1
|
Mokhtari K, Peymani M, Rashidi M, Hushmandi K, Ghaedi K, Taheriazam A, Hashemi M. Colon cancer transcriptome. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2023; 180-181:49-82. [PMID: 37059270 DOI: 10.1016/j.pbiomolbio.2023.04.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/31/2023] [Accepted: 04/06/2023] [Indexed: 04/16/2023]
Abstract
Over the last four decades, methodological innovations have continuously changed transcriptome profiling. It is now feasible to sequence and quantify the transcriptional outputs of individual cells or thousands of samples using RNA sequencing (RNA-seq). These transcriptomes serve as a connection between cellular behaviors and their underlying molecular mechanisms, such as mutations. This relationship, in the context of cancer, provides a chance to unravel tumor complexity and heterogeneity and uncover novel biomarkers or treatment options. Since colon cancer is one of the most frequent malignancies, its prognosis and diagnosis seem to be critical. The transcriptome technology is developing for an earlier and more accurate diagnosis of cancer which can provide better protectivity and prognostic utility to medical teams and patients. A transcriptome is a whole set of expressed coding and non-coding RNAs in an individual or cell population. The cancer transcriptome includes RNA-based changes. The combined genome and transcriptome of a patient may provide a comprehensive picture of their cancer, and this information is beginning to affect treatment decision-making in real-time. A full assessment of the transcriptome of colon (colorectal) cancer has been assessed in this review paper based on risk factors such as age, obesity, gender, alcohol use, race, and also different stages of cancer, as well as non-coding RNAs like circRNAs, miRNAs, lncRNAs, and siRNAs. Similarly, they have been examined independently in the transcriptome study of colon cancer.
Collapse
Affiliation(s)
- Khatere Mokhtari
- Department of Modern Biology, ACECR Institute of Higher Education (Isfahan Branch), Isfahan, Iran
| | - Maryam Peymani
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran.
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, 4815733971, Iran; The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, 4815733971, Iran
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Kamran Ghaedi
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran.
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
2
|
Lin LL, Liu ZZ, Tian JZ, Zhang X, Zhang Y, Yang M, Zhong HC, Fang W, Wei RX, Hu C. Integrated Analysis of Nine Prognostic RNA-Binding Proteins in Soft Tissue Sarcoma. Front Oncol 2021; 11:633024. [PMID: 34026613 PMCID: PMC8138553 DOI: 10.3389/fonc.2021.633024] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 03/10/2021] [Indexed: 12/24/2022] Open
Abstract
RNA-binding proteins (RBPs) have been shown to be dysregulated in cancer transcription and translation, but few studies have investigated their mechanism of action in soft tissue sarcoma (STS). Here, The Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEx) databases were used to identify differentially expressed RBPs in STS and normal tissues. Through a series of biological information analyses, 329 differentially expressed RBPs were identified. Functional enrichment analysis showed that differentially expressed RBPs were mainly involved in RNA transport, RNA splicing, mRNA monitoring pathways, ribosome biogenesis and translation regulation. Through Cox regression analyses, 9 RBPs (BYSL, IGF2BP3, DNMT3B, TERT, CD3EAP, SRSF12, TLR7, TRIM21 and MEX3A) were all up-regulated in STS as prognosis-related genes, and a prognostic model was established. The model calculated a risk score based on the expression of 9 hub RBPs. The risk score could be used for risk stratification of patients and had a high prognostic value based on the receiver operating characteristic (ROC) curve. We also established a nomogram containing risk scores and 9 key RBPs to predict the 1-year, 3-year, and 5-year survival rates of patients in STS. Afterwards, methylation analysis showed significant changes in the methylation degree of BYSL, CD3EAP and MEX2A. Furthermore, the expression of 9 hub RBPs was closely related to immune infiltration rather than tumor purity. Based on the above studies, these findings may provide new insights into the pathogenesis of STS and will provide candidate biomarkers for the prognosis of STS.
Collapse
Affiliation(s)
- Lu-Lu Lin
- Department of Pathology and Pathophysiology, School of Basic Medicine, Wuhan University, Wuhan, China
| | - Zi-Zhen Liu
- The Third Clinical School, Hubei University of Medicine, Shiyan, China
| | - Jing-Zhuo Tian
- The Third Clinical School, Hubei University of Medicine, Shiyan, China
| | - Xiao Zhang
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yan Zhang
- The Third Clinical School, Hubei University of Medicine, Shiyan, China
| | - Min Yang
- Department of Spine and Orthopedic Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Hou-Cheng Zhong
- Department of Spine and Orthopedic Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Wei Fang
- Hubei University of Medicine, Shiyan, China
| | - Ren-Xiong Wei
- Department of Spine and Orthopedic Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Chao Hu
- Department of Spine and Orthopedic Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
3
|
Bayraktutan Z, Kiziltunc A, Bakan E, Alp HH. Determination of Endothelial Nitric Oxide Synthase Gene Polymorphism and Plasma Asymmetric Dimethyl Arginine Concentrations in Patients with Lung Cancer. Eurasian J Med 2020; 52:185-190. [PMID: 32612429 DOI: 10.5152/eurasianjmed.2020.19220] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 12/02/2019] [Indexed: 12/14/2022] Open
Abstract
Objective Genetic factors can contribute to both the occurrence and development of lung cancer. This study aimed to investigate endothelial nitric oxide synthase (eNOS) G894T and T-786C polymorphisms and plasma asymmetric dimethylarginine (ADMA) levels of lung cancer patients in comparison with healthy subjects. Materials and Methods A total of 200 subjects, 100 patients with lung cancer and 100 healthy volunteers were included in this study. To determine eNOS gene polymorphisms, we collected and analyzed blood samples with polymerase chain reaction (PCR). Plasma ADMA levels were evaluated by high-performance liquid chromatography (HPLC). Results The difference in gene polymorphisms between lung cancer patients and healthy controls were insignificant. However, lung cancer patients had statistically significantly higher plasma ADMA levels than healthy controls. The patients and control groups with CC polymorphisms and TT polymorphisms on eNOS T-786C and G894T gene regions had higher plasma ADMA levels. The CC polymorphisms and plasma ADMA levels were higher in patients with small-cell lung cancer compared to those in patients with non-small-cell lung cancer. Conclusion Although eNOS gene polymorphisms had no significant difference between lung cancer patients and healthy controls, plasma ADMA levels were higher in lung cancer patients compared to healthy controls. Our study suggests that CC genotypes and elevated plasma ADMA levels might be associated with small-cell lung cancer.
Collapse
Affiliation(s)
- Zafer Bayraktutan
- Department of Biochemistry, Ataturk University School of Medicine, Erzurum, Turkey
| | - Ahmet Kiziltunc
- Department of Biochemistry, Ataturk University School of Medicine, Erzurum, Turkey
| | - Ebubekir Bakan
- Department of Biochemistry, Ataturk University School of Medicine, Erzurum, Turkey
| | - Hamit Hakan Alp
- Department of Biochemistry, Yuzuncu Yil University School of Medicine, Van, Turkey
| |
Collapse
|