1
|
Khalil MI, Wang J, Yang C, Vu L, Yin C, Chadha S, Nabors H, Vocelle D, May DG, Chrisopolus RJ, Zhou L, Roux KJ, Bernard MP, Mi QS, Pyeon D. The membrane-associated ubiquitin ligase MARCHF8 promotes cancer immune evasion by degrading MHC class I proteins. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.29.626106. [PMID: 39677690 PMCID: PMC11642734 DOI: 10.1101/2024.11.29.626106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
The loss of major histocompatibility complex class I (MHC-I) molecules has been proposed as a mechanism by which cancer cells evade tumor-specific T cells in immune checkpoint inhibitor (ICI)-refractory patients. Nevertheless, the mechanism by which cancer cells downregulate MHC-I is poorly understood. We report here that membrane-associated RING-CH-type finger 8 (MARCHF8), upregulated by human papillomavirus (HPV), ubiquitinates and degrades MHC-I proteins in HPV-positive head and neck cancer (HPV+ HNC). MARCHF8 knockdown restores MHC-I levels on HPV+ HNC cells. We further reveal that Marchf8 knockout significantly suppresses tumor growth and increases the infiltration of natural killer (NK) and T cells in the tumor microenvironment (TME). Furthermore, Marchf8 knockout markedly increases crosstalk between the cytotoxic NK cells and CD8 + T cells with macrophages and enhances the tumor cell-killing activity of CD8 + T cells. CD8 + T cell depletion in mice abrogates Marchf8 knockout-driven tumor suppression and T cell infiltration. Interestingly, Marchf8 knockout, in combination with anti-PD-1 treatment, synergistically suppresses tumor growth in mice bearing ICI-refractory tumors. Taken together, our finding suggests that MARCHF8 could be a promising target for novel immunotherapy for HPV+ HNC patients. One Sentence Summary Targeting MARCHF8 restores MHC-I proteins, induces antitumor CD8 + T cell activity, and suppresses the growth of ICI-refractory tumors.
Collapse
|
2
|
Behera A, Sachan D, Barik GK, Reddy ABM. Role of MARCH E3 ubiquitin ligases in cancer development. Cancer Metastasis Rev 2024; 43:1257-1277. [PMID: 39037545 DOI: 10.1007/s10555-024-10201-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 07/14/2024] [Indexed: 07/23/2024]
Abstract
Membrane-associated RING-CH (MARCH) E3 ubiquitin ligases, a family of RING-type E3 ubiquitin ligases, have garnered increased attention for their indispensable roles in immune regulation, inflammation, mitochondrial dynamics, and lipid metabolism. The MARCH E3 ligase family consists of eleven distinct members, and the dysregulation of many of these members has been documented in several human malignancies. Over the past two decades, extensive research has revealed that MARCH E3 ligases play pivotal roles in cancer progression by ubiquitinating key oncogenes and tumor suppressors and orchestrating various signaling pathways. Some MARCH E3s act as oncogenes, while others act as tumor suppressors, and the majority of MARCH E3s play both oncogenic and tumor suppressive roles in a context-dependent manner. Notably, there is special emphasis on the sole mitochondrial MARCH E3 ligase MARCH5, which regulates mitochondrial homeostasis within cancer cells. In this review, we delve into the diverse functions of MARCH E3 ligases across different cancer types, shedding light on the underlying molecular mechanisms mediating their effects, their regulatory effects on cancer and their potential as therapeutic targets.
Collapse
Affiliation(s)
- Abhayananda Behera
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Deepanshi Sachan
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Ganesh Kumar Barik
- Cancer Biology Division, National Centre for Cell Science, Savitribai Phule Pune University, Ganeshkhind Road, Pune, Maharashtra, 411007, India
| | | |
Collapse
|
3
|
Khalil MI, Yang C, Vu L, Chadha S, Nabors H, Welbon C, James CD, Morgan IM, Spanos WC, Pyeon D. HPV upregulates MARCHF8 ubiquitin ligase and inhibits apoptosis by degrading the death receptors in head and neck cancer. PLoS Pathog 2023; 19:e1011171. [PMID: 36867660 PMCID: PMC10016708 DOI: 10.1371/journal.ppat.1011171] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 03/15/2023] [Accepted: 02/01/2023] [Indexed: 03/04/2023] Open
Abstract
The membrane-associated RING-CH-type finger ubiquitin ligase MARCHF8 is a human homolog of the viral ubiquitin ligases Kaposi's sarcoma herpesvirus K3 and K5 that promote host immune evasion. Previous studies have shown that MARCHF8 ubiquitinates several immune receptors, such as the major histocompatibility complex II and CD86. While human papillomavirus (HPV) does not encode any ubiquitin ligase, the viral oncoproteins E6 and E7 are known to regulate host ubiquitin ligases. Here, we report that MARCHF8 expression is upregulated in HPV-positive head and neck cancer (HNC) patients but not in HPV-negative HNC patients compared to normal individuals. The MARCHF8 promoter is highly activated by HPV oncoprotein E6-induced MYC/MAX transcriptional activation. The knockdown of MARCHF8 expression in human HPV-positive HNC cells restores cell surface expression of the tumor necrosis factor receptor superfamily (TNFRSF) death receptors, FAS, TRAIL-R1, and TRAIL-R2, and enhances apoptosis. MARCHF8 protein directly interacts with and ubiquitinates the TNFRSF death receptors. Further, MARCHF8 knockout in mouse oral cancer cells expressing HPV16 E6 and E7 augments cancer cell apoptosis and suppresses tumor growth in vivo. Our findings suggest that HPV inhibits host cell apoptosis by upregulating MARCHF8 and degrading TNFRSF death receptors in HPV-positive HNC cells.
Collapse
Affiliation(s)
- Mohamed I. Khalil
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, United States of America
- Department of Molecular Biology, National Research Centre, El-Buhouth St., Cairo, Egypt
| | - Canchai Yang
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, United States of America
| | - Lexi Vu
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, United States of America
| | - Smriti Chadha
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, United States of America
| | - Harrison Nabors
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, United States of America
| | - Craig Welbon
- Cancer Biology and Immunotherapies Group, Sanford Research, Sioux Falls, South Dakota, United States of America
| | - Claire D. James
- Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Iain M. Morgan
- Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - William C. Spanos
- Cancer Biology and Immunotherapies Group, Sanford Research, Sioux Falls, South Dakota, United States of America
| | - Dohun Pyeon
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, United States of America
- * E-mail:
| |
Collapse
|
4
|
Kyaw KZ, Byun WS, Shin YH, Huynh TH, Lee JY, Bae ES, Park HJ, Oh DC, Lee SK. Antitumor Activity of Piceamycin by Upregulation of N-Myc Downstream-Regulated Gene 1 in Human Colorectal Cancer Cells. JOURNAL OF NATURAL PRODUCTS 2022; 85:2817-2827. [PMID: 36458922 DOI: 10.1021/acs.jnatprod.2c00832] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Piceamycin (1), a macrocyclic lactam isolated from the silkworm's gut (Streptomyces sp. SD53 strain), reportedly possesses antibacterial activity. However, the potential anticancer activity and molecular processes underlying 1 have yet to be reported. Colorectal cancer (CRC) is high-risk cancer and accounts for 10% of all cancer cases worldwide. The high prevalence of resistance to radiation or chemotherapy means that patients with advanced CRC have a poor prognosis, with high recurrence and metastasis potential. Therefore, the present study investigated the antitumor effect and underlying mechanisms of 1 in CRC cells. The growth-inhibiting effect of 1 in CRC cells was correlated with the upregulation of a tumor suppressor, N-myc downstream-regulated gene 1 (NDRG1). Additionally, 1 induced G0/G1 cell cycle arrest and apoptosis and inhibited the migration of CRC cells. Notably, 1 disrupted the interaction between NDRG1 and c-Myc in CRC cells. In a mouse model with HCT116-implanted xenografts, the antitumor activity of 1 was confirmed by NDRG1 modulation. Overall, these findings show that 1 is a potential candidate for CRC treatment through regulation of NDGR1-mediated functionality.
Collapse
Affiliation(s)
- Kay Zin Kyaw
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Woong Sub Byun
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Yern-Hyerk Shin
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Thanh-Hau Huynh
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Ji Yun Lee
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Eun Seo Bae
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyen Joo Park
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Dong-Chan Oh
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Sang Kook Lee
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
5
|
Liu H, Chen B, Liu LL, Cong L, Cheng Y. The role of MARCH9 in colorectal cancer progression. Front Oncol 2022; 12:906897. [PMID: 36185211 PMCID: PMC9523723 DOI: 10.3389/fonc.2022.906897] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 08/26/2022] [Indexed: 12/03/2022] Open
Abstract
Colorectal cancer (CRC) is the third most common cancer with a high global incidence and mortality. Mutated genes or dysregulated pathways responsible for CRC progression have been identified and employed as biomarkers for diagnosis and prognosis. In this study, a ubiquitination regulator, MARCH9, was shown to accelerate CRC progression both in vitro and in vivo. CRC samples from The Cancer Genome Atlas (TCGA) showed significantly upregulated MARCH9 expression by individual cancer stage, histological subtype, and nodal metastasis status. Knockdown of MARCH9 inhibited, while MARCH9 overexpression promoted, CRC cell proliferation and migration. Knockdown of MARCH9 also induced CRC cell apoptosis and caused cell cycle arrest. Further investigation showed that MARCH9 promoted CRC progression by downregulating the expression of a deubiquitinase cylindromatosis (CYLD) gene and activating p65, a member of the nuclear factor-κB (NF-κB) protein family. Finally, in vivo xenograft studies confirmed that MARCH9 knockdown suppressed tumor growth in nude mice. Thus, this study demonstrated that MARCH9 may be a novel and effective therapeutic target for CRC therapy.
Collapse
Affiliation(s)
- Hua Liu
- Key Laboratory of Ethnomedicine for Ministry of Education, Center on Translational Neuroscience, School of Pharmacy, Minzu University of China, Beijing, China
| | - Biao Chen
- Department of General Surgery, People’s Hospital of Tibet Autonomous Region, Lhasa, China
| | - Lian-Lin Liu
- Key Laboratory of Ethnomedicine for Ministry of Education, Center on Translational Neuroscience, School of Pharmacy, Minzu University of China, Beijing, China
| | - Lin Cong
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- *Correspondence: Lin Cong, ; Yong Cheng,
| | - Yong Cheng
- Key Laboratory of Ethnomedicine for Ministry of Education, Center on Translational Neuroscience, School of Pharmacy, Minzu University of China, Beijing, China
- *Correspondence: Lin Cong, ; Yong Cheng,
| |
Collapse
|
6
|
Wang Z, Wang MM, Geng Y, Ye CY, Zang YS. Membrane-associated RING-CH protein (MARCH8) is a novel glycolysis repressor targeted by miR-32 in colorectal cancer. J Transl Med 2022; 20:402. [PMID: 36064706 PMCID: PMC9446774 DOI: 10.1186/s12967-022-03608-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 08/24/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is the third most common cancer and leading cause of cancer-related deaths worldwide. Aberrant cellular metabolism is a hallmark of cancer cells, and disturbed metabolism showed clinical significance in CRC. The membrane-associated RING-CH 8 (MARCH8) protein, the first MARCH E3 ligase, plays an oncogenic role and serves as a prognostic marker in multiple cancers, however, the role of MARCH8 in CRC is unclear. In the present study, we aimed to investigate the biomarkers and their underlying mechanism for CRC. METHOD In this study, we first examined the function of MARCH8 in CRC by analysing public database. Besides, we performing gene silencing studies and generating cellular overexpression and xenograft models. Then its protein substrate was identified and validated. In addition, the expression of MARCH8 was investigated in tissue samples from CRC patients, and the molecular basis for decreased expression was analysed. RESULTS Systematic analysis reveals that MARCH8 is a beneficial prognostic marker in CRC. In CRC, MARCH8 exhibited tumor-suppressive activity both in vivo and in vitro. Furthermore, we found that MARCH8 is negatively correlated with hexokinase 2 (HK2) protein in CRC patients. MARCH8 regulates glycolysis and promotes ubiquitination-mediated proteasome degradation to reduces HK2 protein levels. Then HK2 inhibitor partially rescues the effect of MARCH8 knockdown in CRC. Poised chromatin and elevated miR-32 repressed MARCH8 expression. CONCLUSION In summary, we propose that in CRC, poised chromatin and miR-32 decrease the expression of MARCH8, further bind and add ubiquitin, induce HK2 degradation, and finally repress glycolysis to promote tumor suppressors in CRC.
Collapse
Affiliation(s)
- Zhan Wang
- Department of Medical Oncology, Second Affiliated Hospital of Naval Medical University, No. 415 Fengyang Road, Shanghai, 200003, China
| | - Miao-Miao Wang
- Department of Medical Oncology, Second Affiliated Hospital of Naval Medical University, No. 415 Fengyang Road, Shanghai, 200003, China
| | - Yan Geng
- Department of Nursing, Zhabei Branch Hospital, Second Affiliated Hospital of Naval Medical University, No. 619, Zhonghuaxin Road, Shanghai, 200070, China
| | - Chen-Yang Ye
- Department of Medical Oncology, Second Affiliated Hospital of Naval Medical University, No. 415 Fengyang Road, Shanghai, 200003, China
| | - Yuan-Sheng Zang
- Department of Medical Oncology, Second Affiliated Hospital of Naval Medical University, No. 415 Fengyang Road, Shanghai, 200003, China.
| |
Collapse
|
7
|
You GR, Chang JT, Li HF, Cheng AJ. Multifaceted and Intricate Oncogenic Mechanisms of NDRG1 in Head and Neck Cancer Depend on Its C-Terminal 3R-Motif. Cells 2022; 11:cells11091581. [PMID: 35563887 PMCID: PMC9104279 DOI: 10.3390/cells11091581] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/04/2022] [Accepted: 05/05/2022] [Indexed: 12/12/2022] Open
Abstract
N-Myc downstream-regulated 1 (NDRG1) has inconsistent oncogenic functions in various cancers. We surveyed and characterized the role of NDRG1 in head and neck cancer (HNC). Cellular methods included spheroid cell formation, clonogenic survival, cell viability, and Matrigel invasion assays. Molecular techniques included transcriptomic profiling, RT-qPCR, immunoblotting, in vitro phosphorylation, immunofluorescent staining, and confocal microscopy. Prognostic significance was assessed by Kaplan–Meier analysis. NDRG1 participated in diverse oncogenic functions in HNC cells, mainly stress response and cell motility. Notably, NDRG1 contributed to spheroid cell growth, radio-chemoresistance, and upregulation of stemness-related markers (CD44 and Twist1). NDRG1 facilitated cell migration and invasion, and was associated with modulation of the extracellular matrix molecules (fibronectin, vimentin). Characterizing the 3R-motif in NDRG1 revealed its mechanism in the differential regulation of the phenotypes. The 3R-motif displayed minimal effect on cancer stemness but was crucial for cell motility. Phosphorylating the motif by GSK3b at serine residues led to its nuclear translocation to promote motility. Clinical analyses supported the oncogenic function of NDRG1, which was overexpressed in HNC and associated with poor prognosis. The data elucidate the multifaceted and intricate mechanisms of NDRG1 in HNC. NDRG1 may be a prognostic indicator or therapeutic target for refractory HNC.
Collapse
Affiliation(s)
- Guo-Rung You
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan;
| | - Joseph T. Chang
- Department of Radiation Oncology and Proton Therapy Center, Linkou Chang Gung Memorial Hospital and Chang Gung University, Taoyuan 33302, Taiwan;
- School of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Hsiao-Fan Li
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan;
| | - Ann-Joy Cheng
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan;
- Department of Radiation Oncology and Proton Therapy Center, Linkou Chang Gung Memorial Hospital and Chang Gung University, Taoyuan 33302, Taiwan;
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan;
- Correspondence: ; Tel.: +886-3-211-8800
| |
Collapse
|
8
|
Macsek P, Skoda J, Krchniakova M, Neradil J, Veselska R. Iron-Chelation Treatment by Novel Thiosemicarbazone Targets Major Signaling Pathways in Neuroblastoma. Int J Mol Sci 2021; 23:ijms23010376. [PMID: 35008802 PMCID: PMC8745636 DOI: 10.3390/ijms23010376] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 12/24/2021] [Accepted: 12/27/2021] [Indexed: 01/23/2023] Open
Abstract
Despite constant advances in the field of pediatric oncology, the survival rate of high-risk neuroblastoma patients remains poor. The molecular and genetic features of neuroblastoma, such as MYCN amplification and stemness status, have established themselves not only as potent prognostic and predictive factors but also as intriguing targets for personalized therapy. Novel thiosemicarbazones target both total level and activity of a number of proteins involved in some of the most important signaling pathways in neuroblastoma. In this study, we found that di-2-pyridylketone 4-cyclohexyl-4-methyl-3-thiosemicarbazone (DpC) potently decreases N-MYC in MYCN-amplified and c-MYC in MYCN-nonamplified neuroblastoma cell lines. Furthermore, DpC succeeded in downregulating total EGFR and phosphorylation of its most prominent tyrosine residues through the involvement of NDRG1, a positive prognostic marker in neuroblastoma, which was markedly upregulated after thiosemicarbazone treatment. These findings could provide useful knowledge for the treatment of MYC-driven neuroblastomas that are unresponsive to conventional therapies.
Collapse
Affiliation(s)
- Peter Macsek
- Laboratory of Tumor Biology, Department of Experimental Biology, Faculty of Science, Masaryk University, 601 77 Brno, Czech Republic; (P.M.); (J.S.); (M.K.); (R.V.)
- International Clinical Research Center, St. Anne’s University Hospital, 656 91 Brno, Czech Republic
| | - Jan Skoda
- Laboratory of Tumor Biology, Department of Experimental Biology, Faculty of Science, Masaryk University, 601 77 Brno, Czech Republic; (P.M.); (J.S.); (M.K.); (R.V.)
- International Clinical Research Center, St. Anne’s University Hospital, 656 91 Brno, Czech Republic
| | - Maria Krchniakova
- Laboratory of Tumor Biology, Department of Experimental Biology, Faculty of Science, Masaryk University, 601 77 Brno, Czech Republic; (P.M.); (J.S.); (M.K.); (R.V.)
| | - Jakub Neradil
- Laboratory of Tumor Biology, Department of Experimental Biology, Faculty of Science, Masaryk University, 601 77 Brno, Czech Republic; (P.M.); (J.S.); (M.K.); (R.V.)
- International Clinical Research Center, St. Anne’s University Hospital, 656 91 Brno, Czech Republic
- Department of Pediatric Oncology, Faculty of Medicine, University Hospital Brno, Masaryk University, 662 63 Brno, Czech Republic
- Correspondence: ; Tel.: +420-549-49-6003
| | - Renata Veselska
- Laboratory of Tumor Biology, Department of Experimental Biology, Faculty of Science, Masaryk University, 601 77 Brno, Czech Republic; (P.M.); (J.S.); (M.K.); (R.V.)
- International Clinical Research Center, St. Anne’s University Hospital, 656 91 Brno, Czech Republic
- Department of Pediatric Oncology, Faculty of Medicine, University Hospital Brno, Masaryk University, 662 63 Brno, Czech Republic
| |
Collapse
|
9
|
Farooqi AA, de la Roche M, Djamgoz MBA, Siddik ZH. Overview of the oncogenic signaling pathways in colorectal cancer: Mechanistic insights. Semin Cancer Biol 2019; 58:65-79. [PMID: 30633978 DOI: 10.1016/j.semcancer.2019.01.001] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 12/29/2018] [Accepted: 01/07/2019] [Indexed: 02/07/2023]
Abstract
Colorectal cancer is a multifaceted disease which is therapeutically challenging. Based on insights gleaned from almost a quarter century of research, it is obvious that deregulation of spatio-temporally controlled signaling pathways play instrumental role in development and progression of colorectal cancer. High-throughput technologies have helped to develop a sharper and broader understanding of the wide ranging signal transduction cascades which also contribute to development of drug resistance, loss of apoptosis and, ultimately, of metastasis. In this review, we have set the spotlight on role of JAK/STAT, TGF/SMAD, Notch, WNT/β-Catenin, SHH/GLI and p53 pathways in the development and progression of colorectal cancer. We have also highlighted recent reports on TRAIL-mediated pathways and molecularly distinct voltage-gated sodium channels in colorectal cancer.
Collapse
Affiliation(s)
- Ammad Ahmad Farooqi
- Institute of Biomedical and Genetic Engineering (IBGE), Islamabad, Pakistan.
| | - Marc de la Roche
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge, CB2 1GA, United Kingdom.
| | - Mustafa B A Djamgoz
- Imperial College London, Department of Life Sciences, Neuroscience Solutions to Cancer Research Group, South Kensington Campus, London, SW7 2AZ, United Kingdom; Cyprus International University, Biotechnology Research Centre, Haspolat, Mersin 10, North Cyprus, Turkey.
| | - Zahid H Siddik
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.
| |
Collapse
|
10
|
NDRG3 overexpression is associated with a poor prognosis in patients with hepatocellular carcinoma. Biosci Rep 2018; 38:BSR20180907. [PMID: 30413609 PMCID: PMC6435526 DOI: 10.1042/bsr20180907] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 10/24/2018] [Accepted: 11/06/2018] [Indexed: 01/03/2023] Open
Abstract
N-myc downstream-regulated gene 3 (NDRG3), an important member of the NDRG family, is involved in cell proliferation, differentiation, and other biological processes. The present study analyzed NDRG3 expression in hepatocellular carcinoma (HCC) and explored the relationship between expression of NDRG3 in HCC patients and their clinicopathological characteristics. We performed quantitative real-time reverse-transcription polymerase chain reaction (qRT-PCR) analysis and immunohistochemistry (IHC) analyses on HCC tissues to elucidate NDRG3 expression characteristics in HCC patients. Kaplan-Meier survival curve and Cox regression analyses were used to evaluate the prognoses of 102 patients with HCC. The results revealed that compared with non-tumor tissues, HCC tissues showed significantly higher NDRG3 expression. In addition, our analyses showed that NDRG3 expression was statistically associated with tumor size (P=0.048) and pathological grade (P=0.001). Survival analysis and Kaplan-Meier curves revealed that NDRG3 expression is an independent prognostic indicator for disease-free survival (P=0.002) and overall survival (P=0.005) in HCC patients. The data indicate that NDRG3 expression may be considered as a oncogenic biomarker and a novel predictor for HCC prognosis.
Collapse
|
11
|
Chen K, Liu XH, Wang FR, Liu HP, Huang ZP, Chen X. The prognostic value of decreased NDRG1 expression in patients with digestive system cancers: A meta-analysis. Medicine (Baltimore) 2018; 97:e12455. [PMID: 30313035 PMCID: PMC6203522 DOI: 10.1097/md.0000000000012455] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Digestive system cancers are recognized as associated with high morbidity and mortality. It is generally accepted that N-myc downstream-regulated gene 1 (NDRG1) is aberrantly overexpressed or downregulated in digestive system cancers, and its prognostic value remains controversial. Accordingly, we herein conducted a meta-analysis to explore whether NDRG1 expression is correlated with overall survival (OS) and clinicopathological characteristics of patients with digestive system cancers. METHODS We systematically searched PubMed, EMBASE, and Web of Science for eligible studies up to June 6, 2017. In all, 19 publications with 21 studies, were included. RESULTS The pooled results showed that low NDRG1 expression was significantly associated with worse OS in colorectal cancer (pooled HR = 1.67, 95% CI: 1.22-2.28, P < .001) and pancreatic cancer (pooled HR = 1.87, 95% CI: 1-3.5, P < .0001). Moreover, the relationships between low NDRG1 expression and higher OS ratio of patients with liver cancer (pooled HR = 0.44, 95% CI: 0.32-0.62, P = .009) and gallbladder cancer (pooled HR = 0.56, 95% CI: 0.23-1.38, P = .01) were observed. Nevertheless, no significant association was observed between low NDRG1 expression and OS in gastric cancer (pooled HR = 0.81, 95% CI: 0.45-1.43, P = .46) or esophageal cancer (pooled HR = 0.76, 95% CI: 0.26-2.24, P = .62). CONCLUSION The prognostic significance of NDRG1 expression varies according to cancer type in patients with DSCs. Considering that several limitations existed in this meta-analysis, more studies are required to further assess the prognostic value of NDRG1 expression in patients with DSCs and relevant mechanisms.
Collapse
Affiliation(s)
- Kang Chen
- Department of General Surgery
- Gansu Provincial Key Laboratory of Digestive System Tumors
| | - Xiao-Hong Liu
- Department of General Surgery
- Gansu Provincial Key Laboratory of Digestive System Tumors
| | - Fu-Rong Wang
- Department of General Surgery
- Gansu Provincial Key Laboratory of Digestive System Tumors
- Department of pathology, Lanzhou University Second Hospital, Lanzhou University Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Hai-Peng Liu
- Department of General Surgery
- Gansu Provincial Key Laboratory of Digestive System Tumors
| | - Ze-Ping Huang
- Department of General Surgery
- Gansu Provincial Key Laboratory of Digestive System Tumors
| | - Xiao Chen
- Department of General Surgery
- Gansu Provincial Key Laboratory of Digestive System Tumors
| |
Collapse
|
12
|
Sikaria D, Tu YN, Fisler DA, Mauro JA, Blanck G. Identification of specific feed-forward apoptosis mechanisms and associated higher survival rates for low grade glioma and lung squamous cell carcinoma. J Cancer Res Clin Oncol 2018; 144:459-468. [PMID: 29305708 DOI: 10.1007/s00432-017-2569-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 12/27/2017] [Indexed: 01/10/2023]
Abstract
The mechanisms of cell proliferation due to the overexpression of certain transcription factors (TFs) have been well documented in the cancer setting. However, many of these same TFs have pro-apoptotic effects, particularly when expressed or activated at high levels, a process referred to as feed-forward apoptosis (FFA). To determine whether cancers could be stratified on the basis of specific FFA signatures, RNASeq data representing samples from the cancer genome atlas were analyzed, revealing that high expression of the pro-proliferative TFs, MYC and YY1, is associated with a favorable outcome in low-grade glioma (LGG) and lung squamous cell carcinoma (LUSC), respectively. Analysis of the RNASeq data also led to the identification of specific apoptosis-effector genes whose expression levels correlate with increased survival rates, for both LGG and LUSC. Although FFA has been demonstrated as a general effect in cancer, in this report, for the first time, results identify specific TFs and their responsive effector genes that distinguish subsets of cancer samples undergoing more or less of a FFA process in a way that is associated with distinct patient survival rates.
Collapse
Affiliation(s)
- Dhiraj Sikaria
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, USA
| | - Yaping N Tu
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, USA
| | - Diana A Fisler
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, USA
| | - James A Mauro
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, USA
| | - George Blanck
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, USA. .,Immunology Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA. .,, 12901 Bruce B. Downs. Bd. MDC7, Tampa, FL, 33612, USA.
| |
Collapse
|