1
|
Cagliani R, Forni D, Mozzi A, Fuchs R, Tussia-Cohen D, Arrigoni F, Pozzoli U, De Gioia L, Hagai T, Sironi M. Evolution of Virus-like Features and Intrinsically Disordered Regions in Retrotransposon-derived Mammalian Genes. Mol Biol Evol 2024; 41:msae154. [PMID: 39101471 PMCID: PMC11299033 DOI: 10.1093/molbev/msae154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/16/2024] [Accepted: 07/19/2024] [Indexed: 08/06/2024] Open
Abstract
Several mammalian genes have originated from the domestication of retrotransposons, selfish mobile elements related to retroviruses. Some of the proteins encoded by these genes have maintained virus-like features; including self-processing, capsid structure formation, and the generation of different isoforms through -1 programmed ribosomal frameshifting. Using quantitative approaches in molecular evolution and biophysical analyses, we studied 28 retrotransposon-derived genes, with a focus on the evolution of virus-like features. By analyzing the rate of synonymous substitutions, we show that the -1 programmed ribosomal frameshifting mechanism in three of these genes (PEG10, PNMA3, and PNMA5) is conserved across mammals and originates alternative proteins. These genes were targets of positive selection in primates, and one of the positively selected sites affects a B-cell epitope on the spike domain of the PNMA5 capsid, a finding reminiscent of observations in infectious viruses. More generally, we found that retrotransposon-derived proteins vary in their intrinsically disordered region content and this is directly associated with their evolutionary rates. Most positively selected sites in these proteins are located in intrinsically disordered regions and some of them impact protein posttranslational modifications, such as autocleavage and phosphorylation. Detailed analyses of the biophysical properties of intrinsically disordered regions showed that positive selection preferentially targeted regions with lower conformational entropy. Furthermore, positive selection introduces variation in binary sequence patterns across orthologues, as well as in chain compaction. Our results shed light on the evolutionary trajectories of a unique class of mammalian genes and suggest a novel approach to study how intrinsically disordered region biophysical characteristics are affected by evolution.
Collapse
Affiliation(s)
- Rachele Cagliani
- Scientific Institute IRCCS E. MEDEA, Computational Biology Unit, Bosisio Parini 23842, Italy
| | - Diego Forni
- Scientific Institute IRCCS E. MEDEA, Computational Biology Unit, Bosisio Parini 23842, Italy
| | - Alessandra Mozzi
- Scientific Institute IRCCS E. MEDEA, Computational Biology Unit, Bosisio Parini 23842, Italy
| | - Rotem Fuchs
- Shmunis School of Biomedicine and Cancer Research, George S Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Dafna Tussia-Cohen
- Shmunis School of Biomedicine and Cancer Research, George S Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Federica Arrigoni
- Department of Biotechnology and Biosciences, University of Milan-Bicocca, Milan 20126, Italy
| | - Uberto Pozzoli
- Scientific Institute IRCCS E. MEDEA, Computational Biology Unit, Bosisio Parini 23842, Italy
| | - Luca De Gioia
- Department of Biotechnology and Biosciences, University of Milan-Bicocca, Milan 20126, Italy
| | - Tzachi Hagai
- Shmunis School of Biomedicine and Cancer Research, George S Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Manuela Sironi
- Scientific Institute IRCCS E. MEDEA, Computational Biology Unit, Bosisio Parini 23842, Italy
| |
Collapse
|
2
|
Wood TW, Henriques WS, Cullen HB, Romero M, Blengini CS, Sarathy S, Sorkin J, Bekele H, Jin C, Kim S, Chemiakine A, Khondker RC, Isola JV, Stout MB, Gennarino VA, Mogessie B, Jain D, Schindler K, Suh Y, Wiedenheft B, Berchowitz LE. The retrotransposon-derived capsid genes PNMA1 and PNMA4 maintain reproductive capacity. RESEARCH SQUARE 2024:rs.3.rs-4559920. [PMID: 39041030 PMCID: PMC11261967 DOI: 10.21203/rs.3.rs-4559920/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
The human genome contains 24 gag-like capsid genes derived from deactivated retrotransposons conserved among eutherians. Although some of their encoded proteins retain the ability to form capsids and even transfer cargo, their fitness benefit has remained elusive. Here we show that the gag-like genes PNMA1 and PNMA4 support reproductive capacity during aging. Analysis of donated human ovaries shows that expression of both genes declines normally with age, while several PNMA1 and PNMA4 variants identified in genome-wide association studies are causally associated with low testosterone, altered puberty onset, or obesity. Six-week-old mice lacking either Pnma1 or Pnma4 are indistinguishable from wild-type littermates, but by six months the mutant mice become prematurely subfertile, with precipitous drops in sex hormone levels, gonadal atrophy, and abdominal obesity; overall they produce markedly fewer offspring than controls. These findings expand our understanding of factors that maintain human reproductive health and lend insight into the domestication of retrotransposon-derived genes.
Collapse
Affiliation(s)
- Thomas W.P. Wood
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - William S. Henriques
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, 59717, USA
| | - Harrison B. Cullen
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Mayra Romero
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, 145 Bevier Road, Piscataway, NJ 08854, USA
| | - Cecilia S. Blengini
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, 145 Bevier Road, Piscataway, NJ 08854, USA
| | - Shreya Sarathy
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, 145 Bevier Road, Piscataway, NJ 08854, USA
| | - Julia Sorkin
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, 145 Bevier Road, Piscataway, NJ 08854, USA
| | - Hilina Bekele
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, 06511, USA
| | - Chen Jin
- Department of Obstetrics and Gynecology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Seungsoo Kim
- Department of Obstetrics and Gynecology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Alexei Chemiakine
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Rishad C. Khondker
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - José V.V. Isola
- Aging & Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Michael B. Stout
- Aging & Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Vincenzo A. Gennarino
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA
- Columbia Stem Cell Initiative, New York, NY 10032, USA
- Initiative for Columbia Ataxia and Tremor, New York, NY 10032, USA
| | - Binyam Mogessie
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, 06511, USA
| | - Devanshi Jain
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, 145 Bevier Road, Piscataway, NJ 08854, USA
| | - Karen Schindler
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, 145 Bevier Road, Piscataway, NJ 08854, USA
| | - Yousin Suh
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA
- Department of Obstetrics and Gynecology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Blake Wiedenheft
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, 59717, USA
| | - Luke E. Berchowitz
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA
- Taub Institute for Research on Alzheimer’s and the Aging Brain, New York, NY, USA
| |
Collapse
|
3
|
Zhu Q, Ma H, Wang J, Liang X. Understanding the Mechanisms of Diminished Ovarian Reserve: Insights from Genetic Variants and Regulatory Factors. Reprod Sci 2024; 31:1521-1532. [PMID: 38347379 DOI: 10.1007/s43032-024-01467-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 01/19/2024] [Indexed: 05/24/2024]
Abstract
Delaying childbearing age has become a trend in modern times, but it has also led to a common challenge in clinical reproductive medicine-diminished ovarian reserve (DOR). Since the mechanism behind DOR is unknown and its clinical features are complex, physicians find it difficult to provide targeted treatment. Many factors affect ovarian reserve function, and existing studies have shown that genetic variants, upstream regulatory genes, and changes in protein expression levels are present in populations with reduced ovarian reserve function. However, existing therapeutic regimens often do not target the genetic profile for more individualized treatment. In this paper, we review the types of genetic variants, mutations, altered expression levels of microRNAs, and other related factors and their effects on the regulation of follicular development, as well as altered DNA methylation. We hope this review will have significant implications for the future treatment of individuals with reduced ovarian reserve.
Collapse
Affiliation(s)
- Qinying Zhu
- The First Clinical Medical College of, Lanzhou University, Lanzhou, China
| | - Hao Ma
- The First Clinical Medical College of, Lanzhou University, Lanzhou, China
| | - Jing Wang
- Department of Obstetrics and Gynecology, The First Hospital of Lanzhou University, Lanzhou, China
| | - Xiaolei Liang
- Department of Obstetrics and Gynecology, The First Hospital of Lanzhou University, Gansu Provincial Clinical Research Center for Gynecological Oncology, No.1, Donggangxi Rd, Chengguan District, Lanzhou, 730000, China.
| |
Collapse
|
4
|
Wood TWP, Henriques WS, Cullen HB, Romero M, Blengini CS, Sarathy S, Sorkin J, Bekele H, Jin C, Kim S, Chemiakine A, Khondker RC, Isola JVV, Stout MB, Gennarino VA, Mogessie B, Jain D, Schindler K, Suh Y, Wiedenheft B, Berchowitz LE. The retrotransposon - derived capsid genes PNMA1 and PNMA4 maintain reproductive capacity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.11.592987. [PMID: 38798495 PMCID: PMC11118267 DOI: 10.1101/2024.05.11.592987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
The human genome contains 24 gag -like capsid genes derived from deactivated retrotransposons conserved among eutherians. Although some of their encoded proteins retain the ability to form capsids and even transfer cargo, their fitness benefit has remained elusive. Here we show that the gag -like genes PNMA1 and PNMA4 support reproductive capacity. Six-week-old mice lacking either Pnma1 or Pnma4 are indistinguishable from wild-type littermates, but by six months the mutant mice become prematurely subfertile, with precipitous drops in sex hormone levels, gonadal atrophy, and abdominal obesity; overall they produce markedly fewer offspring than controls. Analysis of donated human ovaries shows that expression of both genes declines normally with aging, while several PNMA1 and PNMA4 variants identified in genome-wide association studies are causally associated with low testosterone, altered puberty onset, or obesity. These findings expand our understanding of factors that maintain human reproductive health and lend insight into the domestication of retrotransposon-derived genes.
Collapse
|
5
|
Lin J, Zhang X, Meng F, Zeng F, Liu W, He X. PNMA5 accelerated cellular proliferation, invasion and migration in colorectal cancer. Am J Transl Res 2022; 14:2231-2243. [PMID: 35559417 PMCID: PMC9091092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 03/15/2022] [Indexed: 06/15/2023]
Abstract
OBJECTIVES Paraneoplastic antigen Ma family (PNMA) is dysregulated in the pathological development of various cancers. However, the actions of PNMA member 5 (PNMA5) in cancers are still unknown. The aim of this study was to explore the biological actions of PNMA5 and its implication in epithelial-mesenchymal transition (EMT) during the progression of colorectal cancer (CRC). METHODS Immunohistochemical staining, western blot and qPCR were used to explore PNMA5 expression in colorectal cancer tissues and cells. In addition, western blot, MTT assays, Colony formation assay, wound-healing, and transwell cell invasion assays were used to investigate the effects of PNMA5 on EMT in colorectal cancer. The lung metastasis models and xenografts in nude mice were established to explore the roles of PNMA5 in vivo. RESULTS It was found that the expression level of PNMA5 in colorectal cancer tissues was significantly up regulated compared to that in the adjacent tissues. The overall survival rates of patients with a higher PNMA5 expression were markedly decreased. In addition, knockdown of PNMA5 expression decreased the proliferation, invasion and migration of both HCT-15 and HCT-116 cells. PNMA5 expression was found to be positively associated with the expression of C-myc, CyclinD1, Ki67, N-cadherin, zinc finger E-box binding homeobox 1 and vimentin, and negatively associated with E-cadherin. It was also found that PNMA5 knockdown attenuated TGF-β-induced EMT in colorectal cancer cells. Finally, it was demonstrated that PNMA5 accelerated colorectal cancer cell proliferation, invasion and migration in vivo. CONCLUSION The results revealed that PNMA5 increased cellular proliferation, invasion and migration in colorectal cancer. PNMA5 plays a key role in promoting CRC carcinogenesis and progression for patients with CRC.
Collapse
Affiliation(s)
- Jie Lin
- The First Affiliated Hospital of Gannan Medical UniversityGanzhou 341000, Jiangxi, PR China
| | - Xiaokang Zhang
- The First Affiliated Hospital of Gannan Medical UniversityGanzhou 341000, Jiangxi, PR China
- Jiangxi Provincial Branch of China Clinical Medical Research Center for Geriatric Diseases, Gannan Medical UniversityGanzhou 341000, Jiangxi, PR China
| | - Fan Meng
- The First Affiliated Hospital of Gannan Medical UniversityGanzhou 341000, Jiangxi, PR China
| | - Fanlin Zeng
- The First Affiliated Hospital of Gannan Medical UniversityGanzhou 341000, Jiangxi, PR China
| | - Weiyou Liu
- The First Affiliated Hospital of Gannan Medical UniversityGanzhou 341000, Jiangxi, PR China
- Jiangxi Provincial Branch of China Clinical Medical Research Center for Geriatric Diseases, Gannan Medical UniversityGanzhou 341000, Jiangxi, PR China
| | - Xin He
- The First Affiliated Hospital of Gannan Medical UniversityGanzhou 341000, Jiangxi, PR China
- Jiangxi Provincial Branch of China Clinical Medical Research Center for Geriatric Diseases, Gannan Medical UniversityGanzhou 341000, Jiangxi, PR China
| |
Collapse
|
6
|
Chen LJ, Zhang NN, Zhou CX, Yang ZX, Li YR, Zhang T, Li CR, Wang X, Wang Y, Wang ZB, Xia ZR, Wang ZB, Zhang CL, Guan YC, Sun QY, Zhang D. Gm364 coordinates MIB2/DLL3/Notch2 to regulate female fertility through AKT activation. Cell Death Differ 2022; 29:366-380. [PMID: 34635817 PMCID: PMC8816931 DOI: 10.1038/s41418-021-00861-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 08/21/2021] [Accepted: 08/22/2021] [Indexed: 11/09/2022] Open
Abstract
Many integral membrane proteins might act as indispensable coordinators in specific functional microdomains to maintain the normal operation of known receptors, such as Notch. Gm364 is a multi-pass transmembrane protein that has been screened as a potential female fertility factor. However, there have been no reports to date about its function in female fertility. Here, we found that global knockout of Gm364 decreased the numbers of primordial follicles and growing follicles, impaired oocyte quality as indicated by increased ROS and γ-H2AX, decreased mitochondrial membrane potential, decreased oocyte maturation, and increased aneuploidy. Mechanistically, Gm364 directly binds and anchors MIB2, a ubiquitin ligase, on the membrane. Subsequently, membrane MIB2 ubiquitinates and activates DLL3. Next, the activated DLL3 binds and activates Notch2, which is subsequently cleaved within the cytoplasm to produce NICD2, the intracellular active domain of Notch2. Finally, NICD2 can directly activate AKT within the cytoplasm to regulate oocyte meiosis and quality.
Collapse
Affiliation(s)
- Liang-Jian Chen
- State Key Lab of Reproductive Medicine, Nanjing Medical University, 101 Longmian Ave., Nanjing, 211166, Jiangsu, China
| | - Na-Na Zhang
- State Key Lab of Reproductive Medicine, Nanjing Medical University, 101 Longmian Ave., Nanjing, 211166, Jiangsu, China
- Center for Reproductive Medicine, the Third Affiliated Hospital of Zhengzhou University, 7 Rehabilitation Front Street, Zhengzhou, 450000, Henan, China
| | - Chun-Xiang Zhou
- State Key Lab of Reproductive Medicine, Nanjing Medical University, 101 Longmian Ave., Nanjing, 211166, Jiangsu, China
- Drum Tower Hospital Affiliated to Medical College of Nanjing University, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, China
| | - Zhi-Xia Yang
- State Key Lab of Reproductive Medicine, Nanjing Medical University, 101 Longmian Ave., Nanjing, 211166, Jiangsu, China
| | - Yan-Ru Li
- State Key Lab of Reproductive Medicine, Nanjing Medical University, 101 Longmian Ave., Nanjing, 211166, Jiangsu, China
- Reproductive Medical Center, Henan Provincial People's Hospital & Reproductive Medical Center, People's Hospital of Zhengzhou University, 7 Weiwu Road, Zhengzhou, 450003, Henan, China
| | - Teng Zhang
- State Key Lab of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Beijing, 100101, China
| | - Cong-Rong Li
- State Key Lab of Reproductive Medicine, Nanjing Medical University, 101 Longmian Ave., Nanjing, 211166, Jiangsu, China
| | - Xin Wang
- State Key Lab of Reproductive Medicine, Nanjing Medical University, 101 Longmian Ave., Nanjing, 211166, Jiangsu, China
| | - Yang Wang
- State Key Lab of Reproductive Medicine, Nanjing Medical University, 101 Longmian Ave., Nanjing, 211166, Jiangsu, China
| | - Zi-Bin Wang
- Analysis and Test Center, Nanjing Medical University, 101 Longmian Ave., Nanjing, 211166, Jiangsu, China
| | - Zheng-Rong Xia
- Analysis and Test Center, Nanjing Medical University, 101 Longmian Ave., Nanjing, 211166, Jiangsu, China
| | - Zhen-Bo Wang
- State Key Lab of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Beijing, 100101, China
| | - Cui-Lian Zhang
- Reproductive Medical Center, Henan Provincial People's Hospital & Reproductive Medical Center, People's Hospital of Zhengzhou University, 7 Weiwu Road, Zhengzhou, 450003, Henan, China.
| | - Yi-Chun Guan
- State Key Lab of Reproductive Medicine, Nanjing Medical University, 101 Longmian Ave., Nanjing, 211166, Jiangsu, China.
- Center for Reproductive Medicine, the Third Affiliated Hospital of Zhengzhou University, 7 Rehabilitation Front Street, Zhengzhou, 450000, Henan, China.
| | - Qing-Yuan Sun
- Fertility Preservation Lab and Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, 466 Xin-Gang-Zhong Road, Guangzhou, 510317, Guangdong, China.
| | - Dong Zhang
- State Key Lab of Reproductive Medicine, Nanjing Medical University, 101 Longmian Ave., Nanjing, 211166, Jiangsu, China.
| |
Collapse
|
7
|
Pineau C, Hikmet F, Zhang C, Oksvold P, Chen S, Fagerberg L, Uhlén M, Lindskog C. Cell Type-Specific Expression of Testis Elevated Genes Based on Transcriptomics and Antibody-Based Proteomics. J Proteome Res 2019; 18:4215-4230. [PMID: 31429579 DOI: 10.1021/acs.jproteome.9b00351] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
One of the most complex organs in the human body is the testis, where spermatogenesis takes place. This physiological process involves thousands of genes and proteins that are activated and repressed, making testis the organ with the highest number of tissue-specific genes. However, the function of a large proportion of the corresponding proteins remains unknown and testis harbors many missing proteins (MPs), defined as products of protein-coding genes that lack experimental mass spectrometry evidence. Here, an integrated omics approach was used for exploring the cell type-specific protein expression of genes with an elevated expression in testis. By combining genome-wide transcriptomics analysis with immunohistochemistry, more than 500 proteins with distinct testicular protein expression patterns were identified, and these were selected for in-depth characterization of their in situ expression in eight different testicular cell types. The cell type-specific protein expression patterns allowed us to identify six distinct clusters of expression at different stages of spermatogenesis. The analysis highlighted numerous poorly characterized proteins in each of these clusters whose expression overlapped with that of known proteins involved in spermatogenesis, including 85 proteins with an unknown function and 60 proteins that previously have been classified as MPs. Furthermore, we were able to characterize the in situ distribution of several proteins that previously lacked spatial information and cell type-specific expression within the testis. The testis elevated expression levels both at the RNA and protein levels suggest that these proteins are related to testis-specific functions. In summary, the study demonstrates the power of combining genome-wide transcriptomics analysis with antibody-based protein profiling to explore the cell type-specific expression of both well-known proteins and MPs. The analyzed proteins constitute important targets for further testis-specific research in male reproductive disorders.
Collapse
Affiliation(s)
- Charles Pineau
- Univ Rennes , Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail), UMR_S 1085 , 35042 Rennes Cedex, France.,Protim , Univ Rennes , 35042 Rennes Cedex, France
| | - Feria Hikmet
- Uppsala University , Department of Immunology, Genetics and Pathology, Rudbeck Laboratory , 75185 Uppsala , Sweden
| | - Cheng Zhang
- Science for Life Laboratory , School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH-Royal Institute of Technology , 17121 Stockholm , Sweden
| | - Per Oksvold
- Science for Life Laboratory , School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH-Royal Institute of Technology , 17121 Stockholm , Sweden
| | - Shuqi Chen
- Science for Life Laboratory , School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH-Royal Institute of Technology , 17121 Stockholm , Sweden
| | - Linn Fagerberg
- Science for Life Laboratory , School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH-Royal Institute of Technology , 17121 Stockholm , Sweden
| | - Mathias Uhlén
- Science for Life Laboratory , School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH-Royal Institute of Technology , 17121 Stockholm , Sweden
| | - Cecilia Lindskog
- Uppsala University , Department of Immunology, Genetics and Pathology, Rudbeck Laboratory , 75185 Uppsala , Sweden
| |
Collapse
|
8
|
Gao LL, Xu F, Jin Z, Ying XY, Liu JW. Microtubule‑severing protein Katanin p60 ATPase‑containing subunit A‑like 1 is involved in pole‑based spindle organization during mouse oocyte meiosis. Mol Med Rep 2019; 20:3573-3582. [PMID: 31485656 DOI: 10.3892/mmr.2019.10605] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Accepted: 05/31/2019] [Indexed: 11/05/2022] Open
Abstract
Microtubule‑severing proteins (MTSPs) are a group of microtubule‑associated proteins essential for multiple microtubule‑related processes, including mitosis and meiosis. Katanin p60 ATPase‑containing subunit A‑like 1 (p60 katanin‑like 1) is an MTSP that maintains the density of spindle microtubules at the poles in mitotic cells; however, to date, there have been no studies about its role in female meiosis. Using in vitro‑matured (IVM) oocytes as a model, it was first revealed that p60 katanin‑like 1 was predominant in the ovaries and oocytes, indicating its essential roles in oocyte meiosis. It was also revealed that p60 katanin‑like 1 was concentrated at the spindle poles and co‑localized and interacted with γ‑tubulin, indicating that it may be involved in pole organization. Next, specific siRNA was used to deplete p60 katanin‑like 1; the spindle organization was severely disrupted and characterized by an abnormal width:length ratio, multipolarity and extra aster microtubules out of the main spindles. Finally, it was determined that p60 katanin‑like 1 knockdown retarded oocyte meiosis, reduced fertilization, and caused abnormal mitochondrial distribution. Collectively, these results indicated that p60 katanin‑like 1 is essential for oocyte meiosis by ensuring the integrity of the spindle poles.
Collapse
Affiliation(s)
- Lei-Lei Gao
- Department of Gynecology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| | - Fei Xu
- Department of Gynecology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang 310015, P.R. China
| | - Zhen Jin
- Reproductive Genetic Center, Suzhou Municipal Hospital, Suzhou Hospital of Nanjing, Nanjing, Jiangsu 215000, P.R. China
| | - Xiao-Yan Ying
- Department of Gynecology, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210011, P.R. China
| | - Jin-Wei Liu
- Department of Gynecology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| |
Collapse
|
9
|
Melaine N, Com E, Bellaud P, Guillot L, Lagarrigue M, Morrice NA, Guével B, Lavigne R, Velez de la Calle JF, Dojahn J, Pineau C. Deciphering the Dark Proteome: Use of the Testis and Characterization of Two Dark Proteins. J Proteome Res 2018; 17:4197-4210. [DOI: 10.1021/acs.jproteome.8b00387] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Nathalie Melaine
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail)—UMR S 1085, F-35042 Rennes cedex, France
- Protim, Univ Rennes, F-35042 Rennes, France
| | - Emmanuelle Com
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail)—UMR S 1085, F-35042 Rennes cedex, France
- Protim, Univ Rennes, F-35042 Rennes, France
| | - Pascale Bellaud
- H2P2 Core Facility, UMS BioSit, Univ Rennes, Rennes F-35040, France
| | - Laetitia Guillot
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail)—UMR S 1085, F-35042 Rennes cedex, France
- Protim, Univ Rennes, F-35042 Rennes, France
| | - Mélanie Lagarrigue
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail)—UMR S 1085, F-35042 Rennes cedex, France
- Protim, Univ Rennes, F-35042 Rennes, France
| | - Nick A. Morrice
- Sciex, Phoenix House Lakeside Drive Centre Park, Warrington WA1 1RX, U.K
| | - Blandine Guével
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail)—UMR S 1085, F-35042 Rennes cedex, France
- Protim, Univ Rennes, F-35042 Rennes, France
| | - Régis Lavigne
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail)—UMR S 1085, F-35042 Rennes cedex, France
- Protim, Univ Rennes, F-35042 Rennes, France
| | | | - Jörg Dojahn
- Sciex, Landwehrstr. 54, 64293 Darmstadt, Germany
| | - Charles Pineau
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail)—UMR S 1085, F-35042 Rennes cedex, France
- Protim, Univ Rennes, F-35042 Rennes, France
| |
Collapse
|