1
|
Deacetylation induced nuclear condensation of HP1γ promotes multiple myeloma drug resistance. Nat Commun 2023; 14:1290. [PMID: 36894562 PMCID: PMC9998874 DOI: 10.1038/s41467-023-37013-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 02/24/2023] [Indexed: 03/11/2023] Open
Abstract
Acquired chemoresistance to proteasome inhibitors is a major obstacle in managing multiple myeloma but key regulators and underlying mechanisms still remain to be explored. We find that high level of HP1γ is associated with low acetylation modification in the bortezomib-resistant myeloma cells using SILAC-based acetyl-proteomics assay, and higher HP1γ level is positively correlated with poorer outcomes in the clinic. Mechanistically, elevated HDAC1 in the bortezomib-resistant myeloma cells deacetylates HP1γ at lysine 5 and consequently alleviates the ubiquitin-mediated protein degradation, as well as the aberrant DNA repair capacity. HP1γ interacts with the MDC1 to induce DNA repair, and simultaneously the deacetylation modification and the interaction with MDC1 enhance the nuclear condensation of HP1γ protein and the chromatin accessibility of its target genes governing sensitivity to proteasome inhibitors, such as CD40, FOS and JUN. Thus, targeting HP1γ stability by using HDAC1 inhibitor re-sensitizes bortezomib-resistant myeloma cells to proteasome inhibitors treatment in vitro and in vivo. Our findings elucidate a previously unrecognized role of HP1γ in inducing drug resistance to proteasome inhibitors of myeloma cells and suggest that targeting HP1γ may be efficacious for overcoming drug resistance in refractory or relapsed multiple myeloma patients.
Collapse
|
2
|
Gjorgjieva M, Ay AS, Correia de Sousa M, Delangre E, Dolicka D, Sobolewski C, Maeder C, Fournier M, Sempoux C, Foti M. MiR-22 Deficiency Fosters Hepatocellular Carcinoma Development in Fatty Liver. Cells 2022; 11:cells11182860. [PMID: 36139435 PMCID: PMC9496902 DOI: 10.3390/cells11182860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/02/2022] [Accepted: 09/09/2022] [Indexed: 12/24/2022] Open
Abstract
MiR-22 is mostly considered as a hepatic tumor-suppressor microRNA based on in vitro analyses. Yet, whether miR-22 exerts a tumor-suppressive function in the liver has not been investigated in vivo. Herein, in silico analyses of miR-22 expression were performed in hepatocellular carcinomas from human patient cohorts and different mouse models. Diethylnitrosamine-induced hepatocellular carcinomas were then investigated in lean and diet-induced obese miR-22-deficient mice. The proteome of liver tissues from miR-22-deficient mice prior to hepatocellular carcinoma development was further analyzed to uncover miR-22 regulated factors that impact hepatocarcinogenesis with miR-22 deficiency. MiR-22 downregulation was consistently observed in hepatocellular carcinomas from all human cohorts and mouse models investigated. The time of appearance of the first tumors was decreased and the number of tumoral foci induced by diethylnitrosamine was significantly increased by miR-22-deficiency in vivo, two features which were further drastically exacerbated with diet-induced obesity. At the molecular level, we provide evidence that the loss of miR-22 significantly affects the energetic metabolism and mitochondrial functions of hepatocytes, and the expression of tumor-promoting factors such as thrombospondin-1. Our study demonstrates that miR-22 acts as a hepatic tumor suppressor in vivo by restraining pro-carcinogenic metabolic deregulations through pleiotropic mechanisms and the overexpression of relevant oncogenes.
Collapse
Affiliation(s)
- Monika Gjorgjieva
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, CH-1211 Geneva, Switzerland
| | - Anne-Sophie Ay
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, CH-1211 Geneva, Switzerland
| | - Marta Correia de Sousa
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, CH-1211 Geneva, Switzerland
| | - Etienne Delangre
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, CH-1211 Geneva, Switzerland
| | - Dobrochna Dolicka
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, CH-1211 Geneva, Switzerland
| | - Cyril Sobolewski
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, CH-1211 Geneva, Switzerland
| | - Christine Maeder
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, CH-1211 Geneva, Switzerland
| | - Margot Fournier
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, CH-1211 Geneva, Switzerland
| | - Christine Sempoux
- Service of Clinical Pathology, Institute of Pathology, Lausanne University Hospital, University of Lausanne, CH-1011 Lausanne, Switzerland
| | - Michelangelo Foti
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, CH-1211 Geneva, Switzerland
- Translational Research Centre in Onco-Haematology, Faculty of Medicine, University of Geneva, CH-1211 Geneva, Switzerland
- Correspondence:
| |
Collapse
|
3
|
Naakka E, Barros-Filho MC, Adnan-Awad S, Al-Samadi A, Marchi FA, Kuasne H, Korelin K, Suleymanova I, Brown AL, Scapulatempo-Neto C, Lourenço SV, Castilho RM, Kowalski LP, Mäkitie A, Araújo VC, Leivo I, Rogatto SR, Salo T, Passador-Santos F. miR-22 and miR-205 Drive Tumor Aggressiveness of Mucoepidermoid Carcinomas of Salivary Glands. Front Oncol 2022; 11:786150. [PMID: 35223452 PMCID: PMC8864291 DOI: 10.3389/fonc.2021.786150] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 12/31/2021] [Indexed: 11/26/2022] Open
Abstract
Objectives To integrate mRNA and miRNA expression profiles of mucoepidermoid carcinomas (MECs) and normal salivary gland (NSGs) tissue samples and identify potential drivers. Material and Methods Gene and miRNA expression arrays were performed in 35 MECs and six NSGs. Results We found 46 differentially expressed (DE) miRNAs and 3,162 DE mRNAs. Supervised hierarchical clustering analysis of the DE transcripts revealed two clusters in both miRNA and mRNA profiles, which distinguished MEC from NSG samples. The integrative miRNA-mRNA analysis revealed a network comprising 696 negatively correlated interactions (44 miRNAs and 444 mRNAs) involving cell signaling, cell cycle, and cancer-related pathways. Increased expression levels of miR-205-5p and miR-224-5p and decreased expression levels of miR-139-3p, miR-145-3p, miR-148a-3p, miR-186-5p, miR-338-3p, miR-363-3p, and miR-4324 were significantly related to worse overall survival in MEC patients. Two overexpressed miRNAs in MEC (miR-22 and miR-205) were selected for inhibition by the CRISPR-Cas9 method. Cell viability, migration, and invasion assays were performed using an intermediate grade MEC cell line. Knockout of miR-205 reduced cell viability and enhanced ZEB2 expression, while miR-22 knockout reduced cell migration and invasion and enhanced ESR1 expression. Our results indicate a distinct transcriptomic profile of MEC compared to NSG, and the integrative analysis highlighted miRNA-mRNA interactions involving cancer-related pathways, including PTEN and PI3K/AKT. Conclusion The in vitro functional studies revealed that miR-22 and miR-205 deficiencies reduced the viability, migration, and invasion of the MEC cells suggesting they are potential oncogenic drivers in MEC.
Collapse
Affiliation(s)
- Erika Naakka
- Department of Oral and Maxillofacial Diseases, University of Helsinki, Helsinki, Finland.,Translational Immunology Research Program (TRIMM), University of Helsinki, Helsinki, Finland
| | | | - Shady Adnan-Awad
- Translational Immunology Research Program (TRIMM), University of Helsinki, Helsinki, Finland.,Hematology Research Unit, Department of Clinical Chemistry and Hematology, University of Helsinki, Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland
| | - Ahmed Al-Samadi
- Department of Oral and Maxillofacial Diseases, University of Helsinki, Helsinki, Finland.,Translational Immunology Research Program (TRIMM), University of Helsinki, Helsinki, Finland
| | | | - Hellen Kuasne
- Centro Internacional de Pesquisa (CIPE) - A.C.Camargo Cancer Center, São Paulo, Brazil
| | - Katja Korelin
- Department of Oral and Maxillofacial Diseases, University of Helsinki, Helsinki, Finland.,Translational Immunology Research Program (TRIMM), University of Helsinki, Helsinki, Finland
| | - Ilida Suleymanova
- Department of Oral and Maxillofacial Diseases, University of Helsinki, Helsinki, Finland.,Translational Immunology Research Program (TRIMM), University of Helsinki, Helsinki, Finland
| | - Amy Louise Brown
- Department of Oral Pathology, Faculdade São Leopoldo Mandic, Campinas, Brazil
| | | | - Silvia Vanessa Lourenço
- Department of Pathology, A.C.Camargo Cancer Center, São Paulo, Brazil.,Department of General Pathology, Dental School, University of São Paulo, São Paulo, Brazil
| | - Rogério Moraes Castilho
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI, United States
| | - Luiz Paulo Kowalski
- Department of Head and Neck Surgery and Otorhinolaryngology, A.C.Camargo Cancer Center, São Paulo, Brazil.,Department of Head and Neck Surgery, University of Sao Paulo Medical School, São Paulo, Brazil
| | - Antti Mäkitie
- Department of Otorhinolaryngology - Head and Neck Surgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Division of Ear, Nose and Throat Diseases, Department of Clinical Sciences, Intervention and Technology, Karolinska Institute and Karolinska Hospital, Stockholm, Sweden
| | | | - Ilmo Leivo
- Institute of Biomedicine, Pathology, University of Turku and Turku University Hospital, Turku, Finland
| | - Silvia Regina Rogatto
- Department of Clinical Genetics, University Hospital of Southern Denmark, Vejle, Denmark.,Institute of Regional Health Research, University of Southern Denmark, Odense, Denmark
| | - Tuula Salo
- Department of Oral and Maxillofacial Diseases, University of Helsinki, Helsinki, Finland.,Translational Immunology Research Program (TRIMM), University of Helsinki, Helsinki, Finland.,Department of Pathology, Helsinki University Hospital, Helsinki, Finland.,Cancer and Translational Medicine Research Unit, University of Oulu, Oulu, Finland.,Medical Research Center, Oulu University Hospital, Oulu, Finland
| | | |
Collapse
|
4
|
Li G, Chen S, Zhang Y, Xu H, Xu D, Wei Z, Gao X, Cai W, Mao N, Zhang L, Li S, Yang F, Liu H, Li S. Matrix stiffness regulates α-TAT1-mediated acetylation of α-tubulin and promotes silica-induced epithelial-mesenchymal transition via DNA damage. J Cell Sci 2021; 134:224091. [PMID: 33310909 DOI: 10.1242/jcs.243394] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 11/12/2020] [Indexed: 12/11/2022] Open
Abstract
Silicosis is characterized by silica exposure-induced lung interstitial fibrosis and formation of silicotic nodules, resulting in lung stiffening. The acetylation of microtubules mediated by α-tubulin N-acetyltransferase 1 (α-TAT1) is a posttranslational modification that promotes microtubule stability in response to mechanical stimulation. α-TAT1 and downstream acetylated α-tubulin (Ac-α-Tub) are decreased in silicosis, promoting the epithelial-mesenchymal transition (EMT); however, the underlying mechanisms are unknown. We found that silica, matrix stiffening or their combination triggered Ac-α-Tub downregulation in alveolar epithelial cells, followed by DNA damage and replication stress. α-TAT1 elevated Ac-α-Tub to limit replication stress and the EMT via trafficking of p53-binding protein 1 (53BP1, also known as TP53BP1). The results provide evidence that α-TAT1 and Ac-α-Tub inhibit the EMT and silicosis fibrosis by preventing 53BP1 mislocalization and relieving DNA damage. This study provides insight into how the cell cycle is regulated during the EMT and why the decrease in α-TAT1 and Ac-α-Tub promotes silicosis fibrosis.This article has an associated First Person interview with the first authors of the paper.
Collapse
Affiliation(s)
- Gengxu Li
- Basic Medicine College, North China University of Science and Technology, Tangshan 063210, China
| | - Si Chen
- Department of Neurosurgery, Tangshan People's Hospital, Tangshan 063210, China
| | - Yi Zhang
- Basic Medicine College, North China University of Science and Technology, Tangshan 063210, China
| | - Hong Xu
- School of Public Health, Medical Research Center, Hebei Key Laboratory for Organ Fibrosis Research, North China University of Science and Technology, Tangshan 063210, China
| | - Dingjie Xu
- College of Traditional Chinese Medicine, North China University of Science and Technology, Tangshan 063210, China
| | - Zhongqiu Wei
- Basic Medicine College, North China University of Science and Technology, Tangshan 063210, China
| | - Xuemin Gao
- School of Public Health, Medical Research Center, Hebei Key Laboratory for Organ Fibrosis Research, North China University of Science and Technology, Tangshan 063210, China
| | - Wenchen Cai
- School of Public Health, Medical Research Center, Hebei Key Laboratory for Organ Fibrosis Research, North China University of Science and Technology, Tangshan 063210, China
| | - Na Mao
- School of Public Health, Medical Research Center, Hebei Key Laboratory for Organ Fibrosis Research, North China University of Science and Technology, Tangshan 063210, China
| | - Lijuan Zhang
- School of Public Health, Medical Research Center, Hebei Key Laboratory for Organ Fibrosis Research, North China University of Science and Technology, Tangshan 063210, China
| | - Shumin Li
- Basic Medicine College, North China University of Science and Technology, Tangshan 063210, China
| | - Fang Yang
- School of Public Health, Medical Research Center, Hebei Key Laboratory for Organ Fibrosis Research, North China University of Science and Technology, Tangshan 063210, China
| | - Heliang Liu
- School of Public Health, Medical Research Center, Hebei Key Laboratory for Organ Fibrosis Research, North China University of Science and Technology, Tangshan 063210, China
| | - Shifeng Li
- School of Public Health, Medical Research Center, Hebei Key Laboratory for Organ Fibrosis Research, North China University of Science and Technology, Tangshan 063210, China
| |
Collapse
|
5
|
The tissue specific regulation of miR22 expression in the lung and brain by ribosomal protein L29. Sci Rep 2020; 10:16242. [PMID: 33004906 PMCID: PMC7530758 DOI: 10.1038/s41598-020-73281-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 09/15/2020] [Indexed: 11/23/2022] Open
Abstract
Endogenous miR22 is associated with a diverse range of biological processes through post-translational modification of gene expression and its deregulation results in various diseases including cancer. Its expression is usually tissue or cell-specific, however, the reasons behind this tissue or cell specificity are not clearly outlined till-date. Therefore, our keen interest was to investigate the mechanisms of tissue or cell-specific expression of miR22. In the current study, miR22 expression showed a tissues-specific difference in the poly(I:C) induced inflammatory mouse lung and brain tissues. The cell-specific different expression of miR22 was also observed in inflammatory glial cells and endothelial cells. The pattern of RPL29 expression was also similar to miR22 in these tissues and cells under the same treatment. Interestingly, the knockdown of RPL29 exerted an inhibitory effect on miR22 and its known transcription factors including Fos-B and c-Fos. Fos-B and c-Fos were also differentially expressed in the two cell lines transfected with poly(I:C). The knockdown of c-Fos also exerted its negative effects on miR22 expression in both cells. These findings suggest that RPL29 might have regulatory roles on tissue or cell-specific expression of miR22 through the transcription activities of c-Fos and also possibly through Fos-B.
Collapse
|
6
|
Knapp DW, Dhawan D, Ramos-Vara JA, Ratliff TL, Cresswell GM, Utturkar S, Sommer BC, Fulkerson CM, Hahn NM. Naturally-Occurring Invasive Urothelial Carcinoma in Dogs, a Unique Model to Drive Advances in Managing Muscle Invasive Bladder Cancer in Humans. Front Oncol 2020; 9:1493. [PMID: 32039002 PMCID: PMC6985458 DOI: 10.3389/fonc.2019.01493] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 12/11/2019] [Indexed: 12/11/2022] Open
Abstract
There is a great need to improve the outlook for people facing urinary bladder cancer, especially for patients with invasive urothelial carcinoma (InvUC) which is lethal in 50% of cases. Improved outcomes for patients with InvUC could come from advances on several fronts including emerging immunotherapies, targeted therapies, and new drug combinations; selection of patients most likely to respond to a given treatment based on molecular subtypes, immune signatures, and other characteristics; and prevention, early detection, and early intervention. Progress on all of these fronts will require clinically relevant animal models for translational research. The animal model(s) should possess key features that drive success or failure of cancer drugs in humans including tumor heterogeneity, genetic-epigenetic crosstalk, immune cell responsiveness, invasive and metastatic behavior, and molecular subtypes (e.g., luminal, basal). Experimental animal models, while essential in bladder cancer research, do not possess these collective features to accurately predict outcomes in humans. These key features, however, are present in naturally-occurring InvUC in pet dogs. Canine InvUC closely mimics muscle-invasive bladder cancer in humans in cellular and molecular features, molecular subtypes, immune response patterns, biological behavior (sites and frequency of metastasis), and response to therapy. Thus, dogs can offer a highly relevant animal model to complement other models in research for new therapies for bladder cancer. Clinical treatment trials in pet dogs with InvUC are considered a win-win-win scenario; the individual dog benefits from effective treatment, the results are expected to help other dogs, and the findings are expected to translate to better treatment outcomes in humans. In addition, the high breed-associated risk for InvUC in dogs (e.g., 20-fold increased risk in Scottish Terriers) offers an unparalleled opportunity to test new strategies in primary prevention, early detection, and early intervention. This review will provide an overview of canine InvUC, summarize the similarities (and differences) between canine and human InvUC, and provide evidence for the expanding value of this canine model in bladder cancer research.
Collapse
Affiliation(s)
- Deborah W Knapp
- Department of Veterinary Clinical Sciences, Purdue University, West Lafayette, IN, United States.,Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN, United States
| | - Deepika Dhawan
- Department of Veterinary Clinical Sciences, Purdue University, West Lafayette, IN, United States
| | - José A Ramos-Vara
- Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN, United States.,Department of Comparative Pathobiology, Purdue University, West Lafayette, IN, United States
| | - Timothy L Ratliff
- Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN, United States.,Department of Comparative Pathobiology, Purdue University, West Lafayette, IN, United States
| | - Gregory M Cresswell
- Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN, United States
| | - Sagar Utturkar
- Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN, United States
| | - Breann C Sommer
- Department of Veterinary Clinical Sciences, Purdue University, West Lafayette, IN, United States
| | - Christopher M Fulkerson
- Department of Veterinary Clinical Sciences, Purdue University, West Lafayette, IN, United States.,Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN, United States
| | - Noah M Hahn
- Department of Oncology and Urology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
7
|
Sommer BC, Dhawan D, Ratliff TL, Knapp DW. Naturally-Occurring Canine Invasive Urothelial Carcinoma: A Model for Emerging Therapies. Bladder Cancer 2018; 4:149-159. [PMID: 29732386 PMCID: PMC5929349 DOI: 10.3233/blc-170145] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The development of targeted therapies and the resurgence of immunotherapy offer enormous potential to dramatically improve the outlook for patients with invasive urothelial carcinoma (InvUC). Optimization of these therapies, however, is crucial as only a minority of patients achieve dramatic remission, and toxicities are common. With the complexities of the therapies, and the growing list of possible drug combinations to test, highly relevant animal models are needed to assess and select the most promising approaches to carry forward into human trials. The animal model(s) should possess key features that dictate success or failure of cancer drugs in humans including tumor heterogeneity, genetic-epigenetic crosstalk, immune cell responsiveness, invasive and metastatic behavior, and molecular subtypes (e.g., luminal, basal). While it may not be possible to create these collective features in experimental models, these features are present in naturally-occurring InvUC in pet dogs. Naturally occurring canine InvUC closely mimics muscle-invasive bladder cancer in humans in regards to cellular and molecular features, molecular subtypes, biological behavior (sites and frequency of metastasis), and response to therapy. Clinical treatment trials in pet dogs with InvUC are considered a win-win scenario; the individual dog benefits from effective treatment, the results are expected to help other dogs, and the findings are expected to translate to better treatment outcomes in humans. This review will provide an overview of canine InvUC, the similarities to the human condition, and the potential for dogs with InvUC to serve as a model to predict the outcomes of targeted therapy and immunotherapy in humans.
Collapse
Affiliation(s)
- Breann C Sommer
- Department of Veterinary Clinical Sciences, Purdue University, West Lafayette, IN, USA
| | - Deepika Dhawan
- Department of Veterinary Clinical Sciences, Purdue University, West Lafayette, IN, USA
| | - Timothy L Ratliff
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN, USA.,Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN, USA
| | - Deborah W Knapp
- Department of Veterinary Clinical Sciences, Purdue University, West Lafayette, IN, USA.,Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN, USA
| |
Collapse
|