1
|
Skelding KA, Barry DL, Theron DZ, Lincz LF. Bone Marrow Microenvironment as a Source of New Drug Targets for the Treatment of Acute Myeloid Leukaemia. Int J Mol Sci 2022; 24:563. [PMID: 36614005 PMCID: PMC9820412 DOI: 10.3390/ijms24010563] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/05/2022] [Accepted: 12/22/2022] [Indexed: 12/30/2022] Open
Abstract
Acute myeloid leukaemia (AML) is a heterogeneous disease with one of the worst survival rates of all cancers. The bone marrow microenvironment is increasingly being recognised as an important mediator of AML chemoresistance and relapse, supporting leukaemia stem cell survival through interactions among stromal, haematopoietic progenitor and leukaemic cells. Traditional therapies targeting leukaemic cells have failed to improve long term survival rates, and as such, the bone marrow niche has become a promising new source of potential therapeutic targets, particularly for relapsed and refractory AML. This review briefly discusses the role of the bone marrow microenvironment in AML development and progression, and as a source of novel therapeutic targets for AML. The main focus of this review is on drugs that modulate/target this bone marrow microenvironment and have been examined in in vivo models or clinically.
Collapse
Affiliation(s)
- Kathryn A. Skelding
- Cancer Cell Biology Research Group, School of Biomedical Sciences and Pharmacy, College of Health Medicine and Wellbeing, The University of Newcastle, Callaghan, NSW 2308, Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| | - Daniel L. Barry
- Cancer Cell Biology Research Group, School of Biomedical Sciences and Pharmacy, College of Health Medicine and Wellbeing, The University of Newcastle, Callaghan, NSW 2308, Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| | - Danielle Z. Theron
- Cancer Cell Biology Research Group, School of Biomedical Sciences and Pharmacy, College of Health Medicine and Wellbeing, The University of Newcastle, Callaghan, NSW 2308, Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| | - Lisa F. Lincz
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
- Hunter Hematology Research Group, Calvary Mater Newcastle Hospital, Waratah, NSW 2298, Australia
| |
Collapse
|
2
|
O'Reilly E, Zeinabad HA, Szegezdi E. Hematopoietic versus leukemic stem cell quiescence: Challenges and therapeutic opportunities. Blood Rev 2021; 50:100850. [PMID: 34049731 DOI: 10.1016/j.blre.2021.100850] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 04/22/2021] [Accepted: 05/07/2021] [Indexed: 12/13/2022]
Abstract
Hematopoietic stem cells (HSC) are responsible for the production of mature blood cells. To ensure that the HSC pool does not get exhausted over the lifetime of an individual, most HSCs are in a state of quiescence with only a small proportion of HSCs dividing at any one time. HSC quiescence is carefully controlled by both intrinsic and extrinsic, niche-driven mechanisms. In acute myeloid leukemia (AML), the leukemic cells overtake the hematopoietic bone marrow niche where they acquire a quiescent state. These dormant AML cells are resistant to chemotherapeutics. Because they can re-establish the disease after therapy, they are often termed as quiescent leukemic stem cells (LSC) or leukemia-initiating cells. While advancements are being made to target particular driver mutations in AML, there is less focus on how to tackle the drug resistance of quiescent LSCs. This review summarises the current knowledge on the biochemical characteristics of quiescent HSCs and LSCs, the intracellular signaling pathways and the niche-driven mechanisms that control quiescence and the key differences between HSC- and LSC-quiescence that may be exploited for therapy.
Collapse
Affiliation(s)
- Eimear O'Reilly
- Apoptosis Research Centre, Department of Biochemistry, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| | - Hojjat Alizadeh Zeinabad
- Apoptosis Research Centre, Department of Biochemistry, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| | - Eva Szegezdi
- Apoptosis Research Centre, Department of Biochemistry, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland.
| |
Collapse
|
3
|
Forte D, García-Fernández M, Sánchez-Aguilera A, Stavropoulou V, Fielding C, Martín-Pérez D, López JA, Costa ASH, Tronci L, Nikitopoulou E, Barber M, Gallipoli P, Marando L, Fernández de Castillejo CL, Tzankov A, Dietmann S, Cavo M, Catani L, Curti A, Vázquez J, Frezza C, Huntly BJ, Schwaller J, Méndez-Ferrer S. Bone Marrow Mesenchymal Stem Cells Support Acute Myeloid Leukemia Bioenergetics and Enhance Antioxidant Defense and Escape from Chemotherapy. Cell Metab 2020; 32:829-843.e9. [PMID: 32966766 PMCID: PMC7658808 DOI: 10.1016/j.cmet.2020.09.001] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 05/12/2020] [Accepted: 08/31/2020] [Indexed: 12/16/2022]
Abstract
Like normal hematopoietic stem cells, leukemic stem cells depend on their bone marrow (BM) microenvironment for survival, but the underlying mechanisms remain largely unknown. We have studied the contribution of nestin+ BM mesenchymal stem cells (BMSCs) to MLL-AF9-driven acute myeloid leukemia (AML) development and chemoresistance in vivo. Unlike bulk stroma, nestin+ BMSC numbers are not reduced in AML, but their function changes to support AML cells, at the expense of non-mutated hematopoietic stem cells (HSCs). Nestin+ cell depletion delays leukemogenesis in primary AML mice and selectively decreases AML, but not normal, cells in chimeric mice. Nestin+ BMSCs support survival and chemotherapy relapse of AML through increased oxidative phosphorylation, tricarboxylic acid (TCA) cycle activity, and glutathione (GSH)-mediated antioxidant defense. Therefore, AML cells co-opt energy sources and antioxidant defense mechanisms from BMSCs to survive chemotherapy.
Collapse
Affiliation(s)
- Dorian Forte
- Wellcome-MRC Cambridge Stem Cell Institute, CB2 0AW Cambridge, UK; National Health Service Blood and Transplant, CB2 0PT Cambridge, UK; Istituto di Ematologia "Seràgnoli", Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale, Università degli Studi, 40138 Bologna, Italy
| | - María García-Fernández
- Wellcome-MRC Cambridge Stem Cell Institute, CB2 0AW Cambridge, UK; National Health Service Blood and Transplant, CB2 0PT Cambridge, UK
| | | | - Vaia Stavropoulou
- University Children's Hospital and Department of Biomedicine (DBM), University of Basel, 4031 Basel, Switzerland
| | - Claire Fielding
- Wellcome-MRC Cambridge Stem Cell Institute, CB2 0AW Cambridge, UK; National Health Service Blood and Transplant, CB2 0PT Cambridge, UK
| | - Daniel Martín-Pérez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
| | - Juan Antonio López
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain; CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Ana S H Costa
- MRC Cancer Unit, University of Cambridge, CB2 0XZ Cambridge, UK
| | - Laura Tronci
- MRC Cancer Unit, University of Cambridge, CB2 0XZ Cambridge, UK
| | | | - Michael Barber
- Wellcome-MRC Cambridge Stem Cell Institute, CB2 0AW Cambridge, UK
| | - Paolo Gallipoli
- Wellcome-MRC Cambridge Stem Cell Institute, CB2 0AW Cambridge, UK; Department of Haematology, University of Cambridge, CB2 0AW Cambridge, UK
| | - Ludovica Marando
- Wellcome-MRC Cambridge Stem Cell Institute, CB2 0AW Cambridge, UK; Department of Haematology, University of Cambridge, CB2 0AW Cambridge, UK
| | | | - Alexandar Tzankov
- Institute of Pathology, University Hospital Basel, 4031 Basel, Switzerland
| | - Sabine Dietmann
- Wellcome-MRC Cambridge Stem Cell Institute, CB2 0AW Cambridge, UK
| | - Michele Cavo
- Istituto di Ematologia "Seràgnoli", Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale, Università degli Studi, 40138 Bologna, Italy; Azienda Ospedaliero-Universitaria di Bologna, via Albertoni 15, 40138 Bologna, Italy
| | - Lucia Catani
- Istituto di Ematologia "Seràgnoli", Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale, Università degli Studi, 40138 Bologna, Italy; Azienda Ospedaliero-Universitaria di Bologna, via Albertoni 15, 40138 Bologna, Italy
| | - Antonio Curti
- Azienda Ospedaliero-Universitaria di Bologna, via Albertoni 15, 40138 Bologna, Italy
| | - Jesús Vázquez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain; CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | | | - Brian J Huntly
- Wellcome-MRC Cambridge Stem Cell Institute, CB2 0AW Cambridge, UK; Department of Haematology, University of Cambridge, CB2 0AW Cambridge, UK
| | - Juerg Schwaller
- University Children's Hospital and Department of Biomedicine (DBM), University of Basel, 4031 Basel, Switzerland.
| | - Simón Méndez-Ferrer
- Wellcome-MRC Cambridge Stem Cell Institute, CB2 0AW Cambridge, UK; Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain.
| |
Collapse
|
4
|
Bone marrow mesenchymal stromal cells from acute myelogenous leukemia patients demonstrate adipogenic differentiation propensity with implications for leukemia cell support. Leukemia 2019; 34:391-403. [PMID: 31492897 PMCID: PMC7214245 DOI: 10.1038/s41375-019-0568-8] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 06/28/2019] [Accepted: 07/17/2019] [Indexed: 12/21/2022]
Abstract
Bone marrow mesenchymal stromal cells (MSCs) constitute one of the important components of the hematopoietic microenvironmental niche. In vivo studies have shown that depletion of marrow MSCs resulted in reduction of hematopoietic stem cell content, and there is in vitro evidence that marrow MSCs are able to support leukemia progenitor cell proliferation and survival and provide resistance to cytotoxic therapies. How MSCs from leukemia marrow differ from normal counterparts and how they are influenced by the presence of leukemia stem and progenitor cells are still incompletely understood. In this work, we compared normal donor (ND) and acute myelogenous leukemia (AML) derived MSCs and found that AML-MSCs had increased adipogenic potential with improved ability to support survival of leukemia progenitor cells. To identify underlying changes, RNA-Seq analysis was performed. Gene ontology and pathway analysis revealed adipogenesis to be among the set of altered biological pathways dysregulated in AML-MSCs as compared with ND-MSCs. Expression of both SOX9 and EGR2 was decreased in AML-MSCs as compared with ND-MSCs. Increasing expression of SOX9 decreased adipogenic potential of AML-MSCs and decreased their ability to support AML progenitor cells. These findings suggest that AML-MSCs possess adipogenic potential which may enhance support of leukemia progenitor cells.
Collapse
|
5
|
Gao X, Wan Z, Wei M, Dong Y, Zhao Y, Chen X, Li Z, Qin W, Yang G, Liu L. Chronic myelogenous leukemia cells remodel the bone marrow niche via exosome-mediated transfer of miR-320. Am J Cancer Res 2019; 9:5642-5656. [PMID: 31534508 PMCID: PMC6735391 DOI: 10.7150/thno.34813] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 07/07/2019] [Indexed: 12/20/2022] Open
Abstract
Rationale: Reciprocal interactions between leukemic cells and bone marrow mesenchymal stromal cells (BMMSC) remodel the normal niche into a malignant niche, leading to leukemia progression. Exosomes have emerged as an essential mediator of cell-cell communication. Whether leukemic exosomes involved in bone marrow niche remodeling remains unknown. Methods: We investigated the role of leukemic exosomes in molecular and functional changes of BMMSC in vitro and in vivo. RNA sequencing and bioinformatics were employed to screen for miRNAs that are selectively sorted into leukemic exosomes and the corresponding RNA binding proteins. Results: We demonstrated that leukemia cells significantly inhibited osteogenesis by BMMSC both in vivo and in vitro. Some tumor suppressive miRNAs, especially miR-320, were enriched in exosomes and thus secreted by leukemic cells, resulting in increased proliferation of the donor cells. In turn, the secreted exosomes were significantly endocytosed by adjacent BMMSC and thus inhibited osteogenesis at least partially via β-catenin inhibition. Mechanistically, miR-320 and some other miRNAs were sorted out into the exosomes by RNA binding protein heterogeneous nuclear ribonucleoprotein A1 (HNRNPA1), as these miRNAs harbor the recognition site for HNRNPA1. Conclusion: HNRNPA1-mediated exosomal transfer of miR-320 from leukemia cells to BMMSC is an important mediator of leukemia progression and is a potential therapeutic target for CML.
Collapse
|
6
|
Le PM, Andreeff M, Battula VL. Osteogenic niche in the regulation of normal hematopoiesis and leukemogenesis. Haematologica 2018; 103:1945-1955. [PMID: 30337364 PMCID: PMC6269284 DOI: 10.3324/haematol.2018.197004] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 09/10/2018] [Indexed: 12/20/2022] Open
Abstract
The bone marrow microenvironment, also known as the bone marrow niche, is a complex network of cell types and acellular factors that supports normal hematopoiesis. For many years, leukemia was believed to be caused by a series of genetic hits to hematopoietic stem and progenitor cells, which transform them to preleukemic, and eventually to leukemic, cells. Recent discoveries suggest that genetic alterations in bone marrow niche cells, particularly in osteogenic cells, may also cause myeloid leukemia in mouse models. The osteogenic niche, which consists of osteoprogenitors, preosteoblasts, mature osteoblasts, osteocytes and osteoclasts, has been shown to play a critical role in the maintenance and expansion of hematopoietic stem and progenitor cells as well as in their oncogenic transformation into leukemia stem/initiating cells. We have recently shown that acute myeloid leukemia cells induce osteogenic differentiation in mesenchymal stromal cells to gain a growth advantage. In this review, we discuss the role of the osteogenic niche in the maintenance of hematopoietic stem and progenitor cells, as well as in their transformation into leukemia cells. We also discuss the signaling pathways that regulate osteogenic niche-hematopoietic stem and progenitor cells or osteogenic niche-leukemic stem/initiating cell interactions in the bone marrow, together with novel approaches for therapeutically targeting these interactions.
Collapse
Affiliation(s)
- Phuong M Le
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Michael Andreeff
- Section of Molecular Hematology and Therapy, Leukemia Department, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Venkata Lokesh Battula
- Section of Molecular Hematology and Therapy, Leukemia Department, The University of Texas MD Anderson Cancer Center, Houston, TX .,Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
7
|
Kumar R, Godavarthy PS, Krause DS. The bone marrow microenvironment in health and disease at a glance. J Cell Sci 2018; 131:131/4/jcs201707. [PMID: 29472498 DOI: 10.1242/jcs.201707] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The bone marrow microenvironment (BMM) is the 'domicile' of hematopoietic stem cells, as well as of malignant processes that can develop there. Multiple and complex interactions with the BMM influence hematopoietic stem cell (HSC) physiology, but also the pathophysiology of hematological malignancies. Reciprocally, hematological malignancies alter the BMM, in order to render it more hospitable for malignant progression. In this Cell Science at a Glance article and accompanying poster, we highlight concepts of the normal and malignant hematopoietic stem cell niches. We present the intricacies of the BMM in malignancy and provide approaches for targeting the interactions between malignant cells and their BMM. This is done in an effort to augment existing treatment strategies in the future.
Collapse
Affiliation(s)
- Rahul Kumar
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Paul-Ehrlich-Str. 42-44, D-60596 Frankfurt am Main, Germany
| | - P Sonika Godavarthy
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Paul-Ehrlich-Str. 42-44, D-60596 Frankfurt am Main, Germany
| | - Daniela S Krause
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Paul-Ehrlich-Str. 42-44, D-60596 Frankfurt am Main, Germany
| |
Collapse
|