1
|
Rodrigues MT, Michelli APP, Caso GF, de Oliveira PR, Rodrigues-Junior DM, Morale MG, Machado Júnior J, Bortoluci KR, Tamura RE, da Silva TRC, Raminelli C, Chau E, Godin B, Calil-Silveira J, Rubio IGS. Lysicamine Reduces Protein Kinase B (AKT) Activation and Promotes Necrosis in Anaplastic Thyroid Cancer. Pharmaceuticals (Basel) 2023; 16:1687. [PMID: 38139812 PMCID: PMC10748177 DOI: 10.3390/ph16121687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/22/2023] [Accepted: 11/24/2023] [Indexed: 12/24/2023] Open
Abstract
Anaplastic thyroid cancer (ATC) is an aggressive form of thyroid cancer (TC), accounting for 50% of total TC-related deaths. Although therapeutic approaches against TC have improved in recent years, the survival rate remains low, and severe adverse effects are commonly reported. However, unexplored alternatives based on natural compounds, such as lysicamine, an alkaloid found in plants with established cytotoxicity against breast and liver cancers, offer promise. Therefore, this study aimed to explore the antineoplastic effects of lysicamine in papillary TC (BCPAP) and ATC (HTH83 and KTC-2) cells. Lysicamine treatment reduced cell viability, motility, colony formation, and AKT activation while increasing the percentage of necrotic cells. The absence of caspase activity confirmed apoptosis-independent cell death. Necrostatin-1 (NEC-1)-mediated necrosome inhibition reduced lysicamine-induced necrosis in KTC-2, suggesting necroptosis induction via a reactive oxygen species (ROS)-independent mechanism. Additionally, in silico analysis predicted lysicamine target proteins, particularly those related to MAPK and TGF-β signaling. Our study demonstrated lysicamine's potential as an antineoplastic compound in ATC cells with a proposed mechanism related to inhibiting AKT activation and inducing cell death.
Collapse
Affiliation(s)
- Mariana Teixeira Rodrigues
- Thyroid Molecular Sciences Laboratory, Universidade Federal de São Paulo—UNIFESP, São Paulo 04021-001, Brazil; (M.T.R.); (A.P.P.M.); (G.F.C.); (P.R.d.O.); (J.C.-S.)
- Structural and Functional Biology Post-Graduate Program, Universidade Federal de São Paulo—UNIFESP, São Paulo 04021-001, Brazil
- Cancer Molecular Biology Laboratory, Universidade Federal de São Paulo—UNIFESP, São Paulo 04021-001, Brazil; (M.G.M.); (R.E.T.)
| | - Ana Paula Picaro Michelli
- Thyroid Molecular Sciences Laboratory, Universidade Federal de São Paulo—UNIFESP, São Paulo 04021-001, Brazil; (M.T.R.); (A.P.P.M.); (G.F.C.); (P.R.d.O.); (J.C.-S.)
- Cancer Molecular Biology Laboratory, Universidade Federal de São Paulo—UNIFESP, São Paulo 04021-001, Brazil; (M.G.M.); (R.E.T.)
| | - Gustavo Felisola Caso
- Thyroid Molecular Sciences Laboratory, Universidade Federal de São Paulo—UNIFESP, São Paulo 04021-001, Brazil; (M.T.R.); (A.P.P.M.); (G.F.C.); (P.R.d.O.); (J.C.-S.)
- Cancer Molecular Biology Laboratory, Universidade Federal de São Paulo—UNIFESP, São Paulo 04021-001, Brazil; (M.G.M.); (R.E.T.)
| | - Paloma Ramos de Oliveira
- Thyroid Molecular Sciences Laboratory, Universidade Federal de São Paulo—UNIFESP, São Paulo 04021-001, Brazil; (M.T.R.); (A.P.P.M.); (G.F.C.); (P.R.d.O.); (J.C.-S.)
- Cancer Molecular Biology Laboratory, Universidade Federal de São Paulo—UNIFESP, São Paulo 04021-001, Brazil; (M.G.M.); (R.E.T.)
| | - Dorival Mendes Rodrigues-Junior
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Biomedical Center, Uppsala University, 752 36 Uppsala, Sweden;
| | - Mirian Galliote Morale
- Cancer Molecular Biology Laboratory, Universidade Federal de São Paulo—UNIFESP, São Paulo 04021-001, Brazil; (M.G.M.); (R.E.T.)
| | - Joel Machado Júnior
- Biological Science Department, Universidade Federal de São Paulo—UNIFESP, Diadema 09920-000, Brazil;
| | - Karina Ramalho Bortoluci
- Pharmacology Department, Escola Paulista de Medicina, Universidade Federal de São Paulo—UNIFESP, São Paulo 04021-001, Brazil;
| | - Rodrigo Esaki Tamura
- Cancer Molecular Biology Laboratory, Universidade Federal de São Paulo—UNIFESP, São Paulo 04021-001, Brazil; (M.G.M.); (R.E.T.)
- Biological Science Department, Universidade Federal de São Paulo—UNIFESP, Diadema 09920-000, Brazil;
- Biology–Chemistry Post-Graduate Program, Institute of Environmental, Chemical and Pharmaceutical Science, Universidade Federal de São Paulo—UNIFESP, Diadema 09920-000, Brazil
| | - Tamiris Reissa Cipriano da Silva
- Department of Chemistry, Institute of Environmental, Chemical and Pharmaceutical Science, Universidade Federal de São Paulo—UNIFESP, Diadema 09920-000, Brazil; (T.R.C.d.S.); (C.R.)
| | - Cristiano Raminelli
- Department of Chemistry, Institute of Environmental, Chemical and Pharmaceutical Science, Universidade Federal de São Paulo—UNIFESP, Diadema 09920-000, Brazil; (T.R.C.d.S.); (C.R.)
| | - Eric Chau
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA; (E.C.); (B.G.)
| | - Biana Godin
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA; (E.C.); (B.G.)
- Department of Obstetrics and Gynecology, Weill Cornell Medicine College, New York, NY 10065, USA
| | - Jamile Calil-Silveira
- Thyroid Molecular Sciences Laboratory, Universidade Federal de São Paulo—UNIFESP, São Paulo 04021-001, Brazil; (M.T.R.); (A.P.P.M.); (G.F.C.); (P.R.d.O.); (J.C.-S.)
- Health Board III, Universidade Nove de Julho, São Paulo 01525-000, Brazil
| | - Ileana G. Sanchez Rubio
- Thyroid Molecular Sciences Laboratory, Universidade Federal de São Paulo—UNIFESP, São Paulo 04021-001, Brazil; (M.T.R.); (A.P.P.M.); (G.F.C.); (P.R.d.O.); (J.C.-S.)
- Structural and Functional Biology Post-Graduate Program, Universidade Federal de São Paulo—UNIFESP, São Paulo 04021-001, Brazil
- Cancer Molecular Biology Laboratory, Universidade Federal de São Paulo—UNIFESP, São Paulo 04021-001, Brazil; (M.G.M.); (R.E.T.)
- Biological Science Department, Universidade Federal de São Paulo—UNIFESP, Diadema 09920-000, Brazil;
| |
Collapse
|
2
|
Althobaiti F, Sahyon HA, Shanab MMAH, Aldhahrani A, Helal MA, Khireldin A, Shoair AGF, Almalki ASA, Fathy AM. A comparative study of novel ruthenium(III) and iron(III) complexes containing uracil; docking and biological studies. J Inorg Biochem 2023; 247:112308. [PMID: 37441923 DOI: 10.1016/j.jinorgbio.2023.112308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/25/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023]
Abstract
Structural and biological studies were conducted on the novel complexes [Fe(U)2(H2O)2]Cl3 (FeU) and [Ru(U)2(H2O)2]Cl3 (RuU) (U = 5,6-Diamino-1,3-dimethylpyrimidine-2,4(1H,3H)-dione) to develop an anticancer drug candidate. The two complexes have been synthesized and characterized. Based on our findings, these complexes have octahedral geometry. The DNA-binding study proved that both complexes coordinated with CT-DNA. The docking study confirmed the potency of both complexes in downregulating the topoisomerase I protein through their high binding affinity. Biological studies have established that both complexes can act as potent anticancer agents against three cancer cell lines. RuU or FeU complexes induce apoptosis in breast cancer cells by increasing caspase9 protein and inhibiting proliferating cell nuclear antigen (PCNA) activity. In addition, both complexes down-regulate topoisomerase I expression in breast cancer cells. Therefore, the RuU and FeU complexes' anticancer activities were mediated via both apoptosis induction and topoisomerase I down-regulation. In conclusion, both complexes have dual anticancer activity pathways that may be responsible for the selective cytotoxicity of the complexes. This makes them more suitable for the development of novel cancer treatment strategies.
Collapse
Affiliation(s)
- Fayez Althobaiti
- Department of Biotechnology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia.
| | - Heba A Sahyon
- Chemistry Department, Faculty of Science, Kafrelsheikh University, 33516 Kafrelsheikh, Egypt.
| | - Mai M A H Shanab
- Department of Chemistry, College of Sciences and Humanities Studies (Girls section), Hawtat Bani Tamim 11149, Prince Sattam Bin Abdulaziz University, P.O. Box:13, Saudi Arabia.
| | - Adil Aldhahrani
- Clinical Laboratory Science Department, Turabah University College, Taif University, Taif 21995, Saudi Arabia.
| | - Marihan A Helal
- Chemistry Department, Faculty of Science, Damietta University, Damietta, Egypt
| | - Awad Khireldin
- Air transport management, Singapore Institute of Technology (SIT), Singapore.
| | - Abdel Ghany F Shoair
- Department of Science and Technology, University College-Ranyah, postcode 21975, Taif University, Saudi Arabia; High Altitude Research Center, Taif University, 21944, Saudi Arabia.
| | | | - Ahmed M Fathy
- Chemistry Department, Faculty of Science, Zagazig University, Zagazig, Egypt
| |
Collapse
|
3
|
Xing P, Zhong Y, Cui X, Liu Z, Wu X. Natural products in digestive tract tumors metabolism: Functional and application prospects. Pharmacol Res 2023; 191:106766. [PMID: 37061144 DOI: 10.1016/j.phrs.2023.106766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/31/2023] [Accepted: 04/12/2023] [Indexed: 04/17/2023]
Abstract
Digestive tract diseases are presently the hotspot of clinical diagnosis and treatment, and the incidence of digestive tract tumor is increasing annually. Surgery remains the main therapeutic schedule for digestive tract tumor. Though benefits were brought by neoadjuvant chemotherapy, a part of patients lose the chance of surgery because of late detection or inappropriate intervention. Therefore, the treatment of inoperable patients has become an urgent need. At the same time, tumor metabolism is an extremely complex and diverse process. Natural products are confirmed effective to inhibit the development of tumors in vitro and in vitro. There are many kinds of natural products and their functions remain not clear. However, some natural products such as polyphenols have been proven to have definite anti-cancer effects, and some terpenoids have definite anti-inflammatory, anti-ulcer, anti-tumor, and other effects. Therefore, the anti-tumor characteristics of natural products should arouse our high attention. Although there are many obstacles to study the activities of natural products in tumor, including the difficulty in detection or distinguishing each component due to their low levels in tumor tissue, etc., the emergence of highly sensitive and locatable spatial metabolomics make the research and application of natural products a big step forward. In this review, natural products such as phenols, terpenoids and biotinoids were summarized to further discuss the development and therapeutic properties of natural metabolites on digestive tract tumors.
Collapse
Affiliation(s)
- Peng Xing
- Department of Surgical Oncology, Breast Surgery, General Surgery, First Hospital of China Medical University, Shenyang, China
| | - Yifan Zhong
- Department of Ophthalmology, The First Hospital of China Medical University, Shenyang, China
| | - Xiao Cui
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, China
| | - Zhe Liu
- Department of Pancreatic-Biliary Surgery, The First Hospital of China Medical University, Shenyang, China.
| | - Xingda Wu
- Department of Pancreatic-Biliary Surgery, The First Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
4
|
Machado AC, Cipriano da Silva TR, Raminelli C, Caseli L. Unsaturation pattern of phosphatidylglycerols modulating the interaction of lysicamine with cells membrane models at the air-water interface. Colloids Surf B Biointerfaces 2023; 222:113045. [PMID: 36446237 DOI: 10.1016/j.colsurfb.2022.113045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/18/2022] [Accepted: 11/18/2022] [Indexed: 11/23/2022]
Abstract
Lysicamine, an alkaloid with tumorigenic activity, was incorporated in cell membrane models made of lipid Langmuir monolayers. Dipalmitoylphosphocholine (DPPC), dioleoylphosphocholine (DOPC), and palmitoyloleoylcholine (POPC) represented non-tumorigenic cell membranes, and dipalmitoylphosphoserine (DPPS), dioleoylphosphoserine (DOPS), and palmitoyloleoylserine (POPS), tumorigenic ones. The monolayers were characterized by tensiometry, infrared spectroscopy, and Brewster Angle Microscopy (BAM). No significant shifts of the isotherms were observed for the saturated lipids (DPPC and DPPS), while for the others (DOPC, POPS, DOPS, and POPS), more significant changes were observed not only in the compression isotherms but also in the surface pressure-time curve for pre-compressed monolayers. The molecular organization, as well as the morphology of the drug-lipid monolayers, could be inferred with infrared spectroscopy and BAM. While the first revealed that the alkyl chain ordering changed upon lysicamine incorporation, the second showed how the drug could distinctly change the state of aggregation of molecular domains at the air-water interface. In conclusion, lysicamine could interact distinctly with each lipid at the air-water interface, showing the dependence not only on the lipid polar groups but also on the level of unsaturation of the alkyl chains.
Collapse
Affiliation(s)
- André Campos Machado
- Department of chemistry, Federal University of São Paulo (UNIFESP), Diadema, São Paulo, Brazil
| | | | - Cristiano Raminelli
- Department of chemistry, Federal University of São Paulo (UNIFESP), Diadema, São Paulo, Brazil
| | - Luciano Caseli
- Department of chemistry, Federal University of São Paulo (UNIFESP), Diadema, São Paulo, Brazil.
| |
Collapse
|
5
|
Machado AC, da Silva TRC, Raminelli C, Caseli L. The composition of fusogenic lipid mixtures at the air-water modulates the physicochemical properties changes upon interaction with lysicamine. Biophys Chem 2023; 293:106947. [PMID: 36566720 DOI: 10.1016/j.bpc.2022.106947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/14/2022] [Accepted: 12/18/2022] [Indexed: 12/24/2022]
Abstract
Knowing how a bioactive compound interacts with cell membranes is important to understand its effect at the molecular level. In this sense, this work aimed to study the interaction of lysicamine, an alkaloid with action against lung cancer cell lines, with lipid monolayers as cell membrane models. We employed two lipid mixtures: the first composed of 35% DOPC, 30% DOPE, 20% sphingomyelin, and 15% cholesterol as healthy cell membranes models (MM1), and the second replacing DOPC with DOPS as cancer cells models (MM2). The interaction of lysicamine with the monolayers was evaluated using tensiometry, Brewster angle microscopy (BAM), and polarization-modulated infrared reflection-absorption spectroscopy (PM-IRRAS). Lysicamine had interfacial effects in both membrane models. For MM 1, it expanded the lipid monolayer and changed the interfacial rheological properties, increasing the in-plane elasticity of the films. PM-IRRAS spectra suggested a higher conformational disorder of the alkyl chains of the lipids. For MM 2, lysicamine also shifted the isotherms to higher areas, expanding the monolayers, but with no significant alteration in their interfacial rheological properties. PM-IRRAS spectra also suggested higher disorder in the orientation of the lipid alkyl chains upon lysicamine incorporation. For both models, BAM did not show alteration in interfacial aggregation upon drug incorporation. In conclusion, changes in some interfacial properties of membrane models caused by lysicamine depend on the monolayer composition, which can be associated with its bioactivity in cellular membranes.
Collapse
Affiliation(s)
- André Campos Machado
- Department of chemistry, Federal University of São Paulo (UNIFESP), Diadema, São Paulo, Brazil
| | | | - Cristiano Raminelli
- Department of chemistry, Federal University of São Paulo (UNIFESP), Diadema, São Paulo, Brazil
| | - Luciano Caseli
- Department of chemistry, Federal University of São Paulo (UNIFESP), Diadema, São Paulo, Brazil.
| |
Collapse
|
6
|
Zheng R, Guo J, Cai X, Bin L, Lu C, Singh A, Trivedi M, Kumar A, Liu J. Manganese complexes and manganese-based metal-organic frameworks as contrast agents in MRI and chemotherapeutics agents: Applications and prospects. Colloids Surf B Biointerfaces 2022; 213:112432. [PMID: 35259704 DOI: 10.1016/j.colsurfb.2022.112432] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 02/17/2022] [Accepted: 02/27/2022] [Indexed: 12/20/2022]
Abstract
Manganese-based Metal-organic Frameworks (Mn-MOFs) represents a unique sub-class of MOFs with low toxicity, oxidative ability, and biocompatibility, which plays vital role in the application of this class of MOFs in medical field. Mn-MOFs show great potential in biomedical applications, and has been extensively studied as compared to other MOFs in transition metal series. They are important in medical applications because Mn(II) possess large electron spin number and longer electron relaxation time. They display fast water exchange rate and could be employed as a potential MRI contrast agent because of their strong targeting ability. Manganese complexes with different ligands also display prospective applications in area such as carrier for drug targeting in anti-tumor and antimicrobial therapy. In the review presented herewith, the application of Mn-based complexes and Mn-MOFs have been emphasized in the area such as imaging viz. MRI, multimodal imaging, antitumor activities such as chemodynamic therapy, photodynamic therapy, sonodynamic therapy and antimicrobial applications. Also, how rational designing and syntheses of targeted Mn-based complexes and Mn-MOFs can engender desired applications.
Collapse
Affiliation(s)
- Rouqiao Zheng
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
| | - Junru Guo
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
| | - Xinyi Cai
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
| | - Lianjie Bin
- Department of General Surgery, Dongguan People's Hospital, Wanjiang District, Dongguan 523000, China.
| | - Chengyu Lu
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
| | - Amita Singh
- Department of Chemistry, Dr. Ram Manohar Lohiya Awadh University, Ayodhya, India
| | - Manoj Trivedi
- Department of Chemistry, Sri Venkateswara College, University of Delhi, New Delhi 110021, India
| | - Abhinav Kumar
- Department of Chemistry, Faculty of Science, University of Lucknow, Lucknow 226007, India.
| | - Jianqiang Liu
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China.
| |
Collapse
|
7
|
Ruthenium Complexes as Promising Candidates against Lung Cancer. Molecules 2021; 26:molecules26154389. [PMID: 34361543 PMCID: PMC8348655 DOI: 10.3390/molecules26154389] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/13/2021] [Accepted: 07/15/2021] [Indexed: 11/17/2022] Open
Abstract
Lung cancer is one of the most common malignancies with the highest mortality rate and the second-highest incidence rate after breast cancer, posing a serious threat to human health. The accidental discovery of the antitumor properties of cisplatin in the early 1960s aroused a growing interest in metal-based compounds for cancer treatment. However, the clinical application of cisplatin is limited by serious side effects and drug resistance. Therefore, other transition metal complexes have been developed for the treatment of different malignant cancers. Among them, Ru(II/III)-based complexes have emerged as promising anticancer drug candidates due to their potential anticancer properties and selective cytotoxic activity. In this review, we summarized the latest developments of Ru(II/III) complexes against lung cancer, focusing mainly on the mechanisms of their biological activities, including induction of apoptosis, necroptosis, autophagy, cell cycle arrest, inhibition of cell proliferation, and invasion and metastasis of lung cancer cells.
Collapse
|
8
|
Zhu M, Ji X, Wang S, Zhou Y, Bao H, Li S, Gao E, Wu S, Wang J, Chen Q, Xu J, Zhu X. Crystal structure, DNA binding, cytotoxicity and anticancer ability of Zn(II) complex constructed by 2-(1,2,4)triazol-1-yl-isonicotinic acid. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2021.108571] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
9
|
Yadav P, Yadav R, Jain S, Vaidya A. Caspase-3: A primary target for natural and synthetic compounds for cancer therapy. Chem Biol Drug Des 2021; 98:144-165. [PMID: 33963665 DOI: 10.1111/cbdd.13860] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 03/29/2021] [Accepted: 04/18/2021] [Indexed: 12/21/2022]
Abstract
Caspases, a group of protease enzymes (cysteine proteases), exist as inactive zymogens in the cells and execute apoptosis (programmed cell death). Caspase-3, an executioner caspase, plays an imperative role in apoptosis and becomes a primary target for cancer treatment. A number of analogues of quinazoline, quinazolinone, indoloquinazolines, quinone, naphthoquinones, pyrroloiminoquinones, styrylquinolines, tetheredtetrahydroquinoline, fluoroquinolone, thiosemicarbazones, benzotriazole, pyrimidines, chalcone, and carbazoles have been reported till date, representing caspase-3 mediated apoptosis for cancer therapy. Simultaneously, plant isolates, including lysicamine, podophyllotoxin, and majoranolide, have also been claimed for caspase-3-mediated apoptosis-induced cytotoxicity. Procaspase-activating compound-1 (PAC-1) is the first FDA approved orphan drug, and its synthetic derivative WF-208 also showed fascinating caspase-3 mediated anticancer activity. Till date, a large number of compounds have been reported and patented for their caspase-3-mediated cytotoxicity and now scientist is also focusing to introduce new compounds in market to encompass anticancer activity.
Collapse
Affiliation(s)
- Poonam Yadav
- Department of Pharmacology and Toxicology, NIPER, Hajipur, India
| | - Ramakant Yadav
- Department of Neurology, Uttar Pradesh University of Medical Sciences, Saifai, India
| | - Shweta Jain
- Sir Madan Lal Institute of Pharmacy, Etawah, India
| | - Ankur Vaidya
- Pharmacy College Saifai, Uttar Pradesh University of Medical Sciences, Saifai, India
| |
Collapse
|
10
|
Zhu M, Zhao H, Peng T, Su J, Meng B, Qi Z, Jia B, Feng Y, Gao E. Structure and cytotoxicity of zinc (II) and cobalt (II) complexes based on 1,3,5-tris(1-imidazolyl) benzene. Appl Organomet Chem 2019. [DOI: 10.1002/aoc.4734] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Mingchang Zhu
- The Key Laboratory of the Inorganic Molecule-Based Chemistry of Liaoning Province and Laboratory of Coordination Chemistry; Shenyang University of Chemical Technology; Shenyang 110142 China
| | - Hongwei Zhao
- The Key Laboratory of the Inorganic Molecule-Based Chemistry of Liaoning Province and Laboratory of Coordination Chemistry; Shenyang University of Chemical Technology; Shenyang 110142 China
| | - Tingting Peng
- The Key Laboratory of the Inorganic Molecule-Based Chemistry of Liaoning Province and Laboratory of Coordination Chemistry; Shenyang University of Chemical Technology; Shenyang 110142 China
| | - Junqi Su
- The Key Laboratory of the Inorganic Molecule-Based Chemistry of Liaoning Province and Laboratory of Coordination Chemistry; Shenyang University of Chemical Technology; Shenyang 110142 China
| | - Bo Meng
- The Key Laboratory of the Inorganic Molecule-Based Chemistry of Liaoning Province and Laboratory of Coordination Chemistry; Shenyang University of Chemical Technology; Shenyang 110142 China
| | - Zhenzhen Qi
- The Key Laboratory of the Inorganic Molecule-Based Chemistry of Liaoning Province and Laboratory of Coordination Chemistry; Shenyang University of Chemical Technology; Shenyang 110142 China
| | - Bing Jia
- The Key Laboratory of the Inorganic Molecule-Based Chemistry of Liaoning Province and Laboratory of Coordination Chemistry; Shenyang University of Chemical Technology; Shenyang 110142 China
| | - Yunhui Feng
- The Key Laboratory of the Inorganic Molecule-Based Chemistry of Liaoning Province and Laboratory of Coordination Chemistry; Shenyang University of Chemical Technology; Shenyang 110142 China
| | - Enjun Gao
- The Key Laboratory of the Inorganic Molecule-Based Chemistry of Liaoning Province and Laboratory of Coordination Chemistry; Shenyang University of Chemical Technology; Shenyang 110142 China
| |
Collapse
|