systematic and recapitulated information about the antitumor activity of bufadienolides, with special emphasis on the molecular or cellular mechanisms, prodrug strategies and drug delivery systems, is of high interest. Here, we systematically review the anticancer effects of bufadienolides and the molecular or cellular mechanisms of action. Research advancements regarding bufadienolide prodrugs and their tumor-targeting delivery strategies are critically summarized. This work highlights recent scientific advances regarding bufadienolides as effective anticancer agents from 2011 to 2019, which will help researchers to understand the molecular pathways involving bufadienolides, resulting in a selective and safe new lead compound or therapeutic strategy with improved therapeutic applications of bufadienolides for cancer therapy.
Collapse
Affiliation(s)
- Li-Juan Deng
- College of Pharmacy, Jinan University, Guangzhou, 510632, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, Jinan University, Guangzhou, 510632, China; School of Traditional Chinese Medicine, Jinan University, Guangzhou, 510632, China
| | - Yong Li
- College of Pharmacy, Jinan University, Guangzhou, 510632, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, Jinan University, Guangzhou, 510632, China
| | - Ming Qi
- College of Pharmacy, Jinan University, Guangzhou, 510632, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, Jinan University, Guangzhou, 510632, China
| | - Jun-Shan Liu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Sheng Wang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Li-Jun Hu
- College of Pharmacy, Jinan University, Guangzhou, 510632, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, Jinan University, Guangzhou, 510632, China
| | - Yu-He Lei
- Shenzhen Hospital of Guangzhou University of Chinese Medicine, Shenzhen, 518034, China
| | - Ren-Wang Jiang
- College of Pharmacy, Jinan University, Guangzhou, 510632, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, Jinan University, Guangzhou, 510632, China
| | - Wei-Min Chen
- College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Qi Qi
- Clinical Translational Center for Targeted Drug, Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, 510632, PR China
| | - Hai-Yan Tian
- College of Pharmacy, Jinan University, Guangzhou, 510632, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, Jinan University, Guangzhou, 510632, China
| | - Wei-Li Han
- School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Bao-Jian Wu
- College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Jia-Xu Chen
- School of Traditional Chinese Medicine, Jinan University, Guangzhou, 510632, China
| | - Wen-Cai Ye
- College of Pharmacy, Jinan University, Guangzhou, 510632, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, Jinan University, Guangzhou, 510632, China.
| | - Dong-Mei Zhang
- College of Pharmacy, Jinan University, Guangzhou, 510632, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
23
|
Lee GY, Lee JS, Son CG, Lee NH. Combating Drug Resistance in Colorectal Cancer Using Herbal Medicines. Chin J Integr Med 2020; 27:551-560. [PMID: 32740824 DOI: 10.1007/s11655-020-3425-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/28/2020] [Indexed: 12/11/2022]
Abstract
Colorectal cancer (CRC) is one of the most prevalent and lethal cancer types around the world. Most of the CRC patients are treated with chemotherapeutic drugs alone or combined. However, up to 90% of metastatic cancer patients experience the failure of treatment mostly because of the acquired drug resistance, which can be led to multidrug resistance (MDR). In this study, we reviewed the recent literature which studied potential CRC MDR reversal agents among herbal medicines (HMs). Among abundant HMs, 6 single herbs, Andrographis paniculata, Salvia miltiorrhiza, Hedyotis diffusa, Sophora flavescens, Curcuma longa, Bufo gargarizans, and 2 formulae, Pien Tze Huang and Zhi Zhen Fang, were found to overcome CRC MDR by two or more different mechanisms, which could be a promising candidate in the development of new drugs for adjuvant CRC chemotherapy.
Collapse
Affiliation(s)
- Ga-Young Lee
- Department of Clinical Oncology, Cheonan Korean Medicine Hospital of Daejeon University, Cheonan, 31099, Republic of Korea.,Liver & Immunology Research Center, Dunsan Korean Medicine Hospital of Daejeon University, Daejeon, 35235, Republic of Korea.,Department of Internal Medicine, Graduated School of Korean Medicine, University of Daejeon, Daejeon, 34520, Republic of Korea
| | - Jin-Seok Lee
- Liver & Immunology Research Center, Dunsan Korean Medicine Hospital of Daejeon University, Daejeon, 35235, Republic of Korea.,Department of Internal Medicine, Graduated School of Korean Medicine, University of Daejeon, Daejeon, 34520, Republic of Korea
| | - Chang-Gue Son
- Liver & Immunology Research Center, Dunsan Korean Medicine Hospital of Daejeon University, Daejeon, 35235, Republic of Korea.,Department of Internal Medicine, Graduated School of Korean Medicine, University of Daejeon, Daejeon, 34520, Republic of Korea
| | - Nam-Hun Lee
- Department of Clinical Oncology, Cheonan Korean Medicine Hospital of Daejeon University, Cheonan, 31099, Republic of Korea. .,Liver & Immunology Research Center, Dunsan Korean Medicine Hospital of Daejeon University, Daejeon, 35235, Republic of Korea. .,Department of Internal Medicine, Graduated School of Korean Medicine, University of Daejeon, Daejeon, 34520, Republic of Korea.
| |
Collapse
|
24
|
Zhan Y, Qiu Y, Wang H, Wang Z, Xu J, Fan G, Xu J, Li W, Cao Y, Le VM, Ly HT, Yuan Z, Xu K, Yin P. Bufalin reverses multidrug resistance by regulating stemness through the CD133/nuclear factor-κB/MDR1 pathway in colorectal cancer. Cancer Sci 2020; 111:1619-1630. [PMID: 32058643 PMCID: PMC7226280 DOI: 10.1111/cas.14345] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 01/27/2020] [Accepted: 01/28/2020] [Indexed: 12/19/2022] Open
Abstract
Recent studies have shown that MDR could be induced by the high stemness of cancer cells. In a previous study, we found bufalin could reverse MDR and inhibit cancer cell stemness in colorectal cancer, but the relationship between them was unclear. Here we identified overexpressing CD133 increases levels of Akt/nuclear factor‐κB signaling mediators and MDR1, while increasing cell chemoresistance. Furthermore, bufalin reverses colorectal cancer MDR by regulating cancer cell stemness through the CD133/nuclear factor‐κB/MDR1 pathway in vitro and in vivo. Taken together, our results suggest that bufalin could be developed as a novel 2‐pronged drug that targets CD133 and MDR1 to eradicate MDR cells and could ultimately be combined with conventional chemotherapeutic agents to improve treatment outcomes for patients with colorectal cancer.
Collapse
Affiliation(s)
- Yueping Zhan
- Central Laboratory, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yanyan Qiu
- Interventional Cancer Institute of Chinese Integrative Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Haijing Wang
- Interventional Cancer Institute of Chinese Integrative Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ziyuan Wang
- Department of Pathology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jian Xu
- Central Laboratory, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Guohua Fan
- Interventional Cancer Institute of Chinese Integrative Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jianhua Xu
- Interventional Cancer Institute of Chinese Integrative Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wei Li
- Department of General Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yijun Cao
- Department of General Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Van-Minh Le
- Research Center of Ginseng and Medicinal Materials (CGMM), National Institute of Medicinal Materials, Ho Chi Minh City, Vietnam
| | - Hai-Trieu Ly
- Research Center of Ginseng and Medicinal Materials (CGMM), National Institute of Medicinal Materials, Ho Chi Minh City, Vietnam
| | - Zeting Yuan
- Interventional Cancer Institute of Chinese Integrative Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Shanghai Putuo Central School of Clinical Medicine, Anhui Medical University, Hefei, China
| | - Ke Xu
- Central Laboratory, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Interventional Cancer Institute of Chinese Integrative Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Shanghai Putuo Central School of Clinical Medicine, Anhui Medical University, Hefei, China
| | - Peihao Yin
- Interventional Cancer Institute of Chinese Integrative Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Department of General Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Shanghai Putuo Central School of Clinical Medicine, Anhui Medical University, Hefei, China
| |
Collapse
|
25
|
Targeting CD133 reverses drug-resistance via the AKT/NF-κB/MDR1 pathway in colorectal cancer. Br J Cancer 2020; 122:1342-1353. [PMID: 32203206 PMCID: PMC7188877 DOI: 10.1038/s41416-020-0783-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 02/12/2020] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Recent studies have shown that multidrug resistance may be induced by the high stemness of cancer cells. Following prolonged chemotherapy, MDR protein 1 (MDR1) and CD133 increase in CRC, but the relationship between them is unclear. METHODS The relationship between MDR and CSC properties in CRC was determined via CCK-8 assay, apoptosis assay, DOX uptake and retention, immunohistochemistry, immunofluorescence and flow cytometry. The correlations between their expression levels were evaluated using Spearman's rank statistical test and the Mann-Whitney test. Furthermore, the effect of CD133 on the repression of the AKT/NF-κB/MDR1 signalling pathway was investigated in vitro and in vivo. RESULTS We found that CD133 increased with the emergence of drug-resistance phenotypes, and the high expression of MDR1/P-gp was consistently accompanied by positive expression of CD133 as demonstrated by the analysis of patient samples. Up- or downregulation of CD133 could regulate MDR via AKT/NF-κB/MDR1 signalling in CRC. A rescue experiment showed that the AKT/NF-κB signalling pathway is the main mechanism by which CD133 regulates MDR1/P-gp expression in CRC. CONCLUSIONS Taken together, our results suggest that targeting CD133 reverses drug resistance via the AKT/NF-κB/MDR1 pathway and that this pathway might serve as a potential therapeutic target to reverse MDR in CRC.
Collapse
|
26
|
Qian L, Su H, Wang G, Li B, Shen G, Gao Q. Anti-tumor Activity of Bufalin by Inhibiting c-MET Mediated MEK/ERK and PI3K/AKT Signaling Pathways in Gallbladder Cancer. J Cancer 2020; 11:3114-3123. [PMID: 32231716 PMCID: PMC7097950 DOI: 10.7150/jca.38393] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Accepted: 02/06/2020] [Indexed: 12/30/2022] Open
Abstract
Gallbladder cancer is one of the most common malignant tumors in the biliary tract. In recent years, the chemotherapy treatment for gallbladder carcinoma has exhibited obvious characteristics of drug resistance and insensitivity, and one of the main factors is the existence of cancer stem cells. Here in this study, the effect of Bufalin on gallbladder cancer (GBC-SD) cells and the related mechanism were studied. The results indicated that Bufalin could inhibit the growth of gallbladder carcinoma both in vivo and in vitro. According to the biological behavior analysis, Bufalin induced apoptosis, inhibited the propagation, migration and invasion of GBC-SD cells, and blocked cell cycle at the G2/M stage. Besides, Bufalin inhibited the tumor sphere formation capability of gallbladder carcinoma in matrigel, reduced the expression of multiple stemness-associated proteins, including Oct4, Sox2 and the stem cell-surface marker proteins CD133 and CD44. Western blot assay showed that Bufalin inhibited MEK/ERK and PI3-K/AKT signaling pathways by inhibiting the expression of p-c-Met, which in turn affected the expression of apoptosis-related protein Mcl-1, and the invasion-associated proteins E-cadherin, MMP9 and Snail. Bufalin was found to have an inhibitory effect on the GBC-SD cell growth and reduce the self-renewal and characteristic of gallbladder cancer stem cells. It enhanced the chemotherapeutic sensitivity and reduced the metastasis of gallbladder carcinoma. In conclusion, Bufalin can be used as a new promising anticancer drug for gallbladder cancer patients who are resistant to traditional chemotherapy.
Collapse
Affiliation(s)
- Liqiang Qian
- Department of General Surgery, Suzhou Ninth People's Hospital, Suzhou, China
| | - Haoyuan Su
- Department of General Surgery, Suzhou Ninth People's Hospital, Suzhou, China
| | - Gang Wang
- Department of General Surgery, Suzhou Ninth People's Hospital, Suzhou, China
| | - Bin Li
- Department of General Surgery, Suzhou Ninth People's Hospital, Suzhou, China
| | - Genhai Shen
- Department of General Surgery, Suzhou Ninth People's Hospital, Suzhou, China
| | - Quangen Gao
- Department of General Surgery, Suzhou Ninth People's Hospital, Suzhou, China
| |
Collapse
|
27
|
Cheng CS, Wang J, Chen J, Kuo KT, Tang J, Gao H, Chen L, Chen Z, Meng Z. New therapeutic aspects of steroidal cardiac glycosides: the anticancer properties of Huachansu and its main active constituent Bufalin. Cancer Cell Int 2019; 19:92. [PMID: 31011289 PMCID: PMC6458819 DOI: 10.1186/s12935-019-0806-1] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 03/27/2019] [Indexed: 12/20/2022] Open
Abstract
Aim of the review In the past decade, increasing research attention investigated the novel therapeutic potential of steroidal cardiac glycosides in cancer treatment. Huachansu and its main active constituent Bufalin have been studied in vitro, in vivo and clinical studies. This review aims to summarize the multi-target and multi-pathway pharmacological effects of Bufalin and Huachansu in the last decade, with the aim of providing a more comprehensive view and highlighting the recently discovered molecular mechanisms. Results Huachansu and its major derivative, Bufalin, had been found to possess anti-cancer effects in a variety of cancer cell lines both in vitro and in vivo. The underlying anti-cancer molecular mechanisms mainly involved anti-proliferation, apoptosis induction, anti-metastasis, anti-angiogenesis, epithelial-mesenchymal transition inhibition, anti-inflammation, Na+/K+-ATPase activity targeting, the steroid receptor coactivator family inhibitions, etc. Moreover, the potential side-effects and toxicities of the toad extract, Huachansu, and Bufalin, including hematological, gastrointestinal, mucocutaneous and cardiovascular adverse reactions, were reported in animal studies and clinic trails. Conclusions Further research is needed to elucidate the potential drug-drug interactions and multi-target interaction of Bufalin and Huachansu. Large-scale clinical trials are warranted to translate the knowledge of the anticancer actions of Bufalin and Huachansu into clinical applications as effective and safe treatment options for cancer patients in the future.
Collapse
Affiliation(s)
- Chien-Shan Cheng
- 1Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032 China.,2Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 China.,3School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR China
| | - Jiaqiang Wang
- 2Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 China.,Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, 200433 China.,5Department of Anaesthesiology, Fudan University Shanghai Cancer Center, Shanghai, 200032 China
| | - Jie Chen
- 3School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR China.,6Department of Orthopaedics, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025 China
| | - Kuei Ting Kuo
- 3School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR China
| | - Jian Tang
- 1Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032 China.,2Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 China
| | - Huifeng Gao
- 1Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032 China.,2Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 China
| | - Lianyu Chen
- 1Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032 China.,2Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 China
| | - Zhen Chen
- 1Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032 China.,2Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 China
| | - Zhiqiang Meng
- 1Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032 China.,2Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 China
| |
Collapse
|
28
|
CHD1L contributes to cisplatin resistance by upregulating the ABCB1-NF-κB axis in human non-small-cell lung cancer. Cell Death Dis 2019; 10:99. [PMID: 30718500 PMCID: PMC6362241 DOI: 10.1038/s41419-019-1371-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 11/26/2018] [Accepted: 01/09/2019] [Indexed: 12/13/2022]
Abstract
Chromodomain helicase/ATPase DNA binding protein 1-like gene (CHD1L) is a recently identified gene associated with malignant tumor progression and patient chemotherapy resistance in human hepatocellular carcinoma (HCC). Previously, we found an association between CHD1L overexpression and poor patient survival in non-small-cell lung cancer (NSCLC). However, little is known about the relationship between CHD1L expression and chemotherapy resistance of NSCLC. By employing immunohistochemistry, we analyzed the expression of CHD1L in NSCLC samples and elucidated the roles and mechanism of CHD1L in NSCLC chemoresistance. We found that the increased expression of CHD1L is positively correlated with a shorter survival time of patients who had received chemotherapy after surgery. We also found that the expression of CHD1L was increased after cisplatin treatment in A549 cells. Conversely, the depletion of CHD1L in cisplatin-resistance cells increased the cell sensitivity to cisplatin, indicating that CHD1L plays a critical role in cisplatin resistance of NSCLC cells. Importantly, we identified the ATP-Binding Cassette Sub-Family B Member (ABCB1) gene as a potential downstream target of CHD1L in NSCLC cells. Knocking down ABCB1 coupled with ectopic expression of CHD1L enhanced the effect of cisplatin on NSCLC cells apoptosis. In addition, overexpressed CHD1L increase the transcription of c-Jun which targeted directly to the promoter of ABCB1. Our data demonstrate that CHD1L could induce cisplatin resistance in NSCLC via c-Jun-ABCB1-NF-κB axis, and may serve as a novel predictive marker and the potential therapeutic target for cisplatin resistance in NSCLC.
Collapse
|
29
|
Yuan Z, Yuan Y, Han L, Qiu Y, Huang X, Gao F, Fan G, Zhang Y, Tang X, He X, Xu K, Yin P. Bufalin-loaded vitamin E succinate-grafted-chitosan oligosaccharide/RGD conjugated TPGS mixed micelles demonstrated improved antitumor activity against drug-resistant colon cancer. Int J Nanomedicine 2018; 13:7533-7548. [PMID: 30532537 PMCID: PMC6241863 DOI: 10.2147/ijn.s170692] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Background Multidrug resistance (MDR) is the major reason for the failure of chemotherapy in colon cancer. Bufalin (BU) is one of the most effective antitumor active constituents in Chansu. Our previous study found that BU can effectively reverse P-glycoprotein (P-gp)-mediated MDR in colon cancer. However, the clinical application of BU is limited due to its low solubility in water and high toxicity. In the present study, a multifunctional delivery system based on vitamin-E- succinate grafted chitosan oligosaccharide (VES-CSO) and cyclic (arginine-glycine-aspartic acid peptide) (RGD)-modified d-alpha-tocopheryl polyethylene glycol 1000 succinate (TPGS) was prepared by emulsion solvent evaporation method for targeted delivery of BU to improve the efficacy of drug-resistant colon cancer therapy. Methods The cytotoxicity of BU-loaded micelles against drug-resistant colon cancer LoVo/ADR and HCT116/LOHP cells was measured by CCK-8 assay. The cellular uptake, Rho123 accumulation, and cell apoptosis were determined by flow cytometry. The expression of apoptosis-related protein and P-gp was measured by Western blot assay. The antitumor activity of BU-loaded micelles was evaluated in LoVo/ADR-bearing nude mice. Results BU-loaded VES-CSO/TPGS-RGD mixed micelles (BU@VeC/T-RGD MM) were 140.3 nm in diameter with zeta potential of 8.66 mV. The BU@VeC/T-RGD MM exhibited good stability, sustained-release pattern, higher intracellular uptake, and greater cytotoxicity in LoVo/ADR cells. Furthermore, the mechanisms of the BU@VeC/T-RGD MM to overcome MDR might be due to enhanced apoptosis rate and P-gp efflux inhibition. Subsequently, in vivo studies confirmed an enhanced therapeutic efficiency and reduced side effects associated with BU@VeC/T-RGD MM compared with free BU, owing to the enhanced permeation and retention effect, improved pharmacokinetic behavior, and tumor targeting, which lead to MDR-inhibiting effect in LoVo/ADR-bearing nude mice. Conclusion Our results demonstrated that VeC/T-RGD MM could be developed as a potential delivery system for BU to improve its antitumor activity against drug-resistant colon cancer.
Collapse
Affiliation(s)
- Zeting Yuan
- Interventional Cancer Institute of Chinese Integrative Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, People's Republic of China,
| | - Yuxia Yuan
- Interventional Cancer Institute of Chinese Integrative Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, People's Republic of China,
| | - Lin Han
- Experimental Research Center, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, People's Republic of China
| | - Yanyan Qiu
- Interventional Cancer Institute of Chinese Integrative Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, People's Republic of China,
| | - Xiaqin Huang
- Department of Pharmaceutics, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Feng Gao
- Department of Pharmaceutics, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Guohua Fan
- Interventional Cancer Institute of Chinese Integrative Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, People's Republic of China,
| | - Yixi Zhang
- Interventional Cancer Institute of Chinese Integrative Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, People's Republic of China,
| | - Xueyao Tang
- Interventional Cancer Institute of Chinese Integrative Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, People's Republic of China,
| | - Xue He
- Interventional Cancer Institute of Chinese Integrative Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, People's Republic of China,
| | - Ke Xu
- Interventional Cancer Institute of Chinese Integrative Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, People's Republic of China,
| | - Peihao Yin
- Interventional Cancer Institute of Chinese Integrative Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, People's Republic of China, .,Department of General Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, People's Republic of China, .,Shanghai Putuo Central School of Clinical Medicine, Anhui Medical University, Anhui 230022, People's Republic of China,
| |
Collapse
|
30
|
Zubiaur P, Saiz-Rodríguez M, Koller D, Ovejero-Benito MC, Wojnicz A, Abad-Santos F. How to make P-glycoprotein (ABCB1, MDR1) harbor mutations and measure its expression and activity in cell cultures? Pharmacogenomics 2018; 19:1285-1297. [PMID: 30334473 DOI: 10.2217/pgs-2018-0101] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Several polymorphisms have been identified in ABCB1, the gene encoding for the P-glycoprotein. This transporter alters the pharmacokinetics or effectiveness of drugs by excreting them from cells where it is expressed (e.g., blood-brain barrier, intestine or tumors). No consensus has been reached regarding the functional consequences of these polymorphisms in the transporter's function. The aim of this review was to describe a methodology that allows the assessment of P-gp function when harboring polymorphisms. We describe how to obtain cell lines with high expression levels of the transporter with polymorphisms and several tactics to measure its expression and activity. This methodology may help elucidate the contribution of polymorphisms in ABCB1 to drug pharmacokinetics, effectiveness and safety or to cancer chemotherapy failure.
Collapse
Affiliation(s)
- Pablo Zubiaur
- Clinical Pharmacology Department, Hospital Universitario de la Princesa, Instituto Teófilo Hernando, Universidad Autónoma de Madrid (UAM), Instituto de Investigación Sanitaria la Princesa (IP), Madrid, Spain
| | - Miriam Saiz-Rodríguez
- Clinical Pharmacology Department, Hospital Universitario de la Princesa, Instituto Teófilo Hernando, Universidad Autónoma de Madrid (UAM), Instituto de Investigación Sanitaria la Princesa (IP), Madrid, Spain
| | - Dora Koller
- Clinical Pharmacology Department, Hospital Universitario de la Princesa, Instituto Teófilo Hernando, Universidad Autónoma de Madrid (UAM), Instituto de Investigación Sanitaria la Princesa (IP), Madrid, Spain
| | - María Carmen Ovejero-Benito
- Clinical Pharmacology Department, Hospital Universitario de la Princesa, Instituto Teófilo Hernando, Universidad Autónoma de Madrid (UAM), Instituto de Investigación Sanitaria la Princesa (IP), Madrid, Spain
| | - Aneta Wojnicz
- Clinical Pharmacology Department, Hospital Universitario de la Princesa, Instituto Teófilo Hernando, Universidad Autónoma de Madrid (UAM), Instituto de Investigación Sanitaria la Princesa (IP), Madrid, Spain
| | - Francisco Abad-Santos
- Clinical Pharmacology Department, Hospital Universitario de la Princesa, Instituto Teófilo Hernando, Universidad Autónoma de Madrid (UAM), Instituto de Investigación Sanitaria la Princesa (IP), Madrid, Spain.,UICEC Hospital Universitario de la Princesa, Plataforma SCReN (Spanish Clinical Reseach Network), Instituto de Investigación Sanitaria la Princesa (IP), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
31
|
Li Y, Angelova A, Liu J, Garamus VM, Li N, Drechsler M, Gong Y, Zou A. In situ phase transition of microemulsions for parenteral injection yielding lyotropic liquid crystalline carriers of the antitumor drug bufalin. Colloids Surf B Biointerfaces 2018; 173:217-225. [PMID: 30296646 DOI: 10.1016/j.colsurfb.2018.09.023] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 08/11/2018] [Accepted: 09/10/2018] [Indexed: 10/28/2022]
Abstract
In this work, we used the small angle X-ray scattering (SAXS) method for controlled preparation of in situ forming sustained-release carriers for the antitumor drug bufalin (BUF), which has very poor solubility and a considerable cardiotoxicity in a non-encapsulated state. To that aim, we exploited the pseudo-ternary phase diagram of an oil(O)/surfactant(S)/water(W) system containing medium chain capric/caprylic triglycerides (MCT) and a co-surfactant blend of Macrogol (15)-hydroxystearate (Solutol HS 15) and sorbitan monooleate (Span 80). Two compositions with different oil contents (sample B and C) were selected from the microemulsion region of the phase diagram in order to study the effect of the aqueous environment on their structural behavior. A phase transition from a microemulsion (ME) to a liquid crystalline phase (LC) was established by SAXS upon progressive dilution. The drug bufalin (BUF) was encapsulated in the microemulsions with low viscosity, whereas the release of the drug occurred from the in situ generated lamellar liquid crystalline structures. The formulations were characterized by SAXS, dynamic light scattering (DLS), cryogenic transmission electron microscopy (Cryo-TEM), rheology, drug loading and encapsulation efficiency, and in vitro release profiles. A correlation was suggested between the structures of the in situ phase-transition formed LCME formulations, the differences in their viscosities and drug release profiles. The performed cytotoxicity, cell apoptosis and pharmacokinetic experiments showed an enhanced bioavailability of BUF after encapsulation. These results suggest potential clinical applications for the obtained safe in situ phase-transition sustained-release formulations of BUF.
Collapse
Affiliation(s)
- Yawen Li
- Shanghai Key Laboratory of Functional Materials Chemistry, State Key Laboratory of Bioreactor Engineering and Institute of Applied Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Angelina Angelova
- Institut Galien Paris-Sud, CNRS UMR 8612, Univ. Paris-Sud, Université Paris-Saclay, LabEx LERMIT, F-92296, Châtenay-Malabry cedex, France
| | - Jianwen Liu
- Shanghai Key Laboratory of Functional Materials Chemistry, State Key Laboratory of Bioreactor Engineering and Institute of Applied Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Vasil M Garamus
- Helmholtz-Zentrum Geesthacht, Centre for Materials and Coastal Research, D-21502, Geesthacht, Germany
| | - Na Li
- National Center for Protein Science Shanghai and Shanghai Institute of Biochemistry and Cell Biology, Shanghai, 200237, PR China
| | - Markus Drechsler
- Keylab "Electron and Optical Microscopy", Bavarian Polymerinstitute (BPI), University of Bayreuth, D-95440, Bayreuth, Germany
| | - Yabin Gong
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai, 200437, PR China
| | - Aihua Zou
- Shanghai Key Laboratory of Functional Materials Chemistry, State Key Laboratory of Bioreactor Engineering and Institute of Applied Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, PR China.
| |
Collapse
|
32
|
Wang J, Cai H, Xia Y, Wang S, Xing L, Chen C, Zhang Y, Xu J, Yin P, Jiang Y, Zhao R, Zuo Q, Chen T. Bufalin inhibits gastric cancer invasion and metastasis by down-regulating Wnt/ASCL2 expression. Oncotarget 2018; 9:23320-23333. [PMID: 29805736 PMCID: PMC5955089 DOI: 10.18632/oncotarget.24157] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 01/02/2018] [Indexed: 12/15/2022] Open
Abstract
Achaete-scute-like 2 (ASCL2) is a transcription factor containing a basic helix-loop-helix (bHLH) domain and is a downstream target of Wnt signaling in intestinal stem cells. Bufalin is the primary active ingredient in Chan Su, a traditional Chinese medicine obtained from the skin and parotid venom glands of toads. The purpose of this study was to research the anti-invasion and anti-metastasis activity of bufalin in gastric cancer and to identify the potential mechanism. Bufalin inhibited gastric cancer cell invasion and metastasis, suppressed cancer cell colony formation, and inhibited the growth of subcutaneous xenografted tumors in nude mice. Furthermore, bufalin inhibited ASCL2 expression and down-regulated the expression of invasion-related genes such as MMP2, MMP9, and vimentin, thereby suppressing epithelial-mesenchymal transition (EMT) in gastric cancer. A Wnt signaling inhibitor (XAV939) down-regulated invasion and the expression of ASCL2, β-catenin, and vimentin but up-regulated E-cadherin expression. In nude mice, bufalin inhibited the tumorigenic behavior of gastric cancer cells, induced cancer cell apoptosis, and regulated invasion-related gene expression. Together, our results suggest that bufalin arrests invasion and metastasis and that its mechanism of action may involve down-regulating Wnt/ASCL2 expression.
Collapse
Affiliation(s)
- Jie Wang
- Department of General Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| | - Han Cai
- Department of General Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| | - Yue Xia
- Department of General Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| | - Shiying Wang
- Department of Gastroenterology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Likai Xing
- Department of General Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| | - Chao Chen
- Department of General Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| | - Yong Zhang
- Department of General Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| | - Jie Xu
- Department of General Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| | - Peihao Yin
- Department of General Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| | - Yiming Jiang
- Department of General Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| | - Ronghua Zhao
- Department of Medical, Virogin Biotech Ltd., Vancouver, British Columbia V6S 2L9, Canada
| | - Qingshong Zuo
- Department of General Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| | - Teng Chen
- Department of General Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China.,Shanghai Putuo Central School of Clinical Medicine, Anhui Medical University, Shanghai 200062, China
| |
Collapse
|
33
|
Zhao Y, Hu X, Zuo X, Wang M. Chemopreventive effects of some popular phytochemicals on human colon cancer: a review. Food Funct 2018; 9:4548-4568. [DOI: 10.1039/c8fo00850g] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The present review summarizes (1) the epidemiology and etiology of colon cancer, (2) generalized cancer chemoprotective mechanisms, and (3) the chemopreventive properties of some popular phytochemicals as well as some phytochemicals developed by our research group recently.
Collapse
Affiliation(s)
- Yueliang Zhao
- College of Food Science and Technology
- Shanghai Ocean University
- Shanghai
- China
- Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai)
| | - Xiaoqian Hu
- College of Food Science and Technology
- Shanghai Ocean University
- Shanghai
- China
- Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai)
| | - Xinyuan Zuo
- School of Petroleum and Chemical Engineering
- Dalian University of Technology
- Panjin City
- China
| | - Mingfu Wang
- College of Food Science and Technology
- Shanghai Ocean University
- Shanghai
- China
- Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai)
| |
Collapse
|