1
|
Ceneri E, De Stefano A, Casalin I, Finelli C, Curti A, Paolini S, Parisi S, Ardizzoia F, Cristiano G, Boultwood J, McCubrey JA, Suh PG, Ramazzotti G, Fiume R, Ratti S, Manzoli L, Cocco L, Follo MY. Signaling pathways and bone marrow microenvironment in myelodysplastic neoplasms. Adv Biol Regul 2024:101071. [PMID: 39648082 DOI: 10.1016/j.jbior.2024.101071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Accepted: 12/03/2024] [Indexed: 12/10/2024]
Abstract
Key signaling pathways within the Bone Marrow Microenvironment (BMM), such as Notch, Phosphoinositide-Specific Phospholipase C (PI-PLCs), Transforming Growth Factor β (TGF-β), and Nuclear Factor Kappa B (NF-κB), play a vital role in the progression of Myelodysplastic Neoplasms (MDS). Among the various BMM cell types, Mesenchymal Stromal Cells (MSCs) are particularly central to these pathways. While these signaling routes can independently affect both MSCs and Hematopoietic Stem Cells (HSCs), they most importantly alter the dynamics of their interactions, leading to abnormal changes in survival, differentiation, and quiescence. Notch and PI-PLC signaling facilitate intercellular communication, TGF-β promotes quiescence and suppresses hematopoiesis, and NF-κB-driven inflammatory responses foster an environment detrimental to normal hematopoiesis. This review highlights the role of these pathways within the MDS microenvironment, driving the development and progression of the disease and paving the way for new possible therapeutic strategies.
Collapse
Affiliation(s)
- Eleonora Ceneri
- Department of Biomedical and Neuromotor Sciences, Cellular Signaling Laboratory, University of Bologna, Bologna, 40126, Italy.
| | - Alessia De Stefano
- Department of Biomedical and Neuromotor Sciences, Cellular Signaling Laboratory, University of Bologna, Bologna, 40126, Italy
| | - Irene Casalin
- Department of Biomedical and Neuromotor Sciences, Cellular Signaling Laboratory, University of Bologna, Bologna, 40126, Italy
| | - Carlo Finelli
- IRCCS Azienda Ospedaliero-Universitaria di Bologna - Istituto di Ematologia "Seragnoli", Bologna, Italy
| | - Antonio Curti
- IRCCS Azienda Ospedaliero-Universitaria di Bologna - Istituto di Ematologia "Seragnoli", Bologna, Italy
| | - Stefania Paolini
- IRCCS Azienda Ospedaliero-Universitaria di Bologna - Istituto di Ematologia "Seragnoli", Bologna, Italy
| | - Sarah Parisi
- IRCCS Azienda Ospedaliero-Universitaria di Bologna - Istituto di Ematologia "Seragnoli", Bologna, Italy
| | - Federica Ardizzoia
- IRCCS Azienda Ospedaliero-Universitaria di Bologna - Istituto di Ematologia "Seragnoli", Bologna, Italy
| | - Gianluca Cristiano
- IRCCS Azienda Ospedaliero-Universitaria di Bologna - Istituto di Ematologia "Seragnoli", Bologna, Italy
| | - Jaqueline Boultwood
- Bloodwise Molecular Haematology Unit, Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - James A McCubrey
- Department of Microbiology & Immunology, Brody School of Medicine, East Carolina University, Greenville, NC, 27834, USA
| | - Pann-Ghill Suh
- Korea Brain Research Institute, Daegu, 41062, Republic of Korea
| | - Giulia Ramazzotti
- Department of Biomedical and Neuromotor Sciences, Cellular Signaling Laboratory, University of Bologna, Bologna, 40126, Italy
| | - Roberta Fiume
- Department of Biomedical and Neuromotor Sciences, Cellular Signaling Laboratory, University of Bologna, Bologna, 40126, Italy
| | - Stefano Ratti
- Department of Biomedical and Neuromotor Sciences, Cellular Signaling Laboratory, University of Bologna, Bologna, 40126, Italy
| | - Lucia Manzoli
- Department of Biomedical and Neuromotor Sciences, Cellular Signaling Laboratory, University of Bologna, Bologna, 40126, Italy
| | - Lucio Cocco
- Department of Biomedical and Neuromotor Sciences, Cellular Signaling Laboratory, University of Bologna, Bologna, 40126, Italy
| | - Matilde Y Follo
- Department of Biomedical and Neuromotor Sciences, Cellular Signaling Laboratory, University of Bologna, Bologna, 40126, Italy
| |
Collapse
|
2
|
Mendoza H, Siddon AJ. Molecular Techniques and Gene Mutations in Myelodysplastic Syndromes. Clin Lab Med 2023; 43:549-563. [PMID: 37865502 DOI: 10.1016/j.cll.2023.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2023]
Abstract
Sequencing technology, particularly next-generation sequencing, has highlighted the importance of gene mutations in myelodysplastic syndromes (MDSs). Mutations affecting DNA methylation, chromatin modification, RNA splicing, cohesin complex, and other pathways are present in most MDS cases and often have prognostic and clinical implications. Updated international diagnostic guidelines as well as the new International Prognostic Scoring System-Molecular incorporate molecular data into the diagnosis and prognostication of MDS. With whole-genome sequencing predicted to become the future standard of genetic evaluation, it is likely that MDS diagnosis and management will become increasingly personalized based on an individual's clinical and genomic profile.
Collapse
Affiliation(s)
- Hadrian Mendoza
- Department of Internal Medicine, Yale School of Medicine, PO Box 208030, New Haven, CT 06520, USA
| | - Alexa J Siddon
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT, USA; Department of Pathology, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
3
|
Bănescu C, Tripon F, Muntean C. The Genetic Landscape of Myelodysplastic Neoplasm Progression to Acute Myeloid Leukemia. Int J Mol Sci 2023; 24:5734. [PMID: 36982819 PMCID: PMC10058431 DOI: 10.3390/ijms24065734] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/12/2023] [Accepted: 03/15/2023] [Indexed: 03/19/2023] Open
Abstract
Myelodysplastic neoplasm (MDS) represents a heterogeneous group of myeloid disorders that originate from the hematopoietic stem and progenitor cells that lead to the development of clonal hematopoiesis. MDS was characterized by an increased risk of transformation into acute myeloid leukemia (AML). In recent years, with the aid of next-generation sequencing (NGS), an increasing number of molecular aberrations were discovered, such as recurrent mutations in FLT3, NPM1, DNMT3A, TP53, NRAS, and RUNX1 genes. During MDS progression to leukemia, the order of gene mutation acquisition is not random and is important when considering the prognostic impact. Moreover, the co-occurrence of certain gene mutations is not random; some of the combinations of gene mutations seem to have a high frequency (ASXL1 and U2AF1), while the co-occurrence of mutations in splicing factor genes is rarely observed. Recent progress in the understanding of molecular events has led to MDS transformation into AML and unraveling the genetic signature has paved the way for developing novel targeted and personalized treatments. This article reviews the genetic abnormalities that increase the risk of MDS transformation to AML, and the impact of genetic changes on evolution. Selected therapies for MDS and MDS progression to AML are also discussed.
Collapse
Affiliation(s)
- Claudia Bănescu
- Center for Advanced Medical and Pharmaceutical Research, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540142 Targu Mures, Romania
- Genetics Department, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540142 Targu Mures, Romania
| | - Florin Tripon
- Center for Advanced Medical and Pharmaceutical Research, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540142 Targu Mures, Romania
- Genetics Department, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540142 Targu Mures, Romania
| | - Carmen Muntean
- Pediatric Department, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540142 Targu Mures, Romania
| |
Collapse
|
4
|
Maurya N, Mohanty P, Dhangar S, Panchal P, Jijina F, Mathan SLP, Shanmukhaiah C, Madkaikar M, Vundinti BR. Comprehensive analysis of genetic factors predicting overall survival in Myelodysplastic syndromes. Sci Rep 2022; 12:5925. [PMID: 35396491 PMCID: PMC8993876 DOI: 10.1038/s41598-022-09864-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 03/29/2022] [Indexed: 12/19/2022] Open
Abstract
Myelodysplastic syndromes (MDS) are a group of clonal hematological disease with high risk of progression to AML. Accurate risk stratification is of importance for the proper management of MDS. Genetic lesions (Cytogenetic and Molecular mutations) are known to help in prognosticating the MDS patients. We have studied 152 MDS patients using cytogenetics and next generation sequencing (NGS). These patients were evaluated and as per cytogenetic prognostic group, majority (92.1%) of the patients classified as good (81.6%) and intermediate (10.5%) group. The NGS identified 38 different gene mutations in our cohort. Among 111 MDS patients with mutations, the most frequent mutated genes were SF3B1 (25.2%), SRSF2 (19%) U2AF1 (14.4%) ASXL1 (9.9%) RUNX1 (9.9%) TET2 (9%), TP53 (9%), ATM (6.3%), NRAS (5.4%) and JAK2/3 (5.4%). The survival analysis revealed that the mutations in TP53, JAK2/3, KRAS, NRAS and ASXL1 were significantly (P < 0.05) associated with poor survival of the patients. The univariate cox and multivariate cox analysis of our study suggested that the age, marrow morphology, cytogenetic and gene mutations with IPSS-R should be considered for prognosticating the MDS patients. We have proposed M-IPSS-R which changed the risk stratification i.e. 66.3% patients had decreased risk whereas 33.75% showed increased risk compared to IPSS-R. The survival analysis also showed that the M-IPSS-R were more significant in separating the patients as per their risk than the IPSS-R alone. The change in risk stratification could help in proper strategy for the treatment planning.
Collapse
Affiliation(s)
- Nehakumari Maurya
- Department of Cytogenetics, ICMR-National Institute of Immunohematology, K.E.M. Hospital Campus, Mumbai, Maharashtra, 400012, India
| | - Purvi Mohanty
- Department of Cytogenetics, ICMR-National Institute of Immunohematology, K.E.M. Hospital Campus, Mumbai, Maharashtra, 400012, India
| | - Somprakash Dhangar
- Department of Cytogenetics, ICMR-National Institute of Immunohematology, K.E.M. Hospital Campus, Mumbai, Maharashtra, 400012, India
| | - Purvi Panchal
- Department of Cytogenetics, ICMR-National Institute of Immunohematology, K.E.M. Hospital Campus, Mumbai, Maharashtra, 400012, India
| | - Farah Jijina
- Department of Clinical Hematology, King Edward Memorial Hospital, Mumbai, Maharashtra, India
| | - S Leo Prince Mathan
- Department of Clinical Hematology, King Edward Memorial Hospital, Mumbai, Maharashtra, India
| | | | - Manisha Madkaikar
- Department of Cytogenetics, ICMR-National Institute of Immunohematology, K.E.M. Hospital Campus, Mumbai, Maharashtra, 400012, India
| | - Babu Rao Vundinti
- Department of Cytogenetics, ICMR-National Institute of Immunohematology, K.E.M. Hospital Campus, Mumbai, Maharashtra, 400012, India.
| |
Collapse
|
5
|
Cook MR, Karp JE, Lai C. The spectrum of genetic mutations in myelodysplastic syndrome: Should we update prognostication? EJHAEM 2022; 3:301-313. [PMID: 35846202 PMCID: PMC9176033 DOI: 10.1002/jha2.317] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 09/29/2021] [Accepted: 09/30/2021] [Indexed: 06/12/2023]
Abstract
The natural history of patients with myelodysplastic syndrome (MDS) is dependent upon the presence and magnitude of diverse genetic and molecular aberrations. The International Prognostic Scoring System (IPSS) and revised IPSS (IPSS-R) are the most widely used classification and prognostic systems; however, somatic mutations are not currently incorporated into these systems, despite evidence of their independent impact on prognosis. Our manuscript reviews prognostic information for TP53, EZH2, DNMT3A, ASXL1, RUNX1, SRSF2, CBL, IDH 1/2, TET2, BCOR, ETV6, GATA2, U2AF1, ZRSR2, RAS, STAG2, and SF3B1. Mutations in TP53, EZH2, ASXL1, DNMT3A, RUNX1, SRSF2, and CBL have extensive evidence for their negative impact on survival, whereas SF3B1 is the lone mutation carrying a favorable prognosis. We use the existing literature to propose the incorporation of somatic mutations into the IPSS-R. More data are needed to define the broad spectrum of other genetic lesions, as well as the impact of variant allele frequencies, class of mutation, and impact of multiple interactive genomic lesions. We postulate that the incorporation of these data into MDS prognostication systems will not only enhance our therapeutic decision making but lead to targeted treatment in an attempt to improve outcomes in this formidable disease.
Collapse
Affiliation(s)
- Michael R. Cook
- Division of Hematology and OncologyLombardi Comprehensive Cancer CenterGeorgetown University HospitalWashingtonDistrict of ColumbiaUSA
| | - Judith E. Karp
- Divison of Hematology and OncologyThe Sidney Kimmel Comprehensive Cancer CenterJohns Hopkins University HospitalBaltimoreMarylandUSA
| | - Catherine Lai
- Division of Hematology and OncologyLombardi Comprehensive Cancer CenterGeorgetown University HospitalWashingtonDistrict of ColumbiaUSA
| |
Collapse
|
6
|
Wu K, Nie B, Li L, Yang X, Yang J, He Z, Li Y, Cheng S, Shi M, Zeng Y. Bioinformatics analysis of high frequency mutations in myelodysplastic syndrome-related patients. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1491. [PMID: 34805353 PMCID: PMC8573449 DOI: 10.21037/atm-21-4094] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 09/24/2021] [Indexed: 11/06/2022]
Abstract
Background Myelodysplastic syndrome (MDS) is a group of hematological malignancies that may progress to acute myeloid leukemia (AML). Bioinformatics-based analysis of high-frequency mutation genes in MDS-related patients is still relatively rare, so we conducted our research to explore whether high-frequency mutation genes in MDS-related patients can play a reference role in clinical guidance and prognosis. Methods Next generation sequencing (NGS) technology was used to detect 32 mutations in 64 MDS-related patients. We classified the patients' genes and analyzed them by Gene Ontology (GO) analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, protein-protein interaction (PPI) analysis, and then calculated the gene survival curve of high-frequency mutations. Results We discovered 32 mutant genes such as ASXL1, DNMT3A, KRAS, NRAS, TP53, SF3B1, and SRSF2. The overall survival (OS) of these genes decreased significantly after DNMT3A, ASXL1, RUNX1, and U2AF1 occurred mutation. These genes play a significant role in biological processes, not only in MDS but also in the occurrence and development of other diseases. Through retrospective analysis, genes associated with MDS-related diseases were identified, and their effects on the disease were predicted. Conclusions Thirty-two mutant genes were determined in MDS and when mutations occur in DNMT3A, ASXL1, RUNX1, and U2AF1, their survival time decreases significantly. This results providing a theoretical basis for clinical and scientific research and broadening the scope of research on MDS.
Collapse
Affiliation(s)
- Kun Wu
- Department of Clinical Laboratory, First Affiliated Hospital of Kunming Medical University, Kunming, China.,Yunnan Key Laboratory of Laboratory Medicine, Kunming, China.,Yunnan Innovation Team of Clinical Laboratory and Diagnosis, Kunming, China
| | - Bo Nie
- Department of Hematology, First Affiliated Hospital of Kunming Medical University, Hematology Research Center of Yunnan Province, Kunming, China
| | - Liyin Li
- Department of Hematology, First Affiliated Hospital of Kunming Medical University, Hematology Research Center of Yunnan Province, Kunming, China
| | - Xin Yang
- Department of Hematology, First Affiliated Hospital of Kunming Medical University, Hematology Research Center of Yunnan Province, Kunming, China
| | - Jinrong Yang
- Department of Hematology, First Affiliated Hospital of Kunming Medical University, Hematology Research Center of Yunnan Province, Kunming, China
| | - Zhenxin He
- Department of Hematology, First Affiliated Hospital of Kunming Medical University, Hematology Research Center of Yunnan Province, Kunming, China
| | - Yanhong Li
- Department of Clinical Laboratory, First Affiliated Hospital of Kunming Medical University, Kunming, China.,Yunnan Key Laboratory of Laboratory Medicine, Kunming, China.,Yunnan Innovation Team of Clinical Laboratory and Diagnosis, Kunming, China
| | - Shenju Cheng
- Department of Clinical Laboratory, First Affiliated Hospital of Kunming Medical University, Kunming, China.,Yunnan Key Laboratory of Laboratory Medicine, Kunming, China.,Yunnan Innovation Team of Clinical Laboratory and Diagnosis, Kunming, China
| | - Mingxia Shi
- Department of Hematology, First Affiliated Hospital of Kunming Medical University, Hematology Research Center of Yunnan Province, Kunming, China
| | - Yun Zeng
- Department of Hematology, First Affiliated Hospital of Kunming Medical University, Hematology Research Center of Yunnan Province, Kunming, China
| |
Collapse
|
7
|
Niparuck P, Police P, Noikongdee P, Siriputtanapong K, Limsuwanachot N, Rerkamnuaychoke B, Chuncharunee S, Siriboonpiputtana T. TP53 mutation in newly diagnosed acute myeloid leukemia and myelodysplastic syndrome. Diagn Pathol 2021; 16:100. [PMID: 34717674 PMCID: PMC8557522 DOI: 10.1186/s13000-021-01162-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 10/19/2021] [Indexed: 11/10/2022] Open
Abstract
OBJECTIVES TP53 mutation is found frequently in therapy related acute myeloid leukemia (AML)/ myelodysplastic syndrome (MDS), AML and MDS patients with monosomy or complex karyotype. However, the prevalence and treatment outcome in TP53 mutated AML/MDS patients in Asian population are scarce. We therefore conducted this study to analyze the prevalence and the treatment outcomes of TP53 mutation in AML and MDS-EB patients. METHODS Patients with newly diagnosed AML and MDS-EB were recruited, extraction of deoxyribonucleic acid from bone marrow samples were done and then performing TP53 mutation analysis, using MassArray® System (Agena Bioscience, CA, USA). RESULTS A total of 132 AML/MDS patients were recruited, patients with de novo AML, secondary AML, MDS-EB1, MDS-EB2 and T-AML/MDS were seen in 66, 13, 9, 9 and 3%, respectively. TP53 mutation was found in 14 patients (10.6%), and prevalence of TP53 mutation in T-AML/MDS, secondary AML, de novo AML and MDS-EB patients were 50, 17.6, 9.2 and 8%, respectively. Three patients had double heterozygous TP53 mutation. Mutated TP53 was significantly detected in patients with monosomy and complex chromosome. Common TP53 mutation were R290C, T220C, A249S and V31I which V31I mutation was reported only in Taiwanese patients. Most variant allele frequency (VAF) of TP53 mutation in the study were greater than 40%. Three year-overall survival (OS) in the whole population was 22%, 3y-OS in AML and MDS-EB patients were 22 and 27%, respectively. The 1y-OS in patients with TP53-mutant AML/MDS were shorter than that in TP53 wild-type patients, 14% versus 50%, P = 0.001. In multivariate analysis, factors affecting OS in 132 AML/MDS patients was mutant TP53 (P = 0.023, HR = 1.20-7.02), whereas, WBC count> 100,000/μL (P = 0.004, HR = 1.32-4.16) and complex karyotype (P = 0.038, HR = 1.07-9.78) were associated with shorter OS in AML patients. DISCUSSION In this study, the prevalence of TP53 mutation in de novo AML and MDS-EB patients were low but it had impact on survival. Patients with monosomy or complex karyotype had more frequent TP53 mutation.
Collapse
Affiliation(s)
- Pimjai Niparuck
- Division of Hematology, Department of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Pornnapa Police
- Division of Hematology, Department of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Phichchapha Noikongdee
- Division of Hematology, Department of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Kanchana Siriputtanapong
- Division of Hematology, Department of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Nittaya Limsuwanachot
- Human Genetics Laboratory, Department of Pathology, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Budsaba Rerkamnuaychoke
- Human Genetics Laboratory, Department of Pathology, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Suporn Chuncharunee
- Division of Hematology, Department of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Teerapong Siriboonpiputtana
- Human Genetics Laboratory, Department of Pathology, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
8
|
Lee P, Yim R, Yung Y, Chu HT, Yip PK, Gill H. Molecular Targeted Therapy and Immunotherapy for Myelodysplastic Syndrome. Int J Mol Sci 2021; 22:10232. [PMID: 34638574 PMCID: PMC8508686 DOI: 10.3390/ijms221910232] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/17/2021] [Accepted: 09/21/2021] [Indexed: 12/22/2022] Open
Abstract
Myelodysplastic syndrome (MDS) is a heterogeneous, clonal hematological disorder characterized by ineffective hematopoiesis, cytopenia, morphologic dysplasia, and predisposition to acute myeloid leukemia (AML). Stem cell genomic instability, microenvironmental aberrations, and somatic mutations contribute to leukemic transformation. The hypomethylating agents (HMAs), azacitidine and decitabine are the standard of care for patients with higher-risk MDS. Although these agents induce responses in up to 40-60% of patients, primary or secondary drug resistance is relatively common. To improve the treatment outcome, combinational therapies comprising HMA with targeted therapy or immunotherapy are being evaluated and are under continuous development. This review provides a comprehensive update of the molecular pathogenesis and immune-dysregulations involved in MDS, mechanisms of resistance to HMA, and strategies to overcome HMA resistance.
Collapse
Affiliation(s)
| | | | | | | | | | - Harinder Gill
- Division of Haematology, Medical Oncology and Haemopoietic Stem Cell Transplantation, Department of Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China; (P.L.); (R.Y.); (Y.Y.); (H.-T.C.); (P.-K.Y.)
| |
Collapse
|
9
|
Zhang R, Wang L, Chen P, Gao X, Wang S, Li F, Dou L, Gao C, Li Y, Liu D. Haematologic malignancies with unfavourable gene mutations benefit from donor lymphocyte infusion with/without decitabine for prophylaxis of relapse after allogeneic HSCT: A pilot study. Cancer Med 2021; 10:3165-3176. [PMID: 33932107 PMCID: PMC8124122 DOI: 10.1002/cam4.3763] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 12/30/2020] [Accepted: 01/13/2021] [Indexed: 12/12/2022] Open
Abstract
Relapse is the main cause of treatment failure for leukaemia patients with unfavourable gene mutations who receive allogeneic haematopoietic stem cell transplantation (allo‐HSCT). There is no consensus on the indication of donor lymphocyte infusion (DLI) for prophylaxis of relapse after allo‐HSCT. To evaluate the tolerance and efficacy of prophylactic DLI in patients with unfavourable gene mutations such as FLT3‐ITD, TP53, ASXL1, DNMT3A or TET2, we performed a prospective, single‐arm study. Prophylactic use of decitabine followed by DLI was planned in patients with TP53 or epigenetic modifier gene mutations. The prophylaxis was planned in 46 recipients: it was administered in 28 patients and it was not administered in 18 patients due to contraindications. No DLI‐associated pancytopenia was observed. The cumulative incidences of grade II–IV and III–IV acute graft‐versus‐host disease (GVHD) at 100 days post‐DLI were 25.8% and 11.0%, respectively. The rates of chronic GVHD, non‐relapse mortality and relapse at 3 years post‐DLI were 21.6%, 25.0% and 26.1%, respectively. The 3‐year relapse‐free survival and overall survival (OS) rates were 48.9% and 48.2%, respectively. Acute GVHD (HR: 2.30, p = 0.016) and relapse (HR: 2.46, p = 0.003) after DLI were independently associated with inferior OS. Data in the current study showed the feasibility of prophylactic DLI with/without decitabine in the early stage after allo‐HSCT in patients with unfavourable gene mutations.
Collapse
Affiliation(s)
- Rui Zhang
- Department of Hematology, Chinese PLA General Hospital, Beijing, China.,Department of Hematology, People's Hospital of Cangzhou, Hebei, China
| | - Lili Wang
- Department of Hematology, Chinese PLA General Hospital, Beijing, China
| | - Peng Chen
- Department of Hematology, the 7th Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Xiaoning Gao
- Department of Hematology, Chinese PLA General Hospital, Beijing, China
| | - Shuhong Wang
- Department of Hematology, Chinese PLA General Hospital, Beijing, China
| | - Fei Li
- Department of Hematology, Chinese PLA General Hospital, Beijing, China
| | - Liping Dou
- Department of Hematology, Chinese PLA General Hospital, Beijing, China
| | - Chunji Gao
- Department of Hematology, Chinese PLA General Hospital, Beijing, China
| | - Yan Li
- Department of Hematology, Chinese PLA General Hospital, Beijing, China.,Department of Hematology, Peking University Third Hospital, Beijing, China
| | - Daihong Liu
- Department of Hematology, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
10
|
Duetz C, Westers TM, in ’t Hout FEM, Cremers EMP, Alhan C, Venniker‐Punt B, Visser‐Wisselaar HA, Chitu DA, de Graaf AO, Smit L, Jansen JH, van de Loosdrecht AA. Distinct bone marrow immunophenotypic features define the splicing factor 3B subunit 1 (SF3B1)-mutant myelodysplastic syndromes subtype. Br J Haematol 2021; 193:798-803. [PMID: 33765355 PMCID: PMC8252736 DOI: 10.1111/bjh.17414] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 02/23/2021] [Indexed: 01/28/2023]
Abstract
Splicing factor 3B subunit 1 (SF3B1) mutations define a distinct myelodysplastic syndromes (MDS) patient group with a relatively favourable disease course and high response rates to luspatercept. Few data are available on bone marrow phenotype beyond ring sideroblasts in this subgroup of patients with MDS. In the present study, we identified immunophenotypic erythroid, myelomonocyte and progenitor features associated with SF3B1 mutations. In addition, we illustrate that SF3B1-mutation type is associated with distinct immunophenotypic features, and show the impact of co-occurrence of a SF3B1 mutation and a deletion of chromosome 5q on bone marrow immunophenotype. These genotype-phenotype associations and phenotypic subtypes within SF3B1-MDS provide leads that may further refine prognostication and therapeutic strategies for this particular MDS subgroup.
Collapse
Affiliation(s)
- Carolien Duetz
- Department of HematologyCancer Center AmsterdamAmsterdam UMC, Location VUmcAmsterdamthe Netherlands
| | - Theresia M. Westers
- Department of HematologyCancer Center AmsterdamAmsterdam UMC, Location VUmcAmsterdamthe Netherlands
| | - Florentien E. M. in ’t Hout
- Laboratory of HematologyDepartment of Laboratory MedicineRadboud University Medical CentreNijmegenthe Netherlands
| | - Eline M. P. Cremers
- Department of HematologyMaastricht University Medical CenterMaastrichtthe Netherlands
| | - Canan Alhan
- Department of HematologyCancer Center AmsterdamAmsterdam UMC, Location VUmcAmsterdamthe Netherlands
| | - Bianca Venniker‐Punt
- Department of HematologyCancer Center AmsterdamAmsterdam UMC, Location VUmcAmsterdamthe Netherlands
| | | | - Dana A. Chitu
- Department of HematologyHOVON Data CenterErasmus MC Cancer InstituteRotterdamthe Netherlands
| | - Aniek O. de Graaf
- Laboratory of HematologyDepartment of Laboratory MedicineRadboud University Medical CentreNijmegenthe Netherlands
| | - Linda Smit
- Department of HematologyCancer Center AmsterdamAmsterdam UMC, Location VUmcAmsterdamthe Netherlands
| | - Joop H. Jansen
- Laboratory of HematologyDepartment of Laboratory MedicineRadboud University Medical CentreNijmegenthe Netherlands
| | | |
Collapse
|
11
|
Wang H, Li Y, Xu Q, Zhou W, Yin C, Wang R, Wang M, Xu Y, Li Y, Yu L. Comparison of Upfront Transplantation and Pretransplant Cytoreductive Therapy for Advanced Myelodysplastic Syndrome. CLINICAL LYMPHOMA MYELOMA & LEUKEMIA 2021; 21:631-640. [PMID: 34074612 DOI: 10.1016/j.clml.2021.04.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/20/2021] [Accepted: 04/23/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is the only curative therapy for advanced myelodysplastic syndrome (MDS). However, the value of pretransplant cytoreduction remains debatable. PATIENTS AND METHODS We retrospectively compared the outcomes of upfront transplantation and pretransplant cytoreduction. Of 69 patients, 39 received upfront allo-HSCT and 30 received pretransplant cytoreduction, including chemotherapy (n = 16), hypomethylating agents (HMAs, n = 6), and HMAs with chemotherapy (n = 8). RESULTS The upfront group achieved similar overall survival (OS) and a trend of better progression-free survival (PFS) from diagnosis compared with the cytoreduction group (3-year PFS, 64.0% vs. 44.4%, P = .076). Posttransplant outcomes were comparable between the two groups in terms of OS, relapse-free survival (RFS), cumulative incidence of relapse (CIR), and non-relapse mortality (NRM). In patients with ≥2 mutations, the upfront group achieved better OS and PFS (3-year OS, 100.0% vs. 68.6%, P = .044; 3-year PFS: 92.3% vs. 43.9%, P = .016) than the cytoreduction group. Patients achieving remission in the cytoreduction group had outcomes similar to the upfront group, but those without remission before transplantation had a significantly worse posttransplant OS (3-year OS, 46.7% vs. 75.7%, P = .038). Patients with pretransplant HMAs had better PFS than those with chemotherapy or HMAs plus chemotherapy (P < 0.05). CONCLUSION Compared with pretransplant cytoreduction, upfront allo-HSCT might provide more benefit to some patients with advanced MDS if there are suitable donors. HMAs would be a good alternative during the donor search.
Collapse
Affiliation(s)
- Hong Wang
- School of Medicine, Nankai University, Tianjin, China; Department of Hematology, Chinese PLA General Hospital, Beijing, China; Department of Hematology and Oncology, International Cancer Center, Shenzhen Key Laboratory of Precision Medicine for Hematological Malignancies, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen University Health Science Center, Shenzhen, China
| | - Yan Li
- Department of Hematology, Chinese PLA General Hospital, Beijing, China; Department of Hematology, Peking University, Third Hospital, Beijing, China
| | - Qingyu Xu
- Department of Hematology, Chinese PLA General Hospital, Beijing, China; Department of Hematology and Oncology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Wei Zhou
- School of Medicine, Nankai University, Tianjin, China; Department of Hematology, Chinese PLA General Hospital, Beijing, China
| | - Chengliang Yin
- Faculty of Medicine, Macau University of Science and Technology, Macau, China; Medical Big Data Research Center, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing, China; National Engineering Laboratory for Medical Big Data Application Technology, Chinese PLA General Hospital, Beijing, China
| | - Ruiqi Wang
- School of Medicine, Nankai University, Tianjin, China; Department of Hematology, Chinese PLA General Hospital, Beijing, China
| | - Mengzhen Wang
- Department of Hematology, Chinese PLA General Hospital, Beijing, China
| | - Yuanyuan Xu
- Department of Hematology, Chinese PLA General Hospital, Beijing, China
| | - Yonghui Li
- Department of Hematology, Chinese PLA General Hospital, Beijing, China; Department of Hematology and Oncology, International Cancer Center, Shenzhen Key Laboratory of Precision Medicine for Hematological Malignancies, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen University Health Science Center, Shenzhen, China
| | - Li Yu
- School of Medicine, Nankai University, Tianjin, China; Department of Hematology, Chinese PLA General Hospital, Beijing, China; Department of Hematology and Oncology, International Cancer Center, Shenzhen Key Laboratory of Precision Medicine for Hematological Malignancies, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen University Health Science Center, Shenzhen, China.
| |
Collapse
|
12
|
Asian Population Is More Prone to Develop High-Risk Myelodysplastic Syndrome, Concordantly with Their Propensity to Exhibit High-Risk Cytogenetic Aberrations. Cancers (Basel) 2021; 13:cancers13030481. [PMID: 33513838 PMCID: PMC7865620 DOI: 10.3390/cancers13030481] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/13/2021] [Accepted: 01/19/2021] [Indexed: 12/15/2022] Open
Abstract
Simple Summary The world population is genetically and environmentally diverse. In particular, genetic differences related to an ethnic factor may underlie differences in cancer phenotypic expression. Therefore, we compared the epidemiology, and the clinical, biological and genetic characteristics of myelodysplastic syndrome (MDS) between Asian and Western countries. Our results show substantial differences in the incidence and age of onset between Asian and Western MDS patients. A higher proportion of Asian MDS patients fall into the high- and very-high risk prognostic MDS groups. This finding is supported by the identification of a higher proportion of high-risk cytogenetic aberrations in Asian MDS patients. However, the survival rate is similar for Western and Asian MDS patients. Our findings may impact the clinical management as well as the strategy of clinical trials targeting those genetic aberrations and mutations depending on the world area where they are run. Abstract This study explores the hypothesis that genetic differences related to an ethnic factor may underlie differences in phenotypic expression of myelodysplastic syndrome (MDS). First, to identify clear ethnic differences, we systematically compared the epidemiology, and the clinical, biological and genetic characteristics of MDS between Asian and Western countries over the last 20 years. Asian MDS cases show a 2- to 4-fold lower incidence and a 10-year younger age of onset compared to the Western cases. A higher proportion of Western MDS patients fall into the very low- and low-risk categories while the intermediate, high and very high-risk groups are more represented in Asian MDS patients according to the Revised International Prognostic Scoring System. Next, we investigated whether differences in prognostic risk scores could find their origin in differential cytogenetic profiles. We found that 5q deletion (del(5q)) aberrations and mutations in TET2, SF3B1, SRSF2 and IDH1/2 are more frequently reported in Western MDS patients while trisomy 8, del(20q), U2AF1 and ETV6 mutations are more frequent in Asian MDS patients. Treatment approaches differ between Western and Asian countries owing to the above discrepancies, but the overall survival rate within each prognostic group is similar for Western and Asian MDS patients. Altogether, our study highlights greater risk MDS in Asians supported by their cytogenetic profile.
Collapse
|
13
|
Wang X, Liu W, Wang M, Fan T, Li Y, Guo X, Yang X, Wang H, Xiao H, Zhang S, Quan R, Liu C, Tang X, Lv Y, Chen Z, Li L, Xu Y, Ma R, Hu X. Cytogenetic characteristics of 665 patients with myelodysplastic syndrome in China: A single-center report. Oncol Lett 2020; 21:126. [PMID: 33552247 PMCID: PMC7798047 DOI: 10.3892/ol.2020.12387] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 10/20/2020] [Indexed: 11/20/2022] Open
Abstract
The karyotype is highly important for diagnosis and prognosis in myelodysplastic syndrome (MDS). The objective of the present study was to investigate the cytogenetic characteristics of patients with MDS in China. The karyotypes of 665 Chinese patients with MDS were analyzed, and it was identified that 298 cases (298/665, 44.8%) had abnormal karyotypes. Among the 298 patients with abnormal karyotypes, the 75 patients with trisomy 8 (+8) constituted the most common subset (75/298, 25.2%). The incidence of abnormal karyotypes was significantly higher in patients who were ≥51 years old compared with those <51 years old, (54.8 vs. 34.7%, respectively; P<0.05). Based on World Health Organization (WHO) classification-based Prognostic Scoring System (WPSS) criteria, the incidence of poor-prognosis karyotypes was significantly higher (17.4 vs. 5.4%; P<0.05) in the older patient group, and based on the Revised International Prognostic Scoring System (IPSS-R) criteria, the incidence of poor-/very poor-prognosis karyotypes was also significantly higher (17.4 vs. 6.6%; P<0.05) in patients ≥51 years old compared with younger ones. Based on the WHO classification of MDS subtypes, the incidence of abnormal karyotypes in patients with high percentages of bone marrow (BM) blasts [excess blasts (EB)-I + EB-II, ≥5% blasts] was significantly higher than that in patients with low percentages of BM blasts (those with single lineage dysplasia + multilineage dysplasia, <5% blasts) (62.5 vs. 36.0%; P<0.05). The incidence of poor-prognosis karyotypes based on WPSS criteria was significantly higher in patients with high percentages of BM blasts than those with low percentages (22.0 vs. 6.9%, respectively; P<0.05), and the incidence of poor-/very poor-prognosis karyotypes based on IPSS-R criteria was also significantly higher (23.0 vs. 7.4%, respectively; P<0.05). These results demonstrate that +8 is the most common abnormal karyotype in Chinese patients with MDS. Age and the percentage of BM blasts are associated with the incidence of both abnormal karyotypes and karyotypes with poor prognosis. The results of cytogenetic abnormalities in this study will supplement the data on patients of MDS in China.
Collapse
Affiliation(s)
- Xueying Wang
- Graduate School, Beijing University of Chinese Medicine, Beijing 100029, P.R. China.,Department of Hematology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, P.R. China
| | - Weiyi Liu
- Department of Hematology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, P.R. China
| | - Mingjing Wang
- Department of Hematology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, P.R. China.,Graduate School, China Academy of Chinese Medical Sciences, Beijing 100700, P.R. China
| | - Teng Fan
- Department of Hematology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, P.R. China.,Graduate School, China Academy of Chinese Medical Sciences, Beijing 100700, P.R. China
| | - Yumeng Li
- Graduate School, Beijing University of Chinese Medicine, Beijing 100029, P.R. China.,Department of Hematology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, P.R. China
| | - Xiaoqing Guo
- Department of Hematology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, P.R. China
| | - Xiupeng Yang
- Department of Hematology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, P.R. China
| | - Hongzhi Wang
- Department of Hematology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, P.R. China
| | - Haiyan Xiao
- Department of Hematology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, P.R. China
| | - Shanshan Zhang
- Department of Hematology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, P.R. China
| | - Richeng Quan
- Department of Hematology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, P.R. China
| | - Chi Liu
- Department of Hematology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, P.R. China
| | - Xudong Tang
- Department of Hematology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, P.R. China
| | - Yan Lv
- Department of Hematology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, P.R. China
| | - Zhuo Chen
- Department of Hematology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, P.R. China
| | - Liu Li
- Department of Hematology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, P.R. China
| | - Yonggang Xu
- Department of Hematology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, P.R. China
| | - Rou Ma
- Department of Hematology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, P.R. China
| | - Xiaomei Hu
- Department of Hematology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, P.R. China
| |
Collapse
|
14
|
NPM1-Mutated Myeloid Neoplasms with <20% Blasts: A Really Distinct Clinico-Pathologic Entity? Int J Mol Sci 2020; 21:ijms21238975. [PMID: 33255988 PMCID: PMC7730332 DOI: 10.3390/ijms21238975] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/19/2020] [Accepted: 11/24/2020] [Indexed: 12/16/2022] Open
Abstract
Nucleophosmin (NPM1) gene mutations rarely occur in non-acute myeloid neoplasms (MNs) with <20% blasts. Among nearly 10,000 patients investigated so far, molecular analyses documented NPM1 mutations in around 2% of myelodysplastic syndrome (MDS) cases, mainly belonging to MDS with excess of blasts, and 3% of myelodysplastic/myeloproliferative neoplasm (MDS/MPN) cases, prevalently classified as chronic myelomonocytic leukemia. These uncommon malignancies are associated with an aggressive clinical course, relatively rapid progression to overt acute myeloid leukemia (AML) and poor survival outcomes, raising controversies on their classification as distinct clinico-pathologic entities. Furthermore, fit patients with NPM1-mutated MNs with <20% blasts could benefit most from upfront intensive chemotherapy for AML rather than from moderate intensity MDS-directed therapies, although no firm conclusion can currently be drawn on best therapeutic approaches, due to the limited available data, obtained from small and mainly retrospective series. Caution is also suggested in definitely diagnosing NPM1-mutated MNs with blast count <20%, since NPM1-mutated AML cases frequently present dysplastic features and multilineage bone marrow cells showing abnormal cytoplasmic NPM1 protein delocalization by immunohistochemical staining, therefore belonging to NPM1-mutated clone regardless of blast morphology. Further prospective studies are warranted to definitely assess whether NPM1 mutations may become sufficient to diagnose AML, irrespective of blast percentage.
Collapse
|
15
|
Liang S, Zhou X, Pan H, Yang Y, Shi L, Wang L. Prognostic value of DNMT3A mutations in myelodysplastic syndromes: a meta-analysis. ACTA ACUST UNITED AC 2020; 24:613-622. [PMID: 31482762 DOI: 10.1080/16078454.2019.1657613] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Objectives: Although DNA (cytosine-5)-methyltransferase 3 alpha (DNMT3A) gene mutations have been widely reported in myelodysplastic syndromes (MDS), the prognostic significance of DNMT3A mutations is still controversial. In this study, we conducted a meta-analysis to determine the prognostic effect of DNMT3A mutations in patients with MDS. Methods: Eligible studies from PubMed, Embase, Web of Science, Clinical Trials and the Cochrane Library were searched. Hazard ratios (HRs) and their 95% confidence intervals (CIs) for overall survival (OS) and leukemia-free survival (LFS) were pooled to assess the effect of DNMT3A mutations on the prognosis in MDS patients. Results: A total of 12 studies with 2236 patients were included in this meta-analysis. The pooled HRs for OS and LFS revealed that MDS patients with DNMT3A mutations had a significantly poor prognosis as compared with those without mutations (OS: HR = 1.654, 95% CI = 1.387-1.973, p < 0.001; LFS: HR = 4.624, 95% CI = 3.121-6.851, p < 0.001). Discussion and Conclusion: This meta-analysis showed an adverse prognostic effect of DNMT3A mutations in patients with MDS, which will contribute to risk stratification and prognostic assessment in the disease.
Collapse
Affiliation(s)
- Simin Liang
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University , Chongqing , People's Republic of China
| | - Xiaojia Zhou
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University , Chongqing , People's Republic of China
| | - Hui Pan
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University , Chongqing , People's Republic of China
| | - Yichun Yang
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University , Chongqing , People's Republic of China
| | - Lin Shi
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University , Chongqing , People's Republic of China
| | - Li Wang
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University , Chongqing , People's Republic of China
| |
Collapse
|
16
|
Jiang L, Luo Y, Zhu S, Wang L, Ma L, Zhang H, Shen C, Yang W, Ren Y, Zhou X, Mei C, Ye L, Xu W, Yang H, Lu C, Jin J, Tong H. Mutation status and burden can improve prognostic prediction of patients with lower-risk myelodysplastic syndromes. Cancer Sci 2019; 111:580-591. [PMID: 31804030 PMCID: PMC7004535 DOI: 10.1111/cas.14270] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 11/24/2019] [Accepted: 11/28/2019] [Indexed: 01/09/2023] Open
Abstract
Patients with lower‐risk myelodysplastic syndromes (LR‐MDS) as defined by the International Prognostic Scoring System (IPSS) have more favorable prognosis in general, but significant inter‐individual heterogeneity exists. In this study, we examined the molecular profile of 15 MDS‐relevant genes in 159 patients with LR‐MDS using next‐generation sequencing. In univariate COX regression, shorter overall survival (OS) was associated with mutation status of ASXL1 (P = .001), RUNX1 (P = .031), EZH2 (P = .049), TP53 (P = .016), SRSF2 (P = .046), JAK2 (P = .040), and IDH2 (P = .035). We also found significantly shorter OS in patients with an adjusted TET2 variant allele frequency (VAF) ≥18% versus those with either an adjusted TET2 VAF <18% or without TET2 mutations (median: 20.4 vs 47.8 months; P = .020; HR = 2.183, 95%CI: 1.129‐4.224). After adjustment for IPSS, shorter OS was associated with mutation status of ASXL1 (P < .001; HR = 4.306, 95% CI: 2.144‐8.650), TP53 (P = .004; HR = 4.863, 95% CI: 1.662‐14.230) and JAK2 (P = .002; HR = 5.466, 95%CI: 1.848‐16.169), as well as adjusted TET2 VAF ≥18% (P = .008; HR = 2.492, 95% CI: 1.273‐4.876). Also, OS was increasingly shorter as the number of mutational factors increased (P < .001). A novel prognostic scoring system incorporating the presence/absence of the four independent mutational factors into the IPSS further stratified LR‐MDS patients into three prognostically different groups (P < .001). The newly developed scoring system redefined 10.1% (16/159) of patients as a higher‐risk group, who could not be predicted by the currently prognostic models. In conclusion, integration of the IPSS with mutation status/burden of certain MDS‐relevant genes may improve the prognostication of patients with LR‐MDS and could help identify those with worse‐than‐expected prognosis for more aggressive treatment.
Collapse
Affiliation(s)
- Lingxu Jiang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Myelodysplastic Syndromes Diagnosis and Therapy Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yingwan Luo
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Myelodysplastic Syndromes Diagnosis and Therapy Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shuanghong Zhu
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Myelodysplastic Syndromes Diagnosis and Therapy Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lu Wang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Myelodysplastic Syndromes Diagnosis and Therapy Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Liya Ma
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Myelodysplastic Syndromes Diagnosis and Therapy Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hua Zhang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Myelodysplastic Syndromes Diagnosis and Therapy Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chuying Shen
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Myelodysplastic Syndromes Diagnosis and Therapy Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wenli Yang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Myelodysplastic Syndromes Diagnosis and Therapy Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yanling Ren
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Myelodysplastic Syndromes Diagnosis and Therapy Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xinping Zhou
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Myelodysplastic Syndromes Diagnosis and Therapy Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chen Mei
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Myelodysplastic Syndromes Diagnosis and Therapy Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Li Ye
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Myelodysplastic Syndromes Diagnosis and Therapy Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Weilai Xu
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Myelodysplastic Syndromes Diagnosis and Therapy Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Haiyang Yang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chenxi Lu
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jie Jin
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hongyan Tong
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Myelodysplastic Syndromes Diagnosis and Therapy Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
17
|
Azrakhsh NA, Mensah-Glanowska P, Sand K, Kittang AO. Targeting Immune Signaling Pathways in Clonal Hematopoiesis. Curr Med Chem 2019; 26:5262-5277. [PMID: 30907306 DOI: 10.2174/0929867326666190325100636] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 03/05/2019] [Accepted: 03/12/2019] [Indexed: 12/15/2022]
Abstract
BACKGROUND Myeloid neoplasms are a diverse group of malignant diseases with different entities and numerous patho-clinical features. They arise from mutated clones of hematopoietic stem- and progenitor cells which expand by outperforming their normal counterparts. The intracellular signaling profile of cancer cells is the sum of genetic, epigenetic and microenvironmental influences, and the multiple interconnections between different signaling pathways make pharmacological targeting complicated. OBJECTIVE To present an overview of known somatic mutations in myeloproliferative neoplasms (MPN), myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML) and the inflammatory signaling pathways affected by them, as well as current efforts to therapeutically modulate this aberrant inflammatory signaling. METHODS In this review, we extensively reviewed and compiled salient information with ClinicalTrials.gov as our source on ongoing studies, and PubMed as our authentic bibliographic source, using a focused review question. RESULTS Mutations affecting immune signal transduction are present to varying extents in clonal myeloid diseases. While MPN are dominated by a few common mutations, a multitude of different genes can be mutated in MDS and AML. Mutations can also occur in asymptomatic persons, a finding called clonal hematopoiesis of indeterminate potential (CHIP). Mutations in FLT3, JAK, STAT, CBL and RAS can lead to aberrant immune signaling. Protein kinase inhibitors are entering the clinic and are extensively investigated in clinical trials in MPN, MDS and AML. CONCLUSION In summary, this article summarizes recent research on aberrant inflammatory signaling in clonal myeloid diseases and the clinical therapeutic potential of modulation of signal transduction and effector proteins in the affected pathways.
Collapse
Affiliation(s)
| | - Patrycja Mensah-Glanowska
- Department of Hematology, Jagiellonian University Medical College / University Hospital, Krakow, Poland
| | - Kristoffer Sand
- Clinic of Medicine and Rehabilitation, More and Romsdal Hospital Trust, Alesund, Norway
| | - Astrid Olsnes Kittang
- Department of Clinical Science, University of Bergen, Bergen, Norway.,Department of Medicine, Section for Hematology, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
18
|
Bewicke-Copley F, Arjun Kumar E, Palladino G, Korfi K, Wang J. Applications and analysis of targeted genomic sequencing in cancer studies. Comput Struct Biotechnol J 2019; 17:1348-1359. [PMID: 31762958 PMCID: PMC6861594 DOI: 10.1016/j.csbj.2019.10.004] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 10/18/2019] [Accepted: 10/22/2019] [Indexed: 12/31/2022] Open
Abstract
Next Generation Sequencing (NGS) has dramatically improved the flexibility and outcomes of cancer research and clinical trials, providing highly sensitive and accurate high-throughput platforms for large-scale genomic testing. In contrast to whole-genome (WGS) or whole-exome sequencing (WES), targeted genomic sequencing (TS) focuses on a panel of genes or targets known to have strong associations with pathogenesis of disease and/or clinical relevance, offering greater sequencing depth with reduced costs and data burden. This allows targeted sequencing to identify low frequency variants in targeted regions with high confidence, thus suitable for profiling low-quality and fragmented clinical DNA samples. As a result, TS has been widely used in clinical research and trials for patient stratification and the development of targeted therapeutics. However, its transition to routine clinical use has been slow. Many technical and analytical obstacles still remain and need to be discussed and addressed before large-scale and cross-centre implementation. Gold-standard and state-of-the-art procedures and pipelines are urgently needed to accelerate this transition. In this review we first present how TS is conducted in cancer research, including various target enrichment platforms, the construction of target panels, and selected research and clinical studies utilising TS to profile clinical samples. We then present a generalised analytical workflow for TS data discussing important parameters and filters in detail, aiming to provide the best practices of TS usage and analyses.
Collapse
Key Words
- BAM, Binary Alignment Map
- BWA, Burrows-Wheeler Aligner
- Background error
- CLL, Chronic Lymphocytic Leukaemia
- COSMIC, Catalogue of Somatic Mutations in Cancer
- Cancer genomics
- Clinical samples
- ESP, Exome Sequencing Project
- FF, Fresh Frozen
- FFPE, Formalin Fixed Paraffin Embedded
- FL, Follicular Lymphoma
- GATK, Genome Analysis Toolkit
- ICGC, International Cancer Genome Consortium
- MBC, Molecular Barcode
- NCCN, the National Comprehensive Cancer Network®
- NGS, Next Generation Sequencing
- NHL, Non-Hodgkin Lymphoma
- NSCLC, Non-Small Cell Lung Carcinoma
- PCR duplicates
- QC, Quality Control
- SAM, Sequence Alignment Map
- TCGA, The Cancer Genome Atlas
- TS, Targeted Sequencing
- Targeted sequencing
- UMI, Unique Molecular Identifiers
- VAF, Variant Allele Frequency
- Variant calling
- WES, Whole Exome Sequencing
- WGS, Whole Genome Sequencing
- tFL, Transformed Follicular Lymphoma
Collapse
Affiliation(s)
- Findlay Bewicke-Copley
- Centre for Cancer Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Emil Arjun Kumar
- Centre for Cancer Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Giuseppe Palladino
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Koorosh Korfi
- Centre for Cancer Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Jun Wang
- Centre for Cancer Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| |
Collapse
|
19
|
Zhao P, Qin J, Liu W, Quan R, Xiao H, Liu C, Li L, Lv Y, Zhu Q, Wang H, Guo X, Wang J, Hu X. Genetic alterations in 47 patients with a novel myelodysplastic syndrome diagnosis at a single center. Oncol Lett 2019; 18:5077-5084. [PMID: 31612018 PMCID: PMC6781645 DOI: 10.3892/ol.2019.10853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 06/19/2019] [Indexed: 11/23/2022] Open
Abstract
At least one mutation is present in 70–80% of patients with myelodysplastic syndrome (MDS). Genetic alterations and other molecular biological markers have been included in the diagnostic and treatment guidelines for MDS. The aim of the present study was to analyze the association between genetic alterations and clinicopathological features among 47 Chinese patients with a novel diagnosis of MDS using a next-generation sequencing approach. The results indicated that from the 47 patients, 66.0% had genetic alterations. Furthermore, seven genes, U2 small nuclear RNA auxiliary factor 1 (23.4%), splicing factor 3b subunit (12.8%), ASXL transcriptional regulator 1 (10.6%), tet methylcytosine dioxygenase 2 (8.5%), BCL6 corepressor (8.5%), TP53 (8.5%) and DNA methyltransferase 3α (6.4%), indicated a higher prevalence of alterations in >5% of patients. Among the 16 (51.6%) patients with ≥2 mutations, 12 (75%) had mutations in different genetic functional groups. Variant allele frequencies in signaling pathways were generally low, suggesting that mutations in the corresponding genes were acquired relatively late during the evolution of the leukemic clones. The mutation prevalence rates of Janus kinase 2 and SH2B adaptor protein 3 were significantly higher in the MDS unclassified group and in the very high-risk groups with a karyotype as a prognostic indicator, respectively (both P<0.05). The mutation prevalence rates of SET binding protein 1 and enhancer of zeste 2 polycomb repressive complex 2 subunit were significantly higher in the high-risk group (both P<0.05). In summary, 66.0% of the 47 patients with a novel MDS diagnosis had a genetic mutation as detected by 127-target gene next-generation sequencing. The results for the genetic alterations in the present study will supplement the database of patients with MDS in China.
Collapse
Affiliation(s)
- Pan Zhao
- Department of Hematology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing 100091, P.R. China
| | - Jiayue Qin
- Annoroad Gene Technology Co., Ltd., Beijing 100176, P.R. China
| | - Weiyi Liu
- Department of Hematology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing 100091, P.R. China
| | - Richeng Quan
- Department of Hematology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing 100091, P.R. China
| | - Haiyan Xiao
- Department of Hematology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing 100091, P.R. China
| | - Chi Liu
- Department of Hematology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing 100091, P.R. China
| | - Liu Li
- Department of Hematology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing 100091, P.R. China
| | - Yan Lv
- Department of Hematology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing 100091, P.R. China
| | - Qianze Zhu
- Department of Hematology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing 100091, P.R. China
| | - Hongzhi Wang
- Department of Hematology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing 100091, P.R. China
| | - Xiaoqing Guo
- Department of Hematology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing 100091, P.R. China
| | - Juan Wang
- Annoroad Gene Technology Co., Ltd., Beijing 100176, P.R. China
| | - Xiaomei Hu
- Department of Hematology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing 100091, P.R. China
| |
Collapse
|
20
|
Spaulding TP, Stockton SS, Savona MR. The evolving role of next generation sequencing in myelodysplastic syndromes. Br J Haematol 2019; 188:224-239. [PMID: 31571207 DOI: 10.1111/bjh.16212] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 08/21/2019] [Accepted: 08/24/2019] [Indexed: 12/11/2022]
Abstract
Myelodysplastic syndromes (MDS) are clonal haematological disorders characterized by haematopoietic cell dysplasia, peripheral blood cytopenias, and a predisposition for developing acute myeloid leukaemia (AML). Cytogenetics have historically been important in diagnosis and prognosis in MDS, but the growing accessibility of next generation sequencing (NGS) has led to growing research in the roles of molecular genetic variation on clinical decision-making in these disorders. Multiple genes have been previously studied and found to be associated with specific outcomes or disease types within MDS and knowledge of mutations in these genes provides insight into previously defined MDS subtypes. Knowledge of these mutations also informs development of novel therapies in the treatment of MDS. The precise role of NGS in the diagnosis, prognosis and monitoring of MDS remains unclear but the improvements in NGS technology and accessibility affords clinicians an additional practice tool to provide the best care for patients.
Collapse
Affiliation(s)
- Travis P Spaulding
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Shannon S Stockton
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Michael R Savona
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA.,Cancer Biology Program, Vanderbilt University School of Medicine, Nashville, TN, USA.,Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| |
Collapse
|
21
|
Xu Q, Li Y, Jing Y, Lv N, Wang L, Li Y, Yu L. Epigenetic modifier gene mutations-positive AML patients with intermediate-risk karyotypes benefit from decitabine with CAG regimen. Int J Cancer 2019; 146:1457-1467. [PMID: 31344264 DOI: 10.1002/ijc.32593] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 06/12/2019] [Accepted: 07/04/2019] [Indexed: 11/06/2022]
Abstract
It remains unclear whether there is a relationship between therapeutic effects of hypomethylating agents (HMAs) and epigenetic modifier gene mutations (EMMs) in patients with cytogenetically intermediate-risk acute myeloid leukemia (IR-AML). Based on targeted-capture sequencing, we retrospectively analyzed the correlation between EMMs and prognosis in 83 IR-AML patients treated with decitabine in combination with cytarabine, aclarubicin hydrochloride and granulocyte colony-stimulating factor (DCAG, n = 35) or "7 + 3" induction regimens (n = 48). In the multivariate analyses, EMM (+) patients did not show any statistically significant difference in remission rates from EMM (-) patients in the DCAG group (p > 0.05), but achieved inferior complete remission (CR; p = 0.03) and overall remission rates (ORR; p = 0.04) after the first course of standard induction regimens (p < 0.05). In the EMM (-) cohort, the DCAG group showed the tendency of adverse total CR (p = 0.06). Besides, DCAG group with EMMs achieved the best survival outcome independent of baseline characteristics, whereas it was opposite in EMM (+) patients receiving standard induction regimens (p < 0.05). Additionally, in the EMM (+) cohort, the survival rate of isolated DCAG group was statistically similar to that of the combination of standard chemotherapies and allogeneic hematopoietic stem cell transplantation (allo-HSCT) (p > 0.40), whereas patients who received only standard regimens had the worst survival rate (0.0%, p < 0.01). It can be concluded that the EMMs might be regarded as the potentially predictive biomarkers of better response to DCAG in IR-AML patients.
Collapse
Affiliation(s)
- Qingyu Xu
- Department of Hematology and BMT center, Chinese PLA General Hospital, Beijing, China
| | - Yan Li
- Department of Hematology and BMT center, Chinese PLA General Hospital, Beijing, China
| | - Yu Jing
- Department of Hematology and BMT center, Chinese PLA General Hospital, Beijing, China
| | - Na Lv
- Department of Hematology and BMT center, Chinese PLA General Hospital, Beijing, China.,Department of Hematology-Oncology, International Cancer Center, Shenzhen University General Hospital, Shenzhen University Health Science Center, Shenzhen, China
| | - Lili Wang
- Department of Hematology and BMT center, Chinese PLA General Hospital, Beijing, China
| | - Yonghui Li
- Department of Hematology and BMT center, Chinese PLA General Hospital, Beijing, China
| | - Li Yu
- Department of Hematology and BMT center, Chinese PLA General Hospital, Beijing, China.,Department of Hematology-Oncology, International Cancer Center, Shenzhen University General Hospital, Shenzhen University Health Science Center, Shenzhen, China
| |
Collapse
|
22
|
Tobiasson M, Kittang AO. Treatment of myelodysplastic syndrome in the era of next-generation sequencing. J Intern Med 2019; 286:41-62. [PMID: 30869816 DOI: 10.1111/joim.12893] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Next-generation sequencing (NGS) is rapidly changing the clinical care of patients with myelodysplastic syndrome (MDS). NGS can be used for various applications: (i) in the diagnostic process to discriminate between MDS and other diseases such as aplastic anaemia, myeloproliferative disorders and idiopathic cytopenias; (ii) for classification, for example, where the presence of SF3B1 mutation is one criterion for the ring sideroblast anaemia subgroups in the World Health Organization 2016 classification; (iii) for identification of patients suitable for targeted therapy (e.g. IDH1/2 inhibitors); (iv) for prognostication, for example, where specific mutations (e.g. TP53 and RUNX1) are associated with inferior prognosis, whereas others (e.g. SF3B1) are associated with superior prognosis; and (v) to monitor patients for progression or treatment failure. Most commonly, targeted sequencing for genes (normally 50-100 genes) reported to be recurrently mutated in myeloid disease is used. At present, NGS is rarely incorporated into clinical guidelines although an increasing number of studies have demonstrated the benefit of using NGS in the clinical management of MDS patients.
Collapse
Affiliation(s)
- M Tobiasson
- Department of Hematology, Karolinska University Hospital, Stockholm, Sweden.,Institution of Medicine Huddinge, Karolinska Institute, Stockholm, Sweden
| | - A O Kittang
- Department of Clinical Science, University of Bergen, Bergen, Norway.,Section for Hematology, Department of Medicine, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
23
|
Chen Z, Ok CY, Wang W, Goswami M, Tang G, Routbort M, Jorgensen JL, Medeiros LJ, Wang SA. Low‐Grade Myelodysplastic Syndromes with Preserved CD34+ B‐Cell Precursors (CD34+ Hematogones). CYTOMETRY PART B-CLINICAL CYTOMETRY 2019; 98:36-42. [DOI: 10.1002/cyto.b.21830] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 05/19/2019] [Accepted: 05/30/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Zhining Chen
- Department of HematopathologyThe University of Texas MD Anderson Cancer Center Houston Texas
- Department of PathologyAffiliated Tumor Hospital of Guangxi Medical University Nanning Guangxi China
| | - Chi Young Ok
- Department of HematopathologyThe University of Texas MD Anderson Cancer Center Houston Texas
| | - Wei Wang
- Department of HematopathologyThe University of Texas MD Anderson Cancer Center Houston Texas
| | - Maitrayee Goswami
- Department of HematopathologyThe University of Texas MD Anderson Cancer Center Houston Texas
| | - Guilin Tang
- Department of HematopathologyThe University of Texas MD Anderson Cancer Center Houston Texas
| | - Mark Routbort
- Department of HematopathologyThe University of Texas MD Anderson Cancer Center Houston Texas
| | - Jeffrey L. Jorgensen
- Department of HematopathologyThe University of Texas MD Anderson Cancer Center Houston Texas
| | - L. Jeffrey Medeiros
- Department of HematopathologyThe University of Texas MD Anderson Cancer Center Houston Texas
| | - Sa A. Wang
- Department of HematopathologyThe University of Texas MD Anderson Cancer Center Houston Texas
| |
Collapse
|
24
|
Duetz C, Westers TM, van de Loosdrecht AA. Clinical Implication of Multi-Parameter Flow Cytometry in Myelodysplastic Syndromes. Pathobiology 2018; 86:14-23. [PMID: 30227408 PMCID: PMC6482988 DOI: 10.1159/000490727] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 06/08/2018] [Indexed: 12/16/2022] Open
Abstract
Myelodysplastic syndromes (MDS) are a challenging group of diseases for clinicians and researchers, as both disease course and pathobiology are highly heterogeneous. In (suspected) MDS patients, multi-parameter flow cytometry can aid in establishing diagnosis, risk stratification and choice of therapy. This review addresses the developments and future directions of multi-parameter flow cytometry scores in MDS. Additionally, we propose an integrated diagnostic algorithm for suspected MDS.
Collapse
Affiliation(s)
- Carolien Duetz
- Department of Hematology, Cancer Center Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | | | | |
Collapse
|
25
|
Gangat N, Mudireddy M, Lasho TL, Finke CM, Nicolosi M, Szuber N, Patnaik MM, Pardanani A, Hanson CA, Ketterling RP, Tefferi A. Mutations and prognosis in myelodysplastic syndromes: karyotype-adjusted analysis of targeted sequencing in 300 consecutive cases and development of a genetic risk model. Am J Hematol 2018; 93:691-697. [PMID: 29417633 DOI: 10.1002/ajh.25064] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 01/31/2018] [Accepted: 02/02/2018] [Indexed: 01/02/2023]
Abstract
To develop a genetic risk model for primary myelodysplastic syndromes (MDS), we queried the prognostic significance of next-generation sequencing (NGS)-derived mutations, in the context of the Mayo cytogenetic risk stratification, which includes high-risk (monosomal karyotype; MK), intermediate-risk (non-MK, classified as intermediate/poor/very poor, per the revised international prognostic scoring system; IPSS-R), and low-risk (classified as good/very good, per IPSS-R). Univariate analysis in 300 consecutive patients with primary MDS identified TP53, RUNX1, U2AF1, ASXL1, EZH2, and SRSF2 mutations as "unfavorable" and SF3B1 as "favorable" risk factors for survival; for the purposes of the current study, the absence of SF3B1 mutation was accordingly dubbed as an "adverse" mutation. Analysis adjusted for age and MK, based on our previous observation of significant clustering between MK and TP53 mutations, confirmed independent prognostic contribution from RUNX1, ASXL1, and SF3B1 mutations. Multivariable analysis that included age, the Mayo cytogenetics risk model and the number of adverse mutations resulted in HRs (95% CI) of 5.3 (2.5-10.3) for presence of three adverse mutations, 2.4 (1.6-3.7) for presence of two adverse mutations, 1.5 (1.02-2.2) for presence of one adverse mutation, 5.6 (3.4-9.1) for high-risk karyotype, 1.5 (1.1-2.2) for intermediate-risk karyotype and 2.4 (1.8-3.3) for age >70 years; HR-weighted risk point assignment generated a three-tiered genetic risk model: high (N = 65; 5-year survival 2%), intermediate (N = 100; 5-year survival 18%), and low (N = 135; 5-year survival 56%). The current study provides a practically simple risk model in MDS that is based on age, karyotype, and mutations only.
Collapse
Affiliation(s)
- Naseema Gangat
- Divisions of Hematology; Mayo Clinic; Rochester Minnesota
| | | | - Terra L. Lasho
- Divisions of Hematology; Mayo Clinic; Rochester Minnesota
| | | | - Maura Nicolosi
- Divisions of Hematology; Mayo Clinic; Rochester Minnesota
| | - Natasha Szuber
- Divisions of Hematology; Mayo Clinic; Rochester Minnesota
| | | | | | | | - Rhett P. Ketterling
- Divisions of Laboratory Genetics and Genomics, Departments of Internal and Laboratory Medicine; Mayo Clinic; Rochester Minnesota
| | - Ayalew Tefferi
- Divisions of Hematology; Mayo Clinic; Rochester Minnesota
| |
Collapse
|