1
|
Vicente-Muñoz S, Davis JC, Lane A, Lane AN, Waltz SE, Wells SI. Lipid profiling of RON and DEK-dependent signaling in breast cancer guides discovery of gene networks predictive of poor outcomes. Front Oncol 2024; 14:1382986. [PMID: 39351361 PMCID: PMC11440356 DOI: 10.3389/fonc.2024.1382986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 07/30/2024] [Indexed: 10/04/2024] Open
Abstract
Recurrent and metastatic breast cancer is frequently treatment resistant. A wealth of evidence suggests that reprogrammed lipid metabolism supports cancer recurrence. Overexpression of the RON and DEK oncoproteins in breast cancer is associated with poor outcome. Both proteins promote cancer metastasis in laboratory models, but their influence on lipid metabolite levels remain unknown. To measure RON- and DEK-dependent steady-state lipid metabolite levels, a nuclear magnetic resonance (NMR)-based approach was utilized. The observed differences identified a lipid metabolism-related gene expression signature that is prognostic of overall survival (OS), distant metastasis-free survival (DMFS), post-progression survival (PPS), and recurrence-free survival (RFS) in patients with breast cancer. RON loss led to decreased cholesterol and sphingomyelin levels, whereas DEK loss increased total fatty acid levels and decreased free glycerol levels. Lipid-related genes were then queried to define a signature that predicts poor outcomes for patients with breast cancer patients. Taken together, RON and DEK differentially regulate lipid metabolism in a manner that predicts and may promote breast cancer metastasis and recurrence.
Collapse
Affiliation(s)
- Sara Vicente-Muñoz
- Translational Metabolomics Facility, Division of Pathology and Laboratory Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Department of Pediatrics, University of Cincinnati, Cincinnati, OH, United States
| | - James C. Davis
- Department of Cancer Biology, College of Medicine, University of Cincinnati, Cincinnati, OH, United States
| | - Adam Lane
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Andrew N. Lane
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY, United States
| | - Susan E. Waltz
- Department of Cancer Biology, College of Medicine, University of Cincinnati, Cincinnati, OH, United States
- Research Service, Cincinnati Veterans Affairs Medical Center, Cincinnati, OH, United States
| | - Susanne I. Wells
- Department of Pediatrics, University of Cincinnati, Cincinnati, OH, United States
- Division of Oncology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| |
Collapse
|
2
|
Hunt BG, Davis JC, Fox LH, Vicente-Muñoz S, Lester C, Wells SI, Waltz SE. RON-augmented cholesterol biosynthesis in breast cancer metastatic progression and recurrence. Oncogene 2023; 42:1716-1727. [PMID: 37029299 PMCID: PMC10205688 DOI: 10.1038/s41388-023-02688-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 03/24/2023] [Accepted: 03/28/2023] [Indexed: 04/09/2023]
Abstract
Recurrence remains a significant clinical barrier to improving breast cancer patient outcomes. The RON receptor is a predictor of metastatic progression and recurrence in breast cancers of all subtypes. RON directed therapies are in development, but preclinical data directly testing the impact of RON inhibition on metastatic progression/recurrence are lacking, and mechanisms to exert this function remain unclear. Herein, we modeled breast cancer recurrence using implantation of RON-overexpressing murine breast cancer cells. Recurrent growth was examined after tumor resection via in vivo imaging and ex vivo culture of circulating tumor cells from whole blood samples from tumor bearing mice. In vitro functional assessment of was performed using mammosphere formation assays. Transcriptomic pathway enrichment identified glycolysis and cholesterol biosynthesis pathways, transcription factor targets, and signaling pathways enriched in RON-overexpressing breast cancer cells. BMS777607, a RON inhibitor, abrogated CTC colony formation tumor cells and tumor recurrence. RON promoted mammosphere formation through upregulated cholesterol production that utilizes glycolysis-derived substrates. In mouse models with RON overexpression, statin-mediated inhibition of cholesterol biosynthesis impeded metastatic progression and recurrence but does not affect the primary tumor. RON upregulates glycolysis and cholesterol biosynthesis gene expression by two pathways: MAPK-dependent c-Myc expression and β-catenin -dependent SREBP2 expression.
Collapse
Affiliation(s)
- Brian G Hunt
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH, 45267-0521, USA
| | - James C Davis
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH, 45267-0521, USA
| | - Levi H Fox
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH, 45267-0521, USA
| | - Sara Vicente-Muñoz
- Division of Pathology, NMR-Metabolomics Core, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229-3026, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45229-3026, USA
| | - Carissa Lester
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH, 45267-0521, USA
| | - Susanne I Wells
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45229-3026, USA
- Division of Oncology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Susan E Waltz
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH, 45267-0521, USA.
- Research Service, Cincinnati Veterans Affairs Hospital Medical Center, Cincinnati, OH, 45220, USA.
| |
Collapse
|
3
|
Hunt BG, Fox LH, Davis JC, Jones A, Lu Z, Waltz SE. An Introduction and Overview of RON Receptor Tyrosine Kinase Signaling. Genes (Basel) 2023; 14:517. [PMID: 36833444 PMCID: PMC9956929 DOI: 10.3390/genes14020517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/07/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
RON is a receptor tyrosine kinase (RTK) of the MET receptor family that is canonically involved in mediating growth and inflammatory signaling. RON is expressed at low levels in a variety of tissues, but its overexpression and activation have been associated with malignancies in multiple tissue types and worse patient outcomes. RON and its ligand HGFL demonstrate cross-talk with other growth receptors and, consequentially, positions RON at the intersection of numerous tumorigenic signaling programs. For this reason, RON is an attractive therapeutic target in cancer research. A better understanding of homeostatic and oncogenic RON activity serves to enhance clinical insights in treating RON-expressing cancers.
Collapse
Affiliation(s)
- Brian G. Hunt
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0521, USA
| | - Levi H. Fox
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0521, USA
| | - James C. Davis
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0521, USA
| | - Angelle Jones
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0521, USA
| | - Zhixin Lu
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0521, USA
| | - Susan E. Waltz
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0521, USA
- Research Service, Cincinnati Veterans Affairs Hospital Medical Center, Cincinnati, OH 45220, USA
| |
Collapse
|
4
|
Brown NE, Jones A, Hunt BG, Waltz SE. Prostate tumor RON receptor signaling mediates macrophage recruitment to drive androgen deprivation therapy resistance through Gas6-mediated Axl and RON signaling. Prostate 2022; 82:1422-1437. [PMID: 35860905 PMCID: PMC9492645 DOI: 10.1002/pros.24416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/25/2022] [Accepted: 07/05/2022] [Indexed: 01/07/2023]
Abstract
BACKGROUND Androgen deprivation therapy (ADT), or chemical castration, is the first-line therapy for prostate cancer; however, resistance leaves few treatment options. Prostatic tumor-associated macrophages (TAMs) have been shown to promote prostate cancer growth and are abundant in castration-resistant prostate cancer (CRPC), suggesting a role in promoting CRPC. We recently showed a tumor cell-intrinsic mechanism by which RON promotes CRPC. Given previous reports that RON alters prostate cancer cell chemokine production and RON-overexpressing tumors alter macrophage function, we hypothesized that a macrophage-dependent mechanism regulated by tumor cell intrinsic RON also promotes CRPC. METHODS Using RON-modulated genetically engineered mouse models (GEMMs) and GEMM-derived cell lines and co-cultures with bone marrow-derived macrophages, we show functional and molecular characteristics of signaling pathways in supporting CRPC. Further, we used an unbiased phosphokinase array to identify pathway interactions regulated by RON. Finally, using human prostate cancer cell lines and prostate cancer patient data sets, we show the relevance of our findings to human prostate cancer. RESULTS Studies herein show that macrophages recruited into the prostate tumor microenvironment (TME) serve as a source for Gas6 secretion which serves to further enhance RON and Axl receptor activation in prostate tumor cells thereby driving CRPC. Further, we show targeting RON and macrophages in a murine model promotes CRPC sensitization to ADT. CONCLUSIONS We discovered a novel role for the RON receptor in prostate cancer cells in promoting CRPC through the recruitment of macrophages into the prostate TME. Macrophage-targeting agents in combination with RON/Axl inhibition are likely to provide clinical benefits for patients with CRPC.
Collapse
Affiliation(s)
- Nicholas E. Brown
- Department of Cancer BiologyUniversity of Cincinnati College of MedicineCincinnatiOhioUSA
| | - Angelle Jones
- Department of Cancer BiologyUniversity of Cincinnati College of MedicineCincinnatiOhioUSA
| | - Brian G. Hunt
- Department of Cancer BiologyUniversity of Cincinnati College of MedicineCincinnatiOhioUSA
| | - Susan E. Waltz
- Department of Cancer BiologyUniversity of Cincinnati College of MedicineCincinnatiOhioUSA
- Research ServiceCincinnati Veterans Affairs Medical CenterCincinnatiOhioUSA
| |
Collapse
|
5
|
Advances in Biomarkers and Endogenous Regulation of Breast Cancer Stem Cells. Cells 2022; 11:cells11192941. [PMID: 36230903 PMCID: PMC9562239 DOI: 10.3390/cells11192941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/13/2022] [Accepted: 09/14/2022] [Indexed: 11/16/2022] Open
Abstract
Breast cancer is one of the most common cancers. Even if breast cancer patients initially respond to treatment, developed resistance can lead to a poor prognosis. Cancer stem cells (CSCs) are a group of undifferentiated cells with self-renewal and multipotent differentiation characteristics. Existing evidence has shown that CSCs are one of the determinants that contribute to the heterogeneity of primary tumors. The emergence of CSCs causes tumor recurrence, metastasis, and therapeutic resistance. Previous studies indicated that different stemness-associated surface markers can identify other breast cancer stem cell (BCSC) subpopulations. Deciphering the critical signaling networks that are involved in the induction and maintenance of stemness is essential to develop novel BCSC-targeting strategies. In this review, we reviewed the biomarkers of BCSCs, critical regulators of BCSCs, and the signaling networks that regulate the stemness of BCSCs.
Collapse
|
6
|
Hunt BG, Jones A, Lester C, Davis JC, Benight NM, Waltz SE. RON ( MST1R) and HGFL ( MST1) Co-Overexpression Supports Breast Tumorigenesis through Autocrine and Paracrine Cellular Crosstalk. Cancers (Basel) 2022; 14:2493. [PMID: 35626096 PMCID: PMC9140067 DOI: 10.3390/cancers14102493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/12/2022] [Accepted: 05/13/2022] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Aberrant RON signaling is present in numerous cancers including breast cancer. Evidence suggests that the ligand, hepatocyte growth factor-like (HGFL), is also overexpressed in breast cancer. RON (MST1R) and HGFL (MST1) genes are located on human chromosome 3 and mouse chromosome 9 respectively and are found near each other in both species. Based on co-expression patterns, we posited that RON and HGFL are co-regulated and that coordinate upregulation drives aggressive tumorigenesis. METHODS Mouse models were used to establish the functional significance of RON and HGFL co-overexpression on the activation of tumor cells and tumor-associated macrophages in breast cancer. TCGA and METABRIC gene expression and alteration data were used to query the relationships between MST1R and MST1 in breast cancer. RESULTS In tumor models, physiologic sources of HGFL modestly improve Arginase-1+ (M2) macrophage recruitment to the tumor proper. Tumor-cell produced HGFL functions in autocrine to sustain tumor cell RON activation and MAPK-dependent secretion of chemotactic factors and in paracrine to activate RON on macrophages and to promote breast cancer stem cell self-renewal. In silico analyses support that RON and HGFL are co-expressed across virtually all cancer types including breast cancer and that common genomic alterations do not appear to be drivers of RON/HGFL co-overexpression. CONCLUSIONS Co-overexpression of RON and HGFL in breast cancer cells (augmented by physiologic sources of HGFL) promotes tumorigenesis through autocrine-mediated RON activation/RON-dependent secretome changes and paracrine activation of macrophage RON to promote breast cancer stem cell self-renewal.
Collapse
Affiliation(s)
- Brian G. Hunt
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; (B.G.H.); (A.J.); (C.L.); (J.C.D.); (N.M.B.)
| | - Angelle Jones
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; (B.G.H.); (A.J.); (C.L.); (J.C.D.); (N.M.B.)
| | - Carissa Lester
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; (B.G.H.); (A.J.); (C.L.); (J.C.D.); (N.M.B.)
| | - James C. Davis
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; (B.G.H.); (A.J.); (C.L.); (J.C.D.); (N.M.B.)
| | - Nancy M. Benight
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; (B.G.H.); (A.J.); (C.L.); (J.C.D.); (N.M.B.)
| | - Susan E. Waltz
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; (B.G.H.); (A.J.); (C.L.); (J.C.D.); (N.M.B.)
- Research Service, Cincinnati Veterans Affairs Medical Center, Cincinnati, OH 45220, USA
| |
Collapse
|
7
|
Cazes A, Childers BG, Esparza E, Lowy AM. The MST1R/RON Tyrosine Kinase in Cancer: Oncogenic Functions and Therapeutic Strategies. Cancers (Basel) 2022; 14:cancers14082037. [PMID: 35454943 PMCID: PMC9027306 DOI: 10.3390/cancers14082037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/10/2022] [Accepted: 04/13/2022] [Indexed: 12/10/2022] Open
Abstract
Simple Summary MST1R/RON receptor tyrosine kinase is a highly conserved transmembrane protein present on epithelial cells, macrophages, and recently identified in a T-cell subset. RON activation attenuates inflammation in healthy tissue. Interestingly, it is overexpressed in several epithelial neoplasms with increasing levels of expression associated with worse outcomes. Though the mechanisms involved are still under investigation, RON is involved in carcinogenesis via immune modulation of the immune tumor microenvironment, activation of numerous oncogenic pathways, and is protective under cellular stress. Alternatively, inhibition of RON abrogates tumor progression in both animal and human tissue models. Given this, RON is a targetable protein of great interest for cancer treatment. Here, we review RON’s function in tissue inflammation and cancer progression, and review cancer clinical trials to date that have used agents targeting RON signaling. Abstract The MST1R/RON receptor tyrosine kinase is a homologue of the more well-known MET receptor. Like MET, RON orchestrates cell signaling pathways that promote oncogenesis and enable cancer cell survival; however, it has a more unique role in the regulation of inflammation. RON was originally described as a transmembrane receptor expressed on tissue resident macrophages and various epithelial cells. RON is overexpressed in a variety of cancers and its activation modifies multiple signaling pathways with resultant changes in epithelial and immune cells which together modulate oncogenic phenotypes. While several RON isoforms have been identified with differences in structure, activation, and pathway regulation, increased RON expression and/or activation is consistently associated with worse outcomes. Tyrosine kinase inhibitors targeting RON have been developed, making RON an actionable therapeutic target.
Collapse
|
8
|
Ruiz-Torres SJ, Bourn JR, Benight NM, Hunt BG, Lester C, Waltz SE. Macrophage-mediated RON signaling supports breast cancer growth and progression through modulation of IL-35. Oncogene 2022; 41:321-333. [PMID: 34743208 PMCID: PMC8758553 DOI: 10.1038/s41388-021-02091-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 10/18/2021] [Accepted: 10/21/2021] [Indexed: 01/20/2023]
Abstract
Tumor associated macrophages (TAMs) play a major role in regulating mammary tumor growth and in directing the responses of tumor infiltrating leukocytes in the microenvironment. However, macrophage-specific mechanisms regulating the interactions of macrophages with tumor cells and other leukocytes that support tumor progression have not been extensively studied. In this study, we show that the activation of the RON receptor tyrosine kinase signaling pathway specifically in macrophages supports breast cancer growth and metastasis. Using clinically relevant murine models of breast cancer, we demonstrate that loss of macrophage RON expression results in decreases in mammary tumor cell proliferation, survival, cancer stem cell self-renewal, and metastasis. Macrophage RON signaling modulates these phenotypes via direct effects on the tumor proper and indirectly by regulating leukocyte recruitment including macrophages, T-cells, and B-cells in the mammary tumor microenvironment. We further show that macrophage RON expression regulates the macrophage secretome including IL-35 and other immunosuppressive factors. Overall, our studies implicate activation of RON signaling in macrophages as a key player in supporting a thriving mammary pro-tumor microenvironment through novel mechanisms including the augmentation of tumor cell properties through IL-35.
Collapse
Affiliation(s)
- Sasha J. Ruiz-Torres
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0521, USA
| | - Jennifer R. Bourn
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0521, USA
| | - Nancy M. Benight
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0521, USA
| | - Brian G. Hunt
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0521, USA
| | - Carissa Lester
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0521, USA
| | - Susan E. Waltz
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0521, USA,Research Service, Cincinnati Veterans Affairs Medical Center, Cincinnati, OH 45267, USA,Address correspondence to: Susan E. Waltz, PhD, Department of Cancer Biology, Vontz Center for Molecular Studies, University of Cincinnati College of Medicine, 3125 Eden Ave, Cincinnati, OH 45267-0521, Tel: 513.558.8675,
| |
Collapse
|
9
|
Bourn JR, Ruiz-Torres SJ, Hunt BG, Benight NM, Waltz SE. Tumor cell intrinsic RON signaling suppresses innate immune responses in breast cancer through inhibition of IRAK4 signaling. Cancer Lett 2021; 503:75-90. [PMID: 33508385 PMCID: PMC7981256 DOI: 10.1016/j.canlet.2021.01.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/11/2020] [Accepted: 01/18/2021] [Indexed: 12/12/2022]
Abstract
Increasing evidence suggests that cancer cells require both alterations in intrinsic cellular processes and the tumor microenvironment for tumor establishment, growth, and progression to metastatic disease. Despite this, knowledge of tumor-cell intrinsic molecular mechanisms controlling both tumor cell processes as well as the tumor microenvironment is limited. In this study, we provide evidence demonstrating the novel role of RON signaling in regulating breast cancer initiation, progression, and metastasis through modulation of tumor cell intrinsic processes and the tumor microenvironment. Using clinically relevant models of breast cancer, we show that RON signaling in the mammary epithelial tumor cells promotes tumor cell survival and proliferation as well as an immunopermissive microenvironment associated with decreased M1 macrophage, natural killer (NK) cell, and CD8+ T cell recruitment. Moreover, we demonstrate that RON signaling supports these phenotypes through novel mechanisms involving suppression of IRAK4 signaling and inhibition of type I Interferons. Our studies indicate that activation of RON signaling within breast cancer cells promotes tumor cell intrinsic growth and immune evasion which support breast cancer progression and highlight the role of targeting RON signaling as a potential therapeutic strategy against breast cancer.
Collapse
Affiliation(s)
- Jennifer R Bourn
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH, 45267-0521, USA
| | - Sasha J Ruiz-Torres
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH, 45267-0521, USA
| | - Brian G Hunt
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH, 45267-0521, USA
| | - Nancy M Benight
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH, 45267-0521, USA
| | - Susan E Waltz
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH, 45267-0521, USA; Research Service, Cincinnati Veterans Affairs Medical Center, Cincinnati, OH, 45267, USA.
| |
Collapse
|
10
|
Antibody-drug conjugates targeting RON receptor tyrosine kinase as a novel strategy for treatment of triple-negative breast cancer. Drug Discov Today 2020; 25:1160-1173. [PMID: 32479905 DOI: 10.1016/j.drudis.2020.05.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 04/05/2020] [Accepted: 05/18/2020] [Indexed: 12/17/2022]
Abstract
Treatment of triple-negative breast cancer (TNBC) is a challenge to oncologists. Currently, the lack of effective therapy has fostered a major effort to discover new targets and therapeutics to combat this disease. The recepteur d'origine nantais (RON) receptor has been implicated in the pathogenesis of TNBC. Clinical studies have revealed that aberrant RON expression is crucial in regulating TNBC malignant phenotypes. Increased RON expression also has prognostic value for breast cancer progress. These features provide the rationale to target RON for TNBC treatment. In this review, we discuss the importance of RON in TNBC tumorigenesis and the development of anti-RON antibody-drug conjugates (ADCs) for clinical application. The findings from preclinical studies lay the foundation for clinical trials of this novel biotherapeutic for TNBC therapy.
Collapse
|
11
|
Sullivan C, Brown NE, Vasiliauskas J, Pathrose P, Starnes SL, Waltz SE. Prostate Epithelial RON Signaling Promotes M2 Macrophage Activation to Drive Prostate Tumor Growth and Progression. Mol Cancer Res 2020; 18:1244-1254. [PMID: 32439702 DOI: 10.1158/1541-7786.mcr-20-0060] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 04/11/2020] [Accepted: 05/18/2020] [Indexed: 12/31/2022]
Abstract
Effective treatment of advanced prostate cancer persists as a significant clinical need as only 30% of patients with distant disease survive to 5 years after diagnosis. Targeting signaling and tumor cell-immune cell interactions in the tumor microenvironment has led to the development of powerful immunotherapeutic agents, however, the prostate tumor milieu remains impermeable to these strategies highlighting the need for novel therapeutic targets. In this study, we provide compelling evidence to support the role of the RON receptor tyrosine kinase as a major regulator of macrophages in the prostate tumor microenvironment. We show that loss of RON selectively in prostate epithelial cells leads to significantly reduced prostate tumor growth and metastasis and is associated with increased intratumor infiltration of macrophages. We further demonstrate that prostate epithelial RON loss induces transcriptional reprogramming of macrophages to support expression of classical M1 markers and suppress expression of alternative M2 markers. Interestingly, our results show epithelial RON activation drives upregulation of RON expression in macrophages as a positive feed-forward mechanism to support prostate tumor growth. Using 3D coculture assays, we provide additional evidence that epithelial RON expression coordinates interactions between prostate tumor cells and macrophages to promote macrophage-mediated tumor cell growth. Taken together, our results suggest that RON receptor signaling in prostate tumor cells directs the functions of macrophages in the prostate tumor microenvironment to promote prostate cancer. IMPLICATIONS: Epithelial RON is a novel immunotherapeutic target that is responsible for directing the macrophage antitumor immune response to support prostate tumor growth and progression.
Collapse
Affiliation(s)
- Camille Sullivan
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Nicholas E Brown
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Juozas Vasiliauskas
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Peterson Pathrose
- Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Sandra L Starnes
- Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Susan E Waltz
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio.
- Research Service, Cincinnati Veterans Affairs Medical Center, Cincinnati, Ohio
| |
Collapse
|
12
|
Yao HP, Suthe SR, Tong XM, Wang MH. Targeting RON receptor tyrosine kinase for treatment of advanced solid cancers: antibody-drug conjugates as lead drug candidates for clinical trials. Ther Adv Med Oncol 2020; 12:1758835920920069. [PMID: 32426050 PMCID: PMC7222236 DOI: 10.1177/1758835920920069] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 03/27/2020] [Indexed: 02/06/2023] Open
Abstract
The recepteur d'origine nantais (RON) receptor tyrosine kinase, belonging to the mesenchymal-to-epithelial transition proto-oncogene family, has been implicated in the pathogenesis of cancers derived from the colon, lung, breast, and pancreas. These findings lay the foundation for targeting RON for cancer treatment. However, development of RON-targeted therapeutics has not gained sufficient attention for the last decade. Although therapeutic monoclonal antibodies (TMABs) targeting RON have been validated in preclinical studies, results from clinical trials have met with limited success. This outcome diminishes pharmaceutical enthusiasm for further development of RON-targeted therapeutics. Recently, antibody-drug conjugates (ADCs) targeting RON have drawn special attention owing to their increased therapeutic activity. The rationale for developing anti-RON ADCs is based on the observation that cancer cells are not sufficiently addicted to RON signaling for survival. Thus, TMAB-mediated inhibition of RON signaling is ineffective for clinical application. In contrast, anti-RON ADCs combine a target-specific antibody with potent cytotoxins for cancer cell killing. This approach not only overcomes the shortcomings in TMAB-targeted therapies but also holds the promise for advancing anti-RON ADCs into clinical trials. In this review, we discuss the latest advancements in the development of anti-RON ADCs for targeted cancer therapy including drug conjugation profile, pharmacokinetic properties, cytotoxic effect in vitro, efficacy in tumor models, and toxicological activities in primates.
Collapse
Affiliation(s)
- Hang-Ping Yao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- National Clinical Research Center for Infectious Diseases, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Sreedhar Reddy Suthe
- Cancer Biology Research Center, Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, USA
| | - Xiang-Min Tong
- Department of Hematology, Zhejiang Provincial People’s Hospital and People’s Hospital of Hangzhou Medical College, Hangzhou, China
| | - Ming-Hai Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Cancer Biology Research Center, Texas Tech University Health Sciences Jerry H. Hodge School of Pharmacy, 1406 Coulter Street, Amarillo, TX 79106, USA
| |
Collapse
|
13
|
MST1R (RON) expression is a novel prognostic biomarker for metastatic progression in breast cancer patients. Breast Cancer Res Treat 2020; 181:529-540. [PMID: 32342233 DOI: 10.1007/s10549-020-05653-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 04/17/2020] [Indexed: 02/06/2023]
Abstract
PURPOSE This study evaluates the prognostic significance of MST1R (RON) expression in breast cancer with respect to disease progression, long-term survival, subtype, and association with conventional prognostic factors. METHODS The approach includes interrogation of survival and tumor staging with paired MST1R RNA expression from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) datasets. Protein expression evaluation was performed using immunohistochemistry (IHC) staining of MST1R on breast cancer tissue samples from the Cancer Diagnosis Program Breast Cancer Progression tissue microarray and locally obtained breast tumor tissue samples analyzed with paired survival, metastasis, and subtype. RESULTS Data from TCGA (n = 774) show poorer relapse-free survival (RFS) in patients with high MST1R expression (P = 0.32) and no difference in MST1R expression based on tumor stage (P = 0.77) or nodal status (P = 0.94). Patients in the GEO-derived Kaplan-Meier Plotter microarray dataset demonstrate the association of MST1R and poorer overall survival (n = 1402, P = 0.018) and RFS in patients receiving chemotherapy (n = 798, P = 0.041). Patients with high MST1R expression display worse overall survival (P = 0.01) and receiver operator characteristic (ROC) analysis demonstrate the predictive capacity of increased MST1R with early death (P = 0.0017) in IHC-stained samples. Paired IHC-stained breast tumor samples from the primary versus metastatic site show MST1R expression is associated with metastatic progression (P = 0.032), and ROC analysis supports the predictive capacity of MST1R in metastatic progression (P = 0.031). No associations of MST1R with estrogen receptor (ER), progesterone receptor (PR), both ER and PR, HER2 positivity, or triple-negativity were found (P = 0.386, P = 0.766, P = 0.746, P = 0.457, P = 0.947, respectively). CONCLUSIONS MST1R expression has prognostic value in breast cancer with respect to survival and metastatic progression. MST1R expression is not associated with tumor stage, nodal status, or subtype.
Collapse
|
14
|
Berning P, Hennemann C, Tulotta C, Schaefer C, Lechtape B, Hotfilder M, El Gourari Y, Jürgens H, Snaar-Jagalska E, Hempel G, Dirksen U, Potratz J. The Receptor Tyrosine Kinase RON and Its Isoforms as Therapeutic Targets in Ewing Sarcoma. Cancers (Basel) 2020; 12:cancers12040904. [PMID: 32272784 PMCID: PMC7226494 DOI: 10.3390/cancers12040904] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 03/29/2020] [Accepted: 04/04/2020] [Indexed: 11/16/2022] Open
Abstract
The receptor tyrosine kinase (RTK) RON is linked to an aggressive metastatic phenotype of carcinomas. While gaining interest as a therapeutic target, RON remains unstudied in sarcomas. In Ewing sarcoma, we identified RON among RTKs conferring resistance to insulin-like growth factor-1 receptor (IGF1R) targeting. Therefore, we explored RON in pediatric sarcoma cell lines and an embryonic Tg(kdrl:mCherry) zebrafish model, using an shRNA-based approach. To examine RON–IGF1R crosstalk, we employed the clinical-grade monoclonal antibody IMC-RON8, alone and together with the IGF1R-antibody IMC-A12. RON silencing demonstrated functions in vitro and in vivo, particularly within micrometastatic cellular capacities. Signaling studies revealed a unidirectional IGF1-mediated cross-activation of RON. Yet, IMC-A12 failed to sensitize cells to IMC-RON8, suggesting additional mechanisms of RON activation. Here, RT-PCR revealed that childhood sarcomas express short-form RON, an isoform resistant to antibody-mediated targeting. Interestingly, in contrast to carcinomas, treatment with DNA methyltransferase inhibitor did not diminish but increased short-form RON expression. Thus, this first report supports a role for RON in the metastatic progression of Ewing sarcoma. While principal molecular functions appear transferrable between carcinomas, Ewing sarcoma and possibly more common sarcoma subtypes, RON highlights that specific regulations of cellular networks and isoforms require better understanding to successfully transfer targeting strategies.
Collapse
Affiliation(s)
- Philipp Berning
- Department of Medicine A, Hematology, Oncology and Pneumology, University Hospital Münster, Albert-Schweitzer-Campus 1, 48149 Münster, Germany
| | - Carolin Hennemann
- Department of Pediatric Hematology and Oncology, University Hospital Münster, Albert-Schweitzer-Campus 1, 48149 Münster, Germany
- Department of General Pediatrics, University Hospital Münster, Albert-Schweitzer-Campus 1, 48149 Münster, Germany
| | - Claudia Tulotta
- Institute of Biology, Leiden University, Gorlaeus Laboratories, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Christiane Schaefer
- Department of Pediatric Hematology and Oncology, University Hospital Münster, Albert-Schweitzer-Campus 1, 48149 Münster, Germany
| | - Birgit Lechtape
- Department of Pediatric Hematology and Oncology, University Hospital Münster, Albert-Schweitzer-Campus 1, 48149 Münster, Germany
| | - Marc Hotfilder
- Department of Pediatric Hematology and Oncology, University Hospital Münster, Albert-Schweitzer-Campus 1, 48149 Münster, Germany
| | - Yassmine El Gourari
- Department of General Pediatrics, University Hospital Münster, Albert-Schweitzer-Campus 1, 48149 Münster, Germany
| | - Heribert Jürgens
- Department of Pediatric Hematology and Oncology, University Hospital Münster, Albert-Schweitzer-Campus 1, 48149 Münster, Germany
| | - Ewa Snaar-Jagalska
- Institute of Biology, Leiden University, Gorlaeus Laboratories, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Georg Hempel
- Institute of Pharmaceutical and Medical Chemistry, Westfälische Wilhelms-Universität Münster, Corrensstraße 48, 48149 Münster, Germany
| | - Uta Dirksen
- Division of Hematology and Oncology, Department of Pediatrics III, West German Cancer Centre, University Hospital Essen, Hufelandstraße 55, 45147 Essen, Germany
| | - Jenny Potratz
- Department of Pediatric Hematology and Oncology, University Hospital Münster, Albert-Schweitzer-Campus 1, 48149 Münster, Germany
- Department of General Pediatrics, University Hospital Münster, Albert-Schweitzer-Campus 1, 48149 Münster, Germany
- Correspondence:
| |
Collapse
|
15
|
Kim SA, Lee KH, Lee DH, Lee JK, Lim SC, Joo YE, Chung IJ, Noh MG, Yoon TM. Receptor tyrosine kinase, RON, promotes tumor progression by regulating EMT and the MAPK signaling pathway in human oral squamous cell carcinoma. Int J Oncol 2019; 55:513-526. [PMID: 31268163 DOI: 10.3892/ijo.2019.4836] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 06/18/2019] [Indexed: 11/05/2022] Open
Abstract
The receptor tyrosine kinase, recepteur d'origine nantais (RON), is known to be associated with the progression, metastasis, and prognosis of various types of cancers. Nevertheless, the role of RON in human oral squamous cell carcinoma (OSCC) is unclear. This study evaluated whether RON affects oncogenic behavior, oncogenic signaling pathways, and clinical outcomes, including survival, in human OSCC. Reverse transcription‑PCR, quantitative PCR, western blotting and immunohistochemical staining were used to determine mRNA and protein expression levels of RON. Cell invasion, migration and apoptosis assays were used to assess the functional effects of small interfering RNA‑mediated knockdown of RON or snail family transcriptional repressor 2 (SLUG). RON knockdown suppressed tumor cell invasion and migration and enhanced apoptosis in human OSCC cells. RON knockdown also decreased the phosphorylation of MAPK signaling proteins, such as ERK1/2, JNK and p38. In addition, RON knockdown suppressed the expression of the epithelial mesenchymal transition (EMT)‑related transcription factor, SLUG. SLUG knockdown blocked the enhancement of cell invasion and migration induced by macrophage‑stimulation protein (MSP)‑mediated RON activation in OSCC cells. The cell morphology was changed to spindle‑like shape under MSP‑mediated RON activation in OSCC cells. RON was overexpressed in both fresh and paraffin‑embedded human OSCC tissues. Taken together, these results indicate that RON contributed to tumor progression by regulating the EMT‑related factor, SLUG, and the MAPK pathway in OSCC. This study may provide a theoretical basis for the application of RON‑targeting agents, currently being studied in various cancer fields, for the treatment of OSCC.
Collapse
Affiliation(s)
- Sun-Ae Kim
- Department of Otorhinolaryngology‑Head and Neck Surgery, Chonnam National University Medical School and Hwasun Hospital, Hwasun, Chonnam 58128, Republic of Korea
| | - Kyung-Hwa Lee
- Department of Pathology, Chonnam National University Medical School and Hwasun Hospital, Hwasun, Chonnam 58128, Republic of Korea
| | - Dong Hoon Lee
- Department of Otorhinolaryngology‑Head and Neck Surgery, Chonnam National University Medical School and Hwasun Hospital, Hwasun, Chonnam 58128, Republic of Korea
| | - Joon Kyoo Lee
- Department of Otorhinolaryngology‑Head and Neck Surgery, Chonnam National University Medical School and Hwasun Hospital, Hwasun, Chonnam 58128, Republic of Korea
| | - Sang Chul Lim
- Department of Otorhinolaryngology‑Head and Neck Surgery, Chonnam National University Medical School and Hwasun Hospital, Hwasun, Chonnam 58128, Republic of Korea
| | - Young-Eun Joo
- Department of Internal Medicine, Chonnam National University Medical School and Hwasun Hospital, Hwasun, Chonnam 58128, Republic of Korea
| | - Ik-Joo Chung
- Department of Internal Medicine, Chonnam National University Medical School and Hwasun Hospital, Hwasun, Chonnam 58128, Republic of Korea
| | - Myung-Giun Noh
- Department of Genomic Medicine, Gwangju Institute of Science and Technology, Gwangju, Gwangju 61005, Republic of Korea
| | - Tae Mi Yoon
- Department of Otorhinolaryngology‑Head and Neck Surgery, Chonnam National University Medical School and Hwasun Hospital, Hwasun, Chonnam 58128, Republic of Korea
| |
Collapse
|
16
|
Zhang W, Liu K, Pei Y, Ma J, Tan J, Zhao J. Mst1 regulates non-small cell lung cancer A549 cell apoptosis by inducing mitochondrial damage via ROCK1/F‑actin pathways. Int J Oncol 2018; 53:2409-2422. [PMID: 30320378 PMCID: PMC6203146 DOI: 10.3892/ijo.2018.4586] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 09/14/2018] [Indexed: 02/06/2023] Open
Abstract
Mammalian STE20-like kinase 1 (Mst1) is well recognized as a major tumor suppressor in cancer development, growth, metabolic reprogramming, metastasis, cell death and recurrence. However, the roles of Mst1 in non-small cell lung cancer (NSCLC) A549 cell phenotypic alterations remain to be elucidated. The present study aimed to explore the functional role and underlying mechanisms of Mst1 with regards to A549 cell proliferation, migration and apoptosis; this study focused on mitochondrial homeostasis and Rho-associated coiled-coil containing protein kinase 1 (ROCK1)/F‑actin pathways. The results demonstrated that Mst1 was downregulated in A549 cells compared with in a normal pulmonary epithelial cell line. Subsequently, overexpression of Mst1 in A549 cells reduced cell viability and promoted cell apoptosis. Furthermore, overexpression of Mst1 suppressed A549 cell proliferation and migration. At the molecular level, the reintroduction of Mst1 in A549 cells led to activation of mitochondrial apoptosis, as evidenced by a reduction in mitochondrial potential, overproduction of ROS, cytochrome c release from the mitochondria into the nucleus, and upregulation of pro-apoptotic protein expression. In addition, Mst1 overexpression was closely associated with impaired mitochondrial respiratory function and suppressed cellular energy metabolism. Functional studies illustrated that Mst1 overexpression activated ROCK1/F-actin pathways, which highly regulate mitochondrial function. Inhibition of ROCK1/F-actin pathways in A549 cells sustained mitochondrial homeostasis, alleviated caspase-9-dependent mitochondrial apoptosis, enhanced cancer cell migration and increased cell proliferation. In conclusion, these data firmly established the regulatory role of Mst1 in NSCLC A549 cell survival via the modulation of ROCK1/F-actin pathways, which may provide opportunities for novel treatment modalities in clinical practice.
Collapse
Affiliation(s)
- Weiqiang Zhang
- Department of Thoracic Surgery, Army General Hospital of PLA, Beijing 100700, P. R. China
| | - Keiqiang Liu
- Department of Thoracic Surgery, Army General Hospital of PLA, Beijing 100700, P. R. China
| | - Yingxin Pei
- Department of Thoracic Surgery, Army General Hospital of PLA, Beijing 100700, P. R. China
| | - Jingbo Ma
- Department of Thoracic Surgery, Army General Hospital of PLA, Beijing 100700, P. R. China
| | - Jiang Tan
- Department of Thoracic Surgery, Army General Hospital of PLA, Beijing 100700, P. R. China
| | - Jing Zhao
- Department of Thoracic Surgery, Army General Hospital of PLA, Beijing 100700, P. R. China
| |
Collapse
|
17
|
Suthe SR, Yao HP, Weng TH, Hu CY, Feng L, Wu ZG, Wang MH. RON Receptor Tyrosine Kinase as a Therapeutic Target for Eradication of Triple-Negative Breast Cancer: Efficacy of Anti-RON ADC Zt/g4-MMAE. Mol Cancer Ther 2018; 17:2654-2664. [PMID: 30275241 DOI: 10.1158/1535-7163.mct-18-0252] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 05/21/2018] [Accepted: 09/26/2018] [Indexed: 12/21/2022]
Abstract
Triple-negative breast cancer (TNBC) is a highly diverse group of malignant neoplasia with poor outcome. Currently, the lack of effective therapy has fostered a major effort to discover new targets to treat this malignant cancer. Here we identified the RON receptor tyrosine kinase as a therapeutic target for potential TNBC treatment. We analyzed RON expression in 168 primary TNBC samples via tissue microarray using anti-RON IHC staining and demonstrated that RON was widely expressed in 76.8% TNBC samples with overexpression in 76 cases (45.2%). These results provide the molecular basis to target RON for TNBC therapy. To this end, anti-RON monoclonal antibody Zt/g4-drug monomethyl auristatin E conjugate (Zt/g4-MMAE) was developed with a drug to antibody ratio of 3.29 and tested in a panel of TNBC cell lines with different phenotypes. In vitro, Zt/g4-MMAE rapidly induced RON internalization, resulted in cell-cycle arrest followed by massive cell death. The calculated IC50 values ranged from 0.06 to 3.46 μg/mL dependent on individual TNBC cell lines tested. Zt/g4-MMAE also effectively killed TNBC stem-like cells with RON+/CD44+/CD24- phenotypes and RON-negative TNBC cells through the bystander effect. In vivo, Zt/g4-MMAE at 10 mg/kg in a Q12 × 2 regimen completely eradicated TNBC xenografts without the regrowth of xenograft tumors. In conclusion, increased RON expression is a pathogenic feature in primary TNBC samples. Zt/g4-MMAE is highly effective in eradicating TNBC xenografts in preclinical models. These findings lay the foundation for using anti-RON Zt/g4-MMAE in clinical trials as a novel strategy for TNBC treatment.
Collapse
Affiliation(s)
- Sreedhar Reddy Suthe
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Cancer Biology Research Center.,Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas
| | - Hang-Ping Yao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China. .,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Tian-Hao Weng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chen-Yu Hu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Liang Feng
- Cancer Biology Research Center.,Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas
| | - Zhi-Gang Wu
- Zhejiang Provincial Key Laboratory for Precision Diagnosis and Treatment of Hepatobiliary and Pancreatic Cancers, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ming-Hai Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China. .,Cancer Biology Research Center.,Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas.,Zhejiang Provincial Key Laboratory for Precision Diagnosis and Treatment of Hepatobiliary and Pancreatic Cancers, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
18
|
Brown NE, Paluch AM, Nashu MA, Komurov K, Waltz SE. Tumor Cell Autonomous RON Receptor Expression Promotes Prostate Cancer Growth Under Conditions of Androgen Deprivation. Neoplasia 2018; 20:917-929. [PMID: 30121008 PMCID: PMC6098205 DOI: 10.1016/j.neo.2018.07.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 07/20/2018] [Accepted: 07/24/2018] [Indexed: 12/16/2022] Open
Abstract
Current treatment strategies provide minimal results for patients with castration-resistant prostate cancer (CRPC). Attempts to target the androgen receptor have shown promise, but resistance ultimately develops, often due to androgen receptor reactivation. Understanding mechanisms of resistance, including androgen receptor reactivation, is crucial for development of more efficacious CRPC therapies. Here, we report that the RON receptor tyrosine kinase is highly expressed in the majority of human hormone-refractory prostate cancers. Further, we show that exogenous expression of RON in human and murine prostate cancer cells circumvents sensitivity to androgen deprivation and promotes prostate cancer cell growth in both in vivo and in vitro settings. Conversely, RON loss induces sensitivity of CRPC cells to androgen deprivation. Mechanistically, we demonstrate that RON overexpression leads to activation of multiple oncogenic transcription factors (namely, β-catenin and NF-κB), which are sufficient to drive androgen receptor nuclear localization and activation of AR responsive genes under conditions of androgen deprivation and support castration-resistant growth. In total, this study demonstrates the functional significance of RON during prostate cancer progression and provides a strong rationale for targeting RON signaling in prostate cancer as a means to limit resistance to androgen deprivation therapy.
Collapse
Affiliation(s)
- Nicholas E Brown
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Andrew M Paluch
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Madison A Nashu
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Kakajan Komurov
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, OH, USA
| | - Susan E Waltz
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; Research Service, Cincinnati Veterans Affairs Medical Center, Cincinnati, OH 45267, USA.
| |
Collapse
|
19
|
Brown NE, Sullivan C, Waltz SE. Therapeutic Considerations for Ron Receptor Expression in Prostate Cancer. EMS CANCER SCIENCE JOURNAL 2018; 1:003. [PMID: 30775725 PMCID: PMC6377156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
INTRODUCTION The Ron receptor tyrosine kinase was initially discovered as a protein which played a critical role in regulating inflammatory responses. This effect was primarily determined through studies in various macrophage populations. Since its initial discovery, a role has emerged for Ron as a driver of cancer within epithelial cells. After numerous publications have detailed a role for Ron in promoting tumor initiation, growth, and metastasis, Ron has been designated as an emerging therapeutic option in a variety of cancers. AREAS COVERED This review discusses the current literature regarding the role of Ron in prostate cancer and places special emphasis on the role of Ron in both epithelial cells and macrophages. Whole body loss of Ron signaling initially exposed a variety of prostate cancer growth mechanisms regulated by Ron. With the knowledge that Ron plays an integral part in regulating the function of epithelial cells and macrophages, studies commenced to discern the cell type specific functions for Ron in prostate cancer. A novel role for Ron in promoting Castration Resistant Prostate Cancer has recently been uncovered, and the results of these studies are summarized herein. Furthermore, this review gives a summary of several currently available compounds which show promise at targeting Ron in both epithelial and macrophage populations. OUTLOOK Sufficient evidence has been provided for the initiation of clinical trials focused on targeting Ron in both macrophage and epithelial compartments for the treatment of prostate cancer. A number of therapeutic avenues for targeting Ron in prostate cancer are currently available; however, special consideration will need to take place knowing that Ron signaling impacts multiple cell types. Further understanding of the cell type specific functions of Ron in prostate cancer will help inform and shape future clinical research and therapeutic strategies.
Collapse
Affiliation(s)
- Nicholas E. Brown
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Camille Sullivan
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Susan E. Waltz
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
- Research Service, Cincinnati Veterans Affairs Medical Center, Cincinnati, OH 45267, USA
| |
Collapse
|
20
|
Ning X, Wang C, Zhang M, Wang K. Ectopic Expression of miR-147 Inhibits Stem Cell Marker and Epithelial-Mesenchymal Transition (EMT)-Related Protein Expression in Colon Cancer Cells. Oncol Res 2018; 27:399-406. [PMID: 29426374 PMCID: PMC7848281 DOI: 10.3727/096504018x15179675206495] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Colon cancer is one of the most common cancers in the world. Epithelial-to-mesenchymal transition (EMT) is a crucial step in tumor progression and is also involved in the acquisition of stem cell-like properties. Some miRNAs have been shown to function as either tumor suppressors or oncogenes in colon cancer. Here we investigated the role of miR-147 in the regulation of the stem cell-like traits of colon cancer cells. We observed that miR-147 was downregulated in several colon cancer cell lines, and overexpressed miR-147 decreased the expression of cancer stem cell (CSC) markers OCT4, SOX2, and NANOG in the colon cancer cell lines HCT116 and SW480. Overexpressed miR-147 inhibited EMT by increasing the expression of epithelial markers E-cadherin and α-catenin while decreasing the expression of mesenchymal markers fibronectin and vimentin. Moreover, activation of EMT by TGF-β1 treatment significantly counteracted the inhibitive effect of miR-147 on the expression of CSC markers OCT4, SOX2, and NANOG, supporting the idea that overexpressing miR-147 inhibited stem cell-like traits by suppressing EMT in colon cancer. In addition, we found that overexpressed miR-147 downregulated the expression of β-catenin, c-myc, and survivin, which were related to the Wnt/β-catenin pathway. Moreover, treatment of miR-147 mimic-transfected cells with the Wnt/β-catenin pathway activator LiCl attenuated the inhibitive effect of the miR-147 mimic on the EMT and stem cell-like traits of colon cancer cells, indicating that ectopic expression of miR-147 inhibited stem cell-like traits in colon cancer cells by suppressing EMT via the Wnt/β-catenin pathway. In summary, our present study highlighted the crucial role of miR-147 in the inhibition of the stem cell-like traits of colon cancer cells and indicated that miR-147 could be a promising therapeutic target for colon cancer treatment.
Collapse
Affiliation(s)
- Xiaofei Ning
- Department of Gastrointestinal Surgery, Affiliated Hospital of Jining Medical College, Jining, P.R. China
| | - Cong Wang
- Department of Medical Ultrasonography, Affiliated Hospital of Jining Medical College, Jining, P.R. China
| | - Meng Zhang
- Department of Medical Ultrasonography, Affiliated Hospital of Jining Medical College, Jining, P.R. China
| | - Kecheng Wang
- Department of Gastrointestinal Surgery, Affiliated Hospital of Jining Medical College, Jining, P.R. China
| |
Collapse
|