1
|
Pérez-Fuentes N, Alvariño R, Alfonso A, González-Jartín J, Vieytes MR, Botana LM. Enniatins A1 and B1 Modulate Calcium Flux through Alternative Pathways beyond Mitochondria. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:14975-14983. [PMID: 38898562 PMCID: PMC11229004 DOI: 10.1021/acs.jafc.4c04242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/04/2024] [Accepted: 06/10/2024] [Indexed: 06/21/2024]
Abstract
Enniatins (ENNs) A1 and B1, previously considered ionophores, are emerging mycotoxins with effects on Ca2+ homeostasis. However, their exact mechanism of action remains unclear. This study investigated how these toxins affect Ca2+ flux in SH-SY5Y cells. ENN A1 induced Ca2+ influx through store-operated channels (SOC). The mitochondrial uncoupler FCCP reduced this influx, suggesting that the mitochondrial status influences the toxin effect. Conversely, ENN B1 did not affect SOC but acted on another Ca2+ channel, as shown when nickel, which directly blocks the Ca2+ channel pore, is added. Mitochondrial function also influenced the effects of ENN B1, as treatment with FCCP reduced toxin-induced Ca2+ depletion and uptake. In addition, both ENNs altered mitochondrial function by producing the opening of the mitochondrial permeability transition pore. This study describes for the first time that ENN A1 and B1 are not Ca2+ ionophores and suggests a different mechanism of action for each toxin.
Collapse
Affiliation(s)
- Nadia Pérez-Fuentes
- Departamento de Farmacología, Facultad de Veterinaria, IDIS, Universidad de Santiago de Compostela, Lugo 27002, Spain
| | - Rebeca Alvariño
- Departamento de Fisiología, Facultad de Veterinaria, IDIS, Universidad de Santiago de Compostela, Lugo 27002, Spain
| | - Amparo Alfonso
- Departamento de Farmacología, Facultad de Veterinaria, IDIS, Universidad de Santiago de Compostela, Lugo 27002, Spain
| | - Jesús González-Jartín
- Departamento de Farmacología, Facultad de Veterinaria, IDIS, Universidad de Santiago de Compostela, Lugo 27002, Spain
| | - Mercedes R Vieytes
- Departamento de Fisiología, Facultad de Veterinaria, IDIS, Universidad de Santiago de Compostela, Lugo 27002, Spain
| | - Luis M Botana
- Departamento de Farmacología, Facultad de Veterinaria, IDIS, Universidad de Santiago de Compostela, Lugo 27002, Spain
| |
Collapse
|
2
|
Hegde M, Daimary UD, Jose S, Sajeev A, Chinnathambi A, Alharbi SA, Shakibaei M, Kunnumakkara AB. Differential Expression of Genes Regulating Store-operated Calcium Entry in Conjunction With Mitochondrial Dynamics as Potential Biomarkers for Cancer: A Single-Cell RNA Analysis. Front Genet 2022; 13:866473. [PMID: 35711942 PMCID: PMC9197647 DOI: 10.3389/fgene.2022.866473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 04/27/2022] [Indexed: 11/13/2022] Open
Abstract
Regulation of intracellular concentration of calcium levels is crucial for cell signaling, homeostasis, and in the pathology of diseases including cancer. Agonist-induced entry of calcium ions into the non-excitable cells is mediated by store-operated calcium channels (SOCs). This pathway is activated by the release of calcium ions from the endoplasmic reticulum and further regulated by the calcium uptake through mitochondria leading to calcium-dependent inactivation of calcium-release activated calcium channels (CARC). SOCs including stromal interaction molecules (STIM) and ORAI proteins have been implicated in tumor growth, progression, and metastasis. In the present study, we analyzed the mRNA and protein expression of genes mediating SOCs-STIM1, STIM2, ORAI1, ORAI2, ORAI3, TRPC1, TRPC3, TRPC4, TRPC5, TRPC6, TRPC7, TRPV1, TRPV2, TRPM1, and TRPM7 in head and neck squamous cell cancer (HNSC) patients using TCGA and CPTAC analysis. Further, our in silico analysis showed a significant correlation between the expression of SOCs and genes involved in the mitochondrial dynamics (MDGs) both at mRNA and protein levels. Protein-protein docking results showed lower binding energy for SOCs with MDGs. Subsequently, we validated these results using gene expression and single-cell RNA sequencing datasets retrieved from Gene Expression Omnibus (GEO). Single-cell gene expression analysis of HNSC tumor tissues revealed that SOCs expression is remarkably associated with the MDGs expression in both cancer and fibroblast cells.
Collapse
Affiliation(s)
- Mangala Hegde
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology-Guwahati, Guwahati, India.,DBT-AIST International Center for Translational and Environmental Research, Indian Institute of Technology-Guwahati, Guwahati, India
| | - Uzini Devi Daimary
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology-Guwahati, Guwahati, India.,DBT-AIST International Center for Translational and Environmental Research, Indian Institute of Technology-Guwahati, Guwahati, India
| | - Sandra Jose
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology-Guwahati, Guwahati, India.,DBT-AIST International Center for Translational and Environmental Research, Indian Institute of Technology-Guwahati, Guwahati, India
| | - Anjana Sajeev
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology-Guwahati, Guwahati, India.,DBT-AIST International Center for Translational and Environmental Research, Indian Institute of Technology-Guwahati, Guwahati, India
| | - Arunachalam Chinnathambi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Sulaiman Ali Alharbi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Mehdi Shakibaei
- Musculoskeletal Research Group and Tumor Biology, Faculty of Medicine, Institute of Anatomy, Ludwig-Maximilian-University Munich, Munich, Germany
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology-Guwahati, Guwahati, India.,DBT-AIST International Center for Translational and Environmental Research, Indian Institute of Technology-Guwahati, Guwahati, India
| |
Collapse
|
3
|
Wang YS, Huang NK, Lin YC, Chang WC, Huang WC. Aspirin and Sulindac act via different mechanisms to inhibit store-operated calcium channel: Implications for colorectal cancer metastasis. Biomed Pharmacother 2021; 145:112476. [PMID: 34864310 DOI: 10.1016/j.biopha.2021.112476] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 11/18/2021] [Accepted: 11/23/2021] [Indexed: 02/08/2023] Open
Abstract
Store-operated Ca2+ channel (SOC)-regulated Ca2+ entry is involved in inflammation and colorectal cancer (CRC) progression, but clinically applicable treatments targeting this mechanism are lacking. Recent studies have shown that nonsteroidal anti-inflammatory drugs (NSAIDs) not only inhibit inflammation but they also suppress Ca2+ entry via SOC (SOCE). Therefore, delineating the mechanisms of SOCE inhibition by NSAIDs may lead to new CRC treatments. In this study, we tested eight candidate NSAIDs in Ca2+ imaging experiments and found that Aspirin and Sulindac were the most effective at suppressing SOCE. Furthermore, time-lapse FRET imaging using TIRF microscopy and ground state depletion (GSD) super-resolution (SR) imaging revealed that SOC was inhibited by Aspirin and Sulindac via different mechanisms. Aspirin quickly interrupted the STIM1-Orai1 interaction, whereas Sulindac mainly suppressed STIM1 translocation. Additionally, Aspirin and Sulindac both inhibited metastasis-related endpoints in CRC cells. Both drugs were used throughout the study at doses that suppressed CRC cell migration and invasion without altering cell survival. This is the first study to reveal the differential inhibitory mechanisms of Aspirin and Sulindac on SOC activity. Thus, our results shed new light on the therapeutic potential of Aspirin for CRC and SOCE-related diseases.
Collapse
Affiliation(s)
- Yu-Shiuan Wang
- Ph.D. Program in Clinical Drug Development of Herbal Medicine, College of Pharmacy, Taipei Medical University, Xinyi District, Taipei 110, Taiwan, ROC
| | - Nai-Kuei Huang
- Ph.D. Program in Clinical Drug Development of Herbal Medicine, College of Pharmacy, Taipei Medical University, Xinyi District, Taipei 110, Taiwan, ROC; National Research Institute of Chinese Medicine, Ministry of Health and Welfare, Beitou District, Taipei 112, Taiwan, ROC
| | - Yu-Chiao Lin
- Department of Pharmacology, College of Medicine, National Taiwan University, Zhongzheng District, Taipei 100, Taiwan, ROC
| | - Wei-Chiao Chang
- Ph.D. Program in Clinical Drug Development of Herbal Medicine, College of Pharmacy, Taipei Medical University, Xinyi District, Taipei 110, Taiwan, ROC; Department of Clinical Pharmacy, School of Pharmacy, Taipei Medical University, Xinyi District, Taipei 110, Taiwan, ROC; Department of Pharmacy, Integrative Research Center for Critical Care, Wan Fang Hospital, Taipei Medical University, Wenshan District, Taipei 116, Taiwan, ROC; Department of Pharmacology, National Defense Medical Center, Neihu District, Taipei 114, Taiwan, ROC.
| | - Wan-Chen Huang
- Single-Molecule Biology Core Lab, Institute of Cellular and Organismic Biology, Academia Sinica, Nankang District, Taipei 115, Taiwan, ROC; Institute of Medical Device and Imaging, National Taiwan University, Zhongzheng District, Taipei 100, Taiwan, ROC.
| |
Collapse
|
4
|
Differential Ca 2+ responses and store operated Ca 2+ entry in primary cells from human brain tumors. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2021; 1868:119060. [PMID: 33992673 DOI: 10.1016/j.bbamcr.2021.119060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 04/28/2021] [Accepted: 04/29/2021] [Indexed: 11/21/2022]
Abstract
Brain tumors comprise a large series of tumor cancer from benign to highly malignant gliomas and metastases from primary tumors outside the brain. Intracellular Ca2+ homeostasis is involved in a large series of cell functions including cell proliferation, migration, and cell death. Store-operated Ca2+ entry (SOCE), the most important Ca2+ entry pathway in non-excitable cells, is involved in cell proliferation and migration and enhanced in tumor cells from breast cancer, colon cancer and cell lines derived from glioblastoma but there are almost no studies in human primary glioblastoma cells or other brain tumors. We have developed a single procedure to obtain primary cells from a large series (n = 49) of human brain tumors including schwannomas, meningiomas, oligodendrogliomas, astrocytomas, glioblastomas and brain metastases from ovary, breast and lung. Cells were characterized by immunofluorescence and subjected to Ca2+ imaging to investigate resting intracellular Ca2+ levels, Ca2+ responses to physiological agonists as well as voltage-operated Ca2+ entry and SOCE. We found significant differences in resting intracellular Ca2+ and Ca2+ responses to plasma membrane depolarization and ATP among the different tumor cells. Only malignant tumor cells, displayed Ca2+ responses to ATP. SOCE is significantly increased in malignant gliomas whereas voltage-gated Ca2+ entry is decreased. In addition, SOCE is significantly larger in high grade gliomas than in low grade gliomas suggesting that SOCE increases with glioma progression. These data may provide new insights on the role of intracellular Ca2+ and purinergic signalling in brain tumors.
Collapse
|
5
|
SK4 oncochannels regulate calcium entry and promote cell migration in KRAS-mutated colorectal cancer. Cell Calcium 2021; 96:102384. [PMID: 33676318 DOI: 10.1016/j.ceca.2021.102384] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 02/07/2021] [Accepted: 02/22/2021] [Indexed: 11/21/2022]
Abstract
BACKGROUND Colorectal cancer (CRC) metastases are the main cause of CRC mortality. Intracellular Ca2+ regulates cell migration and invasion, key factors for metastases. Ca2+ also activates Ca2+-dependent potassium channels which in turn affect Ca2+ driving force. We have previously reported that the expression of the Ca2+ activated potassium channel KCNN4 (SK4) is higher in CRC primary tumors compared to normal tissues. Here, we aimed to investigate the role of SK4 in the physiology of CRC. RESULTS SK4 protein expression is enhanced in CRC tissues compared to normal colon tissues, with a higher level of KCNN4 in CRC patients with KRAS mutations. At the cellular level, we found that SK4 regulates the membrane potential of HCT116 cells. We also found that its inhibition reduced store operated Ca2+ entry (SOCE) and constitutive Ca2+ entry (CCE), while reducing cell migration. We also found that the activity of SK4 is linked to resistance pathways such as KRAS mutation and the expression of NRF2 and HIF-1α. In addition, the pharmacological inhibition of SK4 reduced intracellular reactive oxygen species (ROS) production, NRF2 expression and HIF1α stabilization. CONCLUSION Our results suggest that SK4 contributes to colorectal cancer cell migration and invasion by modulating both Ca2+ entry and ROS regulation. Therefore, SK4 could be a potential target to reduce metastasis in KRAS-mutated CRC.
Collapse
|
6
|
Zhang I, Hu H. Store-Operated Calcium Channels in Physiological and Pathological States of the Nervous System. Front Cell Neurosci 2020; 14:600758. [PMID: 33328896 PMCID: PMC7732603 DOI: 10.3389/fncel.2020.600758] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 11/03/2020] [Indexed: 12/13/2022] Open
Abstract
Store-operated calcium channels (SOCs) are widely expressed in excitatory and non-excitatory cells where they mediate significant store-operated calcium entry (SOCE), an important pathway for calcium signaling throughout the body. While the activity of SOCs has been well studied in non-excitable cells, attention has turned to their role in neurons and glia in recent years. In particular, the role of SOCs in the nervous system has been extensively investigated, with links to their dysregulation found in a wide variety of neurological diseases from Alzheimer’s disease (AD) to pain. In this review, we provide an overview of their molecular components, expression, and physiological role in the nervous system and describe how the dysregulation of those roles could potentially lead to various neurological disorders. Although further studies are still needed to understand how SOCs are activated under physiological conditions and how they are linked to pathological states, growing evidence indicates that SOCs are important players in neurological disorders and could be potential new targets for therapies. While the role of SOCE in the nervous system continues to be multifaceted and controversial, the study of SOCs provides a potentially fruitful avenue into better understanding the nervous system and its pathologies.
Collapse
Affiliation(s)
- Isis Zhang
- Department of Anesthesiology, Rutgers New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, United States
| | - Huijuan Hu
- Department of Anesthesiology, Rutgers New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, United States
| |
Collapse
|
7
|
Tajada S, Villalobos C. Calcium Permeable Channels in Cancer Hallmarks. Front Pharmacol 2020; 11:968. [PMID: 32733237 PMCID: PMC7358640 DOI: 10.3389/fphar.2020.00968] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 06/15/2020] [Indexed: 12/17/2022] Open
Abstract
Cancer, the second cause of death worldwide, is characterized by several common criteria, known as the “cancer hallmarks” such as unrestrained cell proliferation, cell death resistance, angiogenesis, invasion and metastasis. Calcium permeable channels are proteins present in external and internal biological membranes, diffusing Ca2+ ions down their electrochemical gradient. Numerous physiological functions are mediated by calcium channels, ranging from intracellular calcium homeostasis to sensory transduction. Consequently, calcium channels play important roles in human physiology and it is not a surprise the increasing number of evidences connecting calcium channels disorders with tumor cells growth, survival and migration. Multiple studies suggest that calcium signals are augmented in various cancer cell types, contributing to cancer hallmarks. This review focuses in the role of calcium permeable channels signaling in cancer with special attention to the mechanisms behind the remodeling of the calcium signals. Transient Receptor Potential (TRP) channels and Store Operated Channels (SOC) are the main extracellular Ca2+ source in the plasma membrane of non-excitable cells, while inositol trisphosphate receptors (IP3R) are the main channels releasing Ca2+ from the endoplasmic reticulum (ER). Alterations in the function and/or expression of these calcium channels, as wells as, the calcium buffering by mitochondria affect intracellular calcium homeostasis and signaling, contributing to the transformation of normal cells into their tumor counterparts. Several compounds reported to counteract several cancer hallmarks also modulate the activity and/or the expression of these channels including non-steroidal anti-inflammatory drugs (NSAIDs) like sulindac and aspirin, and inhibitors of polyamine biosynthesis, like difluoromethylornithine (DFMO). The possible role of the calcium permeable channels targeted by these compounds in cancer and their action mechanism will be discussed also in the review.
Collapse
Affiliation(s)
- Sendoa Tajada
- Instituto de Biología y Genética Molecular (IBGM), Universidad de Valladolid and Consejo Superior de Investigaciones Científicas (CSIC), Valladolid, Spain
| | - Carlos Villalobos
- Instituto de Biología y Genética Molecular (IBGM), Universidad de Valladolid and Consejo Superior de Investigaciones Científicas (CSIC), Valladolid, Spain
| |
Collapse
|
8
|
Abstract
The gastrointestinal microbiome plays a pivotal role in physiological homeostasis of the intestine as well as in the pathophysiology of diseases including inflammatory bowel diseases (IBD) and colorectal cancer (CRC). Emerging evidence suggests that gut microbiota signal to the mitochondria of mucosal cells, including epithelial cells and immune cells. Gut microbiota signaling to mitochondria has been shown to alter mitochondrial metabolism, activate immune cells, induce inflammasome signaling, and alter epithelial barrier function. Both dysbiosis of the gut microbiota and mitochondrial dysfunction are associated with chronic intestinal inflammation and CRC. This review discusses mitochondrial metabolism of gut mucosal cells, mitochondrial dysfunction, and known gut microbiota-mediated mitochondrial alterations during IBD and CRC.
Collapse
Affiliation(s)
- Dakota N. Jackson
- Department of Internal Medicine, Division of Gastroenterology, Baylor Scott & White Research Institute, Baylor University Medical Center, Dallas, TX, USA
| | - Arianne L. Theiss
- Department of Internal Medicine, Division of Gastroenterology, Baylor Scott & White Research Institute, Baylor University Medical Center, Dallas, TX, USA,CONTACT Arianne L. Theiss Division of Gastroenterology, Baylor Research Institute, Baylor University Medical Center, 250 Hoblitzelle, 3500 Gaston Avenue, Dallas, TX75246, USA
| |
Collapse
|
9
|
Cantonero C, Camello PJ, Abate C, Berardi F, Salido GM, Rosado JA, Redondo PC. NO1, a New Sigma 2 Receptor/TMEM97 Fluorescent Ligand, Downregulates SOCE and Promotes Apoptosis in the Triple Negative Breast Cancer Cell Lines. Cancers (Basel) 2020; 12:E257. [PMID: 31973006 PMCID: PMC7072710 DOI: 10.3390/cancers12020257] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 01/14/2020] [Accepted: 01/16/2020] [Indexed: 12/22/2022] Open
Abstract
(1) Background: The structure of the Sigma 2 receptor/TMEM97 (σ2RTMEM97) has recently been reported. (2, 3) Methods and results: We used genetic and biochemical approaches to identify the molecular mechanism downstream of σ2R/TMEM97. The novel σ2R/TMEM97 fluorescent ligand, NO1, reduced the proliferation and survival of the triple negative breast cancer cell lines (TNBC: MDA-MB-231 and MDA-MB-468 cell lines), due to NO1-induced apoptosis. Greater bioaccumulation and faster uptake of NO1 in MDA-MB-231 cells compared to MCF10A or MCF7 cell lines were also shown. Accordingly, elevated σ2R/TMEM97 expression was confirmed by Western blotting. In contrast to NO1, other σ2R/TMEM97 ligands, such as SM21 and PB28, enhanced MDA-MB-231 cell proliferation and migration. Store-operated calcium entry (SOCE) is crucial for different cancer hallmarks. Here, we show that NO1, but not other σ2R/TMEM97 ligands, reduced SOCE in MDA-MB-231 cells. Similarly, TMEM97 silencing in MDA-MB-231 cells also impaired SOCE. NO1 administration downregulated STIM1-Orai1 interaction, probably by impairing the positive regulatory effect of σ2R/TMEM97 on STIM1, as we were unable to detect interaction with Orai1. (4) Conclusion: σ2R/TMEM97 is a key protein for the survival of triple negative breast cancer cells by promoting SOCE; therefore, NO1 may become a good pharmacological tool to avoid their proliferation.
Collapse
Affiliation(s)
- Carlos Cantonero
- Department of Physiology, Phycell and FIMUL Groups, University of Extremadura, 10003 Caceres, Spain; (C.C.); (P.J.C.)
| | - Pedro Javier Camello
- Department of Physiology, Phycell and FIMUL Groups, University of Extremadura, 10003 Caceres, Spain; (C.C.); (P.J.C.)
| | - Carmen Abate
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari “Aldo Moro”, Via Orabona 4, I-70125 Bari, Italy; (C.A.); (F.B.)
| | - Francesco Berardi
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari “Aldo Moro”, Via Orabona 4, I-70125 Bari, Italy; (C.A.); (F.B.)
| | - Gines Maria Salido
- Institute of Molecular Pathology Biomarkers (IMPB) of University of Extremadura, 10003 Caceres, Spain; (G.M.S.); (J.A.R.)
| | - Juan Antonio Rosado
- Institute of Molecular Pathology Biomarkers (IMPB) of University of Extremadura, 10003 Caceres, Spain; (G.M.S.); (J.A.R.)
| | - Pedro C. Redondo
- Institute of Molecular Pathology Biomarkers (IMPB) of University of Extremadura, 10003 Caceres, Spain; (G.M.S.); (J.A.R.)
| |
Collapse
|
10
|
TRPC1 and ORAI1 channels in colon cancer. Cell Calcium 2019; 81:59-66. [DOI: 10.1016/j.ceca.2019.06.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 05/24/2019] [Accepted: 06/06/2019] [Indexed: 12/15/2022]
|
11
|
Expression Profiling of Calcium Channels and Calcium-Activated Potassium Channels in Colorectal Cancer. Cancers (Basel) 2019; 11:cancers11040561. [PMID: 31010205 PMCID: PMC6521016 DOI: 10.3390/cancers11040561] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 04/15/2019] [Accepted: 04/17/2019] [Indexed: 01/11/2023] Open
Abstract
Background: Colorectal cancer (CRC) is a highly devastating cancer. Ca2+-dependent channels are now considered key regulators of tumor progression. In this study, we aimed to investigate the association of non-voltage gated Ca2+ channels and Ca2+-dependent potassium channels (KCa) with CRC using the transcriptional profile of their genes. Methods: We selected a total of 35 genes covering KCa channels KCNN1–4, KCNMA1 and their subunits KCNMB1–4, endoplasmic reticulum (ER) calcium sensors STIM1 and STIM2, Ca2+ channels ORAI1–3 and the family of cation channels TRP (TRPC1–7, TRPA1, TRPV1/2,4–6 and TRPM1–8). We analyzed their expression in two public CRC datasets from The Cancer Genome Atlas (TCGA) and GSE39582. Results: KCNN4 and TRPM2 were induced while KCNMA1 and TRPM6 were downregulated in tumor tissues comparing to normal tissues. In proximal tumors, STIM2 and KCNN2 were upregulated while ORAI2 and TRPM6 were downregulated. ORAI1 decreased in lymph node metastatic tumors. TRPC1 and ORAI3 predicted poor prognosis in CRC patients. Moreover, we found that ORAI3/ORAI1 ratio is increased in CRC progression and predicted poor prognosis. Conclusions: KCa and Ca2+ channels could be important contributors to CRC initiation and progression. Our results provide new insights on KCa and Ca2+ channels remodeling in CRC.
Collapse
|
12
|
Inhibition of Polyamine Biosynthesis Reverses Ca 2+ Channel Remodeling in Colon Cancer Cells. Cancers (Basel) 2019; 11:cancers11010083. [PMID: 30642111 PMCID: PMC6357118 DOI: 10.3390/cancers11010083] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 01/05/2019] [Accepted: 01/09/2019] [Indexed: 12/14/2022] Open
Abstract
Store-operated Ca2+ entry (SOCE) is the most important Ca2+ entry pathway in non-excitable cells. Colorectal cancer (CRC) shows decreased Ca2+ store content and enhanced SOCE that correlate with cancer hallmarks and are associated to remodeling of store-operated channels (SOCs). Normal colonic cells display small, Ca2+-selective currents driven by Orai1 channels. In contrast, CRC cells display larger, non-selective currents driven by Orai1 and transient receptor potential canonical type 1 channels (TRPC1). Difluoromethylornithine (DFMO), a suicide inhibitor of ornithine decarboxylase (ODC), the limiting step in polyamine biosynthesis, strongly prevents CRC, particularly when combined with sulindac. We asked whether DFMO may reverse SOC remodeling in CRC. We found that CRC cells overexpress ODC and treatment with DFMO decreases cancer hallmarks including enhanced cell proliferation and apoptosis resistance. Consistently, DFMO enhances Ca2+ store content and decreases SOCE in CRC cells. Moreover, DFMO abolish selectively the TRPC1-dependent component of SOCs characteristic of CRC cells and this effect is reversed by the polyamine putrescine. Combination of DFMO and sulindac inhibit both SOC components and abolish SOCE in CRC cells. Finally, DFMO treatment inhibits expression of TRPC1 and stromal interaction protein 1 (STIM1) in CRC cells. These results suggest that polyamines contribute to Ca2+ channel remodeling in CRC, and DFMO may prevent CRC by reversing channel remodeling.
Collapse
|
13
|
Villalobos C, Gutiérrez LG, Hernández-Morales M, del Bosque D, Núñez L. Mitochondrial control of store-operated Ca2+ channels in cancer: Pharmacological implications. Pharmacol Res 2018; 135:136-143. [DOI: 10.1016/j.phrs.2018.08.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 08/01/2018] [Accepted: 08/02/2018] [Indexed: 12/21/2022]
|