1
|
Aydin AA, Yuceer RO, Yildirim S, Unlu A, Kayikcioglu E, Kocer M. The Prognostic Significance of CD47, CD68, and CD163 Expression Levels and Their Relationship with MLR and MAR in Locally Advanced and Oligometastatic Nasopharyngeal Carcinoma. Diagnostics (Basel) 2024; 14:2648. [PMID: 39682556 DOI: 10.3390/diagnostics14232648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 11/20/2024] [Accepted: 11/22/2024] [Indexed: 12/18/2024] Open
Abstract
BACKGROUND This study aimed to assess the prognostic and predictive implications of CD47, CD68, and CD163, biomarkers of tumor-associated macrophages (TAMs), on the treatment efficacy and clinical outcomes of nasopharyngeal carcinoma (NPC). Additionally, the prognostic value of TAM-related indices, such as the monocyte-to-lymphocyte ratio (MLR) and monocyte-to-albumin ratio (MAR), was evaluated. METHODS A retrospective cohort of 54 patients with locally advanced or oligometastatic NPC treated with concurrent chemoradiotherapy (CCRT), with or without induction chemotherapy, was analyzed. Patients were categorized based on the cumulative expression scores for CD47, CD68, and CD163: negative/low (0-3 points) and high (4-6 points). MLR and MAR were also stratified as low MLR (<0.545) vs. high MLR (≥0.545) and low MAR (<16.145) vs. high MAR (≥16.145). The primary endpoint was overall survival (OS). RESULTS High CD47, CD68, and CD163 expression levels were correlated with advanced clinical stage, reduced CCRT response, and elevated MLR and MAR. These TAM biomarkers were linearly correlated with each other and with established risk factors such as advanced age and elevated EBV-DNA levels. Kaplan-Meier analysis revealed that patients with low TAM expression had significantly longer OS and progression-free survival (PFS) than those with high TAM expression. Multivariate analysis identified high CD163, MLR, and MAR levels as independent adverse prognostic factors for OS. Elevated MLR is an independent risk factor for both OS and PFS in patients with NPC. CONCLUSIONS CD47, CD68, and CD163 are significant prognostic markers in NPC, with higher levels being associated with poorer OS and PFS. Elevated MLR and MAR values also predict worse outcomes, underscoring their value as prognostic tools. CD163 and MLR are particularly strong predictors, highlighting the crucial role of TAMs in NPC management and suggesting that CD163 is a potential therapeutic target within the immune checkpoint pathway.
Collapse
Affiliation(s)
- Asim Armagan Aydin
- Department of Clinical Oncology, Health Sciences University Antalya Education and Research Hospital, Antalya 07100, Turkey
| | - Ramazan Oguz Yuceer
- Department of Pathology, Cumhuriyet University School of Medicine, Sivas 58140, Turkey
| | - Senay Yildirim
- Department of Pathology, Health Sciences University Antalya Education and Research Hospital, Antalya 07100, Turkey
| | - Ahmet Unlu
- Department of Clinical Oncology, Health Sciences University Antalya Education and Research Hospital, Antalya 07100, Turkey
| | - Erkan Kayikcioglu
- Department of Clinical Oncology, Istinye University School of Medicine Liv Hospital, Istanbul 34517, Turkey
| | - Murat Kocer
- Department of Clinical Oncology, Health Sciences University Antalya Education and Research Hospital, Antalya 07100, Turkey
| |
Collapse
|
2
|
Parikh R, Parikh S, Berzin D, Vaknine H, Ovadia S, Likonen D, Greenberger S, Scope A, Elgavish S, Nevo Y, Plaschkes I, Nizri E, Kobiler O, Maliah A, Zaremba L, Mohan V, Sagi I, Ashery-Padan R, Carmi Y, Luxenburg C, Hoheisel JD, Khaled M, Levesque MP, Levy C. Recycled melanoma-secreted melanosomes regulate tumor-associated macrophage diversification. EMBO J 2024; 43:3553-3586. [PMID: 38719996 PMCID: PMC11377571 DOI: 10.1038/s44318-024-00103-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 02/06/2024] [Accepted: 03/26/2024] [Indexed: 09/07/2024] Open
Abstract
Extracellular vesicles (EVs) are important mediators of communication between cells. Here, we reveal a new mode of intercellular communication by melanosomes, large EVs secreted by melanocytes for melanin transport. Unlike small EVs, which are disintegrated within the receiver cell, melanosomes stay intact within them, gain a unique protein signature, and can then be further transferred to another cell as "second-hand" EVs. We show that melanoma-secreted melanosomes passaged through epidermal keratinocytes or dermal fibroblasts can be further engulfed by resident macrophages. This process leads to macrophage polarization into pro-tumor or pro-immune cell infiltration phenotypes. Melanosomes that are transferred through fibroblasts can carry AKT1, which induces VEGF secretion from macrophages in an mTOR-dependent manner, promoting angiogenesis and metastasis in vivo. In melanoma patients, macrophages that are co-localized with AKT1 are correlated with disease aggressiveness, and immunotherapy non-responders are enriched in macrophages containing melanosome markers. Our findings suggest that interactions mediated by second-hand extracellular vesicles contribute to the formation of the metastatic niche, and that blocking the melanosome cues of macrophage diversification could be helpful in halting melanoma progression.
Collapse
Affiliation(s)
- Roma Parikh
- Department of Human Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Shivang Parikh
- Department of Human Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel
- The Ragon Institute of Mass General, Massachusetts Institute of Technology (MIT), and Harvard, MA 02139, Cambridge, USA
| | - Daniella Berzin
- Institute of Pathology, Sheba Medical Center, Tel Hashomer, 52621, Israel
| | - Hananya Vaknine
- Institute of Pathology, E. Wolfson Medical Center, Holon, 58100, Israel
| | - Shai Ovadia
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine and Sagol School of Neurosciences, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Daniela Likonen
- Institute of Pathology, Sheba Medical Center, Tel Hashomer, 52621, Israel
| | | | - Alon Scope
- The Kittner Skin Cancer Screening and Research Institute, Sheba Medical Center and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Sharona Elgavish
- Info-CORE, Bioinformatics Unit of the I-CORE at the Hebrew University of Jerusalem and Hadassah Medical Center, Jerusalem, 91120, Israel
| | - Yuval Nevo
- Info-CORE, Bioinformatics Unit of the I-CORE at the Hebrew University of Jerusalem and Hadassah Medical Center, Jerusalem, 91120, Israel
| | - Inbar Plaschkes
- Info-CORE, Bioinformatics Unit of the I-CORE at the Hebrew University of Jerusalem and Hadassah Medical Center, Jerusalem, 91120, Israel
| | - Eran Nizri
- Department of Dermatology, Tel Aviv Sourasky (Ichilov) Medical Center, Tel Aviv, 6423906, Israel
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Oren Kobiler
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv Universitygrid.12136.37, Tel Aviv, Israel
| | - Avishai Maliah
- Department of Human Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Laureen Zaremba
- Division of Functional Genome Analysis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Vishnu Mohan
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Irit Sagi
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Ruth Ashery-Padan
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine and Sagol School of Neurosciences, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Yaron Carmi
- Department of Pathology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Chen Luxenburg
- Cell and Developmental Biology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Jörg D Hoheisel
- Division of Functional Genome Analysis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Mehdi Khaled
- INSERM 1279, Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - Mitchell P Levesque
- Department of Dermatology, University of Zurich, University Hospital Zurich, Wagistrasse 18, CH-8952, Schlieren, Switzerland
| | - Carmit Levy
- Department of Human Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel.
| |
Collapse
|
3
|
Feng T, Jie M, Deng K, Yang J, Jiang H. Targeted plasma proteomic analysis uncovers a high-performance biomarker panel for early diagnosis of gastric cancer. Clin Chim Acta 2024; 558:119675. [PMID: 38631604 DOI: 10.1016/j.cca.2024.119675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/30/2024] [Accepted: 04/14/2024] [Indexed: 04/19/2024]
Abstract
BACKGROUND Gastric cancer (GC) is characterized by high morbidity, high mortality and low early diagnosis rate. Early diagnosis plays a crucial role in radically treating GC. The aim of this study was to identify plasma biomarkers for GC and early GC diagnosis. METHODS We quantified 369 protein levels with plasma samples from discovery cohort (n = 88) and validation cohort (n = 50) via high-throughput proximity extension assay (PEA) utilizing the Olink-Explore-384-Cardiometabolic panel. The multi-protein signatures were derived from LASSO and Ridge regression models. RESULTS In the discovery cohort, 13 proteins (GDF15, ITIH3, BOC, DPP7, EGFR, AMY2A, CCDC80, CD163, GPNMB, LTBP2, CTSZ, CCL18 and NECTIN2) were identified to distinguish GC (Stage I-IV) and early GC (HGIN-I) groups from control group with AUC of 0.994 and AUC of 0.998, severally. The validation cohort yielded AUC of 0.930 and AUC of 0.818 for GC and early GC, respectively. CONCLUSIONS This study identified a multi-protein signature with the potential to benefit clinical GC diagnosis, especially for Asian and early GC patients, which may contribute to the development of a less-invasive, convenient, and efficient early screening tool, promoting early diagnosis and treatment of GC and ultimately improving patient survival.
Collapse
Affiliation(s)
- Tong Feng
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Minwen Jie
- Laboratory for Aging and Cancer Research, Frontiers Science Center Disease-related Molecular Network, State Key Laboratory of Respiratory Health and Multimorbidity and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Kai Deng
- Department of Gastroenterology & Hepatology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Jinlin Yang
- Department of Gastroenterology & Hepatology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Hao Jiang
- Laboratory for Aging and Cancer Research, Frontiers Science Center Disease-related Molecular Network, State Key Laboratory of Respiratory Health and Multimorbidity and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
| |
Collapse
|
4
|
Kadariya Y, Sementino E, Ruan M, Cheung M, Hadikhani P, Osmanbeyoglu HU, Klein-Szanto AJ, Cai K, Testa JR. Low Exposures to Amphibole or Serpentine Asbestos in Germline Bap1-mutant Mice Induce Mesothelioma Characterized by an Immunosuppressive Tumor Microenvironment. CANCER RESEARCH COMMUNICATIONS 2024; 4:1004-1015. [PMID: 38592450 PMCID: PMC11000687 DOI: 10.1158/2767-9764.crc-23-0423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 01/31/2024] [Accepted: 03/06/2024] [Indexed: 04/10/2024]
Abstract
Asbestos and BAP1 germline mutations are risk factors for malignant mesothelioma (MM). While it is well accepted that amphibole asbestos is carcinogenic, the role of serpentine (chrysotile) asbestos in MM has been debated. To address this controversy, we assessed whether minimal exposure to chrysotile could significantly increase the incidence and rate of MM onset in germline Bap1-mutant mice. With either crocidolite or chrysotile, and at each dose tested, MMs occurred at a significantly higher rate and earlier onset time in Bap1-mutant mice than in wild-type littermates. To explore the role of gene-environment interactions in MMs from Bap1-mutant mice, we investigated proinflammatory and protumorigenic factors and the tumor immune microenvironment (TIME). IHC and immunofluorescence staining showed an increased number of macrophages in granulomatous lesions and MMs. The relative number of CD163-positive (CD163+) M2 macrophages in chrysotile-induced MMs was consistently greater than in crocidolite-induced MMs, suggesting that chrysotile induces a more profound immunosuppressive response that creates favorable conditions for evading immune surveillance. MMs from Bap1-mutant mice showed upregulation of CD39/CD73-adenosine and C-C motif chemokine ligand 2 (Ccl2)/C-C motif chemokine receptor 2 (Ccr2) pathways, which together with upregulation of IL6 and IL10, promoted an immunosuppressive TIME, partly by attracting M2 macrophages. Interrogation of published human MM RNA sequencing (RNA-seq) data implicated these same immunosuppressive pathways and connections with CD163+ M2 macrophages. These findings indicate that increased M2 macrophages, along with upregulated CD39/CD73-adenosine and Ccl2/Ccr2 pathways, contribute to an immunosuppressive TIME in chrysotile-induced MMs of Bap1-mutant mice, suggesting that immunotherapeutic strategies targeting protumorigenic immune pathways could be beneficial in human BAP1 mutation carriers who develop MM. SIGNIFICANCE We show that germline Bap1-mutant mice have enhanced susceptibility to MM upon minimal exposure to chrysotile asbestos, not only amphibole fibers. Chrysotile induced a more profound immune tumor response than crocidolite in Bap1-mutant mice by upregulating CD39/CD73-adenosine and Ccl2/Ccr2 pathways and recruiting more M2 macrophages, which together contributed to an immunosuppressive tumor microenvironment. Interrogation of human MM RNA-seq data revealed interconnected immunosuppressive pathways consistent with our mouse findings.
Collapse
Affiliation(s)
- Yuwaraj Kadariya
- Cancer Prevention and Control Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Eleonora Sementino
- Cancer Prevention and Control Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Maggie Ruan
- Cancer Prevention and Control Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Mitchell Cheung
- Cancer Prevention and Control Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Parham Hadikhani
- Department of Biomedical Informatics, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- UPMC Hillman Cancer Center, Cancer Biology Program, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Hatice U. Osmanbeyoglu
- Department of Biomedical Informatics, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- UPMC Hillman Cancer Center, Cancer Biology Program, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | | | - Kathy Cai
- Histopathology Facility, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Joseph R. Testa
- Cancer Prevention and Control Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| |
Collapse
|
5
|
Lee J, Mohammad N, Lu Y, Oshins R, Aranyos A, Brantly M. Alpha-defensins inhibit ERK/STAT3 signaling during monocyte-macrophage differentiation and impede macrophage function. Respir Res 2023; 24:309. [PMID: 38082274 PMCID: PMC10714504 DOI: 10.1186/s12931-023-02605-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 11/13/2023] [Indexed: 12/18/2023] Open
Abstract
Alpha-1-antitrypsin deficiency (AATD) is a genetic disorder associated with a 5-tenfold decrease in lung levels of alpha-1-antitrypsin (AAT) and an increased risk for obstructive lung disease. α-defensins are cationic broad-spectrum cytotoxic and pro-inflammatory peptides found in the azurophilic granules of neutrophils. The concentration of α-defensins is less than 30 nM in the bronchoalveolar lavage fluid of healthy controls but is up to 6 μM in AATD individuals with significant lung function impairment. Alveolar macrophages are generally classified into pro-inflammatory (M1) or anti-inflammatory (M2) subsets that play distinct roles in the initiation and resolution of inflammation. Therefore, monocyte-macrophage differentiation should be tightly controlled to maintain lung integrity. In this study, we determined the effect of α-defensins on monocyte-macrophage differentiation and identified the molecular mechanism of this effect. The results of this study demonstrate that 2.5 μM of α-defensins inhibit the phosphorylation of ERK1/2 and STAT3 and suppress the expression of M2 macrophage markers, CD163 and CD206. In addition, a scratch assay shows that the high concentration of α-defensins inhibits cell movement by ~ 50%, and the phagocytosis assay using flow cytometry shows that α-defensins significantly reduce the bacterial phagocytosis rate of monocyte-derived macrophages (MDMs). To examine whether exogenous AAT is able to alleviate the inhibitory effect of α-defensins on macrophage function, we incubated MDMs with AAT prior to α-defensin treatment and demonstrate that AAT improves the migratory ability and phagocytic ability of MDMs compared with MDMs incubated only with α-defensins. Taken together, this study suggests that a high concentration of α-defensins inhibits the activation of ERK/STAT3 signaling, negatively regulates the expression of M2 macrophage markers, and impairs innate immune function of macrophages.
Collapse
Affiliation(s)
- Jungnam Lee
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Florida, Gainesville, FL, USA
| | - Naweed Mohammad
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Florida, Gainesville, FL, USA
| | - Yuanqing Lu
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Florida, Gainesville, FL, USA
| | - Regina Oshins
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Florida, Gainesville, FL, USA
| | - Alek Aranyos
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Florida, Gainesville, FL, USA
| | - Mark Brantly
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
6
|
Huang FF, Cui WH, Ma LY, Chen Q, Liu Y. Crosstalk of nervous and immune systems in pancreatic cancer. Front Cell Dev Biol 2023; 11:1309738. [PMID: 38099290 PMCID: PMC10720593 DOI: 10.3389/fcell.2023.1309738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 11/20/2023] [Indexed: 12/17/2023] Open
Abstract
Pancreatic cancer is a highly malignant tumor known for its extremely low survival rate. The combination of genetic disorders within pancreatic cells and the tumor microenvironment contributes to the emergence and progression of this devastating disease. Extensive research has shed light on the nature of the microenvironmental cells surrounding the pancreatic cancer, including peripheral nerves and immune cells. Peripheral nerves release neuropeptides that directly target pancreatic cancer cells in a paracrine manner, while immune cells play a crucial role in eliminating cancer cells that have not evaded the immune response. Recent studies have revealed the intricate interplay between the nervous and immune systems in homeostatic condition as well as in cancer development. In this review, we aim to summarize the function of nerves in pancreatic cancer, emphasizing the significance to investigate the neural-immune crosstalk during the advancement of this malignant cancer.
Collapse
Affiliation(s)
- Fei-Fei Huang
- The Innovation Centre of Ministry of Education for Development and Diseases, School of Medicine, South China University of Technology, Guangzhou, China
| | - Wen-Hui Cui
- The Innovation Centre of Ministry of Education for Development and Diseases, School of Medicine, South China University of Technology, Guangzhou, China
| | - Lan-Yue Ma
- Center for Cell Lineage and Development, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qi Chen
- Center for Cell Lineage and Development, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou, China
| | - Yang Liu
- The Innovation Centre of Ministry of Education for Development and Diseases, School of Medicine, South China University of Technology, Guangzhou, China
| |
Collapse
|
7
|
Dong Y, Chen J, Chen Y, Liu S. Targeting the STAT3 oncogenic pathway: Cancer immunotherapy and drug repurposing. Biomed Pharmacother 2023; 167:115513. [PMID: 37741251 DOI: 10.1016/j.biopha.2023.115513] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/09/2023] [Accepted: 09/12/2023] [Indexed: 09/25/2023] Open
Abstract
Immune effector cells in the microenvironment tend to be depleted or remodeled, unable to perform normal functions, and even promote the malignant characterization of tumors, resulting in the formation of immunosuppressive microenvironments. The strategy of reversing immunosuppressive microenvironment has been widely used to enhance the tumor immunotherapy effect. Signal transducer and activator of transcription 3 (STAT3) was found to be a crucial regulator of immunosuppressive microenvironment formation and activation as well as a factor, stimulating tumor cell proliferation, survival, invasiveness and metastasis. Therefore, regulating the immune microenvironment by targeting the STAT3 oncogenic pathway might be a new cancer therapy strategy. This review discusses the pleiotropic effects of STAT3 on immune cell populations that are critical for tumorigenesis, and introduces the novel strategies targeting STAT3 oncogenic pathway for cancer immunotherapy. Lastly, we summarize the conventional drugs used in new STAT3-targeting anti-tumor applications.
Collapse
Affiliation(s)
- Yushan Dong
- Graduate School of Heilongjiang University of Chinese Medicine, No. 24, Heping Road, Xiangfang District, Harbin, Heilongjiang, China
| | - Jingyu Chen
- Department of Chinese Medicine Internal Medicine, Xiyuan Hospital, China Academy of Chinese Medical Sciences, No. 1 Xiyuan Playground, Haidian District, Beijing, China
| | - Yuhan Chen
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Songjiang Liu
- The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, No.26, Heping Road, Xiangfang District, Harbin, Heilongjiang Province, China.
| |
Collapse
|
8
|
Song J, Xiao T, Li M, Jia Q. Tumor-associated macrophages: Potential therapeutic targets and diagnostic markers in cancer. Pathol Res Pract 2023; 249:154739. [PMID: 37544129 DOI: 10.1016/j.prp.2023.154739] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/03/2023] [Accepted: 08/03/2023] [Indexed: 08/08/2023]
Abstract
Macrophages are plastic and functionally diverse, present in all tissues, and play a key role in organisms from development, homeostasis and repair, to immune responses to pathogens. They are central to many disease states and have emerged as important therapeutic targets for many diseases. Tumor-associated macrophages (TAMs) are the most abundant immune cells in the tumor microenvironment (TME) and are key factors influencing cancer progression, metastasis and tumor recurrence. TAMs can be derived from different sources and exert different pro- or anti-tumor effects based on the type, stage and immune composition of the tumor. TAMs are highly heterogeneous and diverse, and have multiple functional phenotypes. There is still a great deal of controversy regarding the relationship between TAMs and prognosis of cancer patients. In this review, we summarize the characteristics of common markers of TAMs as well as explore the prognostic role of TAMs in different cancers including lung, breast, gastric, colorectal, esophageal and ovarian cancers.
Collapse
Affiliation(s)
- Junyang Song
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital and School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Tian Xiao
- Department of Physiology and Pathophysiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Mingyang Li
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital and School of Basic Medicine, Fourth Military Medical University, Xi'an, China.
| | - Qingge Jia
- Department of Reproductive Medicine, Xi'an International Medical Center Hospital, Northwest University, Xi'an, China.
| |
Collapse
|
9
|
Vo TTT, Kong G, Kim C, Juang U, Gwon S, Jung W, Nguyen H, Kim SH, Park J. Exploring scavenger receptor class F member 2 and the importance of scavenger receptor family in prediagnostic diseases. Toxicol Res 2023; 39:341-353. [PMID: 37398563 PMCID: PMC10313632 DOI: 10.1007/s43188-023-00176-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 03/09/2023] [Accepted: 03/14/2023] [Indexed: 07/04/2023] Open
Abstract
Scavenger Receptor Class F Member 2 (SCARF2), also known as the Type F Scavenger Receptor Family gene, encodes for Scavenger Receptor Expressed by Endothelial Cells 2 (SREC-II). This protein is a crucial component of the scavenger receptor family and is vital in protecting mammals from infectious diseases. Although research on SCARF2 is limited, mutations in this protein have been shown to cause skeletal abnormalities in both SCARF2-deficient mice and individuals with Van den Ende-Gupta syndrome (VDEGS), which is also associated with SCARF2 mutations. In contrast, other scavenger receptors have demonstrated versatile responses and have been found to aid in pathogen elimination, lipid transportation, intracellular cargo transportation, and work in tandem with various coreceptors. This review will concentrate on recent progress in comprehending SCARF2 and the functions played by members of the Scavenger Receptor Family in pre-diagnostic diseases.
Collapse
Affiliation(s)
- Thuy-Trang T. Vo
- Department of Pharmacology, College of Medicine, Chungnam National University, 266 Munhwa-ro, Jung-gu, Daejeon, 35015 Republic of Korea
- Department of Medical Science, Metabolic Syndrome and Cell Signaling Laboratory, Institute for Cancer Research, College of Medicine, Chungnam National University, Daejeon, 35015 Republic of Korea
| | - Gyeyeong Kong
- Department of Pharmacology, College of Medicine, Chungnam National University, 266 Munhwa-ro, Jung-gu, Daejeon, 35015 Republic of Korea
- Department of Medical Science, Metabolic Syndrome and Cell Signaling Laboratory, Institute for Cancer Research, College of Medicine, Chungnam National University, Daejeon, 35015 Republic of Korea
| | - Chaeyeong Kim
- Department of Pharmacology, College of Medicine, Chungnam National University, 266 Munhwa-ro, Jung-gu, Daejeon, 35015 Republic of Korea
- Department of Medical Science, Metabolic Syndrome and Cell Signaling Laboratory, Institute for Cancer Research, College of Medicine, Chungnam National University, Daejeon, 35015 Republic of Korea
| | - Uijin Juang
- Department of Pharmacology, College of Medicine, Chungnam National University, 266 Munhwa-ro, Jung-gu, Daejeon, 35015 Republic of Korea
- Department of Medical Science, Metabolic Syndrome and Cell Signaling Laboratory, Institute for Cancer Research, College of Medicine, Chungnam National University, Daejeon, 35015 Republic of Korea
| | - Suhwan Gwon
- Department of Pharmacology, College of Medicine, Chungnam National University, 266 Munhwa-ro, Jung-gu, Daejeon, 35015 Republic of Korea
- Department of Medical Science, Metabolic Syndrome and Cell Signaling Laboratory, Institute for Cancer Research, College of Medicine, Chungnam National University, Daejeon, 35015 Republic of Korea
| | - Woohyeong Jung
- Department of Pharmacology, College of Medicine, Chungnam National University, 266 Munhwa-ro, Jung-gu, Daejeon, 35015 Republic of Korea
- Department of Medical Science, Metabolic Syndrome and Cell Signaling Laboratory, Institute for Cancer Research, College of Medicine, Chungnam National University, Daejeon, 35015 Republic of Korea
| | - Huonggiang Nguyen
- Department of Pharmacology, College of Medicine, Chungnam National University, 266 Munhwa-ro, Jung-gu, Daejeon, 35015 Republic of Korea
- Department of Medical Science, Metabolic Syndrome and Cell Signaling Laboratory, Institute for Cancer Research, College of Medicine, Chungnam National University, Daejeon, 35015 Republic of Korea
| | - Seon-Hwan Kim
- Department of Neurosurgery, Institute for Cancer Research, College of Medicine, Chungnam National University, Daejeon, 35015 Republic of Korea
| | - Jongsun Park
- Department of Pharmacology, College of Medicine, Chungnam National University, 266 Munhwa-ro, Jung-gu, Daejeon, 35015 Republic of Korea
- Department of Medical Science, Metabolic Syndrome and Cell Signaling Laboratory, Institute for Cancer Research, College of Medicine, Chungnam National University, Daejeon, 35015 Republic of Korea
| |
Collapse
|
10
|
Li X, Jiang W, Dong S, Li W, Zhu W, Zhou W. STAT3 Inhibitors: A Novel Insight for Anticancer Therapy of Pancreatic Cancer. Biomolecules 2022; 12:1450. [PMID: 36291659 PMCID: PMC9599947 DOI: 10.3390/biom12101450] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/10/2022] [Accepted: 09/30/2022] [Indexed: 11/29/2022] Open
Abstract
The signal transducer and activator of transcription (STAT) is a family of intracellular cytoplasmic transcription factors involved in many biological functions in mammalian signal transduction. Among them, STAT3 is involved in cell proliferation, differentiation, apoptosis, and inflammatory responses. Despite the advances in the treatment of pancreatic cancer in the past decade, the prognosis for patients with pancreatic cancer remains poor. STAT3 has been shown to play a pro-cancer role in a variety of cancers, and inhibitors of STAT3 are used in pre-clinical and clinical studies. We reviewed the relationship between STAT3 and pancreatic cancer and the latest results on the use of STAT3 inhibitors in pancreatic cancer, with the aim of providing insights and ideas around STAT3 inhibitors for a new generation of chemotherapeutic modalities for pancreatic cancer.
Collapse
Affiliation(s)
- Xin Li
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China
| | - Wenkai Jiang
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China
| | - Shi Dong
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China
| | - Wancheng Li
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China
| | - Weixiong Zhu
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China
| | - Wence Zhou
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China
- Department of General Surgery, The Second Hospital of Lanzhou University, Lanzhou 730030, China
| |
Collapse
|
11
|
Chang SJ, Chao CT, Kwan AL, Chai CY. The Diagnostic Significance of CXCL13 in M2 Tumor Immune Microenvironment of Human Astrocytoma. Pathol Oncol Res 2022; 28:1610230. [PMID: 35570844 PMCID: PMC9095826 DOI: 10.3389/pore.2022.1610230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 03/23/2022] [Indexed: 11/13/2022]
Abstract
Background: CXCL13 may act as a mediator of tumor-associated macrophage immunity during malignant progression. Objective: The present study clarifies the clinicopathological significances of CXCL13 and its corresponding trend with M2 macrophage in human astrocytoma. Methods: The predictive potential of CXCL13 was performed using 695 glioma samples derived from TCGA lower-grade glioma and glioblastoma (GBMLGG) dataset. CXCL13 and M2 biomarker CD163 were observed by immunohistochemistry in 112 astrocytoma tissues. Results: An in-depth analysis showed that CXCL13 expression was related to the poor prognosis of glioma patients (p = 0.0002) derive from TCGA analysis. High level of CXCL13 was detected in 43 (38.39%) astrocytoma and CXCL13/CD163 coexpression was expressed in 33 (29.46%) cases. The immunoreactivities of CXCL13 and CXCL13/CD163 were found in the malignant lesions, which were both significantly associated with grade, patient survival, and IDH1 mutation. Single CXCL13 and CXCL13/CD163 coexpression predicted poor overall survival in astrocytoma (p = 0.0039 and p = 0.0002, respectively). Multivariate Cox regression analyses manifested CXCL13/CD163 phenotype was a significant independent prognostic indicator of patient outcome in astrocytoma (CXCL13, p = 0.0642; CXCL13/CD163, p = 0.0368). Conclusion: CXCL13 overexpression is strongly linked to CD163+ M2 infiltration in malignant astrocytoma. CXCL13/CD163 coexpression would imply M2c-related aggressive characteristics existing in astrocytoma progression could also provide predictive trends of patient outcomes.
Collapse
Affiliation(s)
- Shu-Jyuan Chang
- Department of Pathology, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Pathology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Chia-Te Chao
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Aij-Lie Kwan
- Department of Neurosurgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Department of Surgery, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chee-Yin Chai
- Department of Pathology, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Pathology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan
| |
Collapse
|
12
|
Guillot J, Dominici C, Lucchesi A, Nguyen HTT, Puget A, Hocine M, Rangel-Sosa MM, Simic M, Nigri J, Guillaumond F, Bigonnet M, Dusetti N, Perrot J, Lopez J, Etzerodt A, Lawrence T, Pudlo P, Hubert F, Scoazec JY, van de Pavert SA, Tomasini R, Chauvet S, Mann F. Sympathetic axonal sprouting induces changes in macrophage populations and protects against pancreatic cancer. Nat Commun 2022; 13:1985. [PMID: 35418199 PMCID: PMC9007988 DOI: 10.1038/s41467-022-29659-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 03/23/2022] [Indexed: 01/06/2023] Open
Abstract
Neuronal nerve processes in the tumor microenvironment were highlighted recently. However, the origin of intra-tumoral nerves remains poorly known, in part because of technical difficulties in tracing nerve fibers via conventional histological preparations. Here, we employ three-dimensional (3D) imaging of cleared tissues for a comprehensive analysis of sympathetic innervation in a murine model of pancreatic ductal adenocarcinoma (PDAC). Our results support two independent, but coexisting, mechanisms: passive engulfment of pre-existing sympathetic nerves within tumors plus an active, localized sprouting of axon terminals into non-neoplastic lesions and tumor periphery. Ablation of the innervating sympathetic nerves increases tumor growth and spread. This effect is explained by the observation that sympathectomy increases intratumoral CD163+ macrophage numbers, which contribute to the worse outcome. Altogether, our findings provide insights into the mechanisms by which the sympathetic nervous system exerts cancer-protective properties in a mouse model of PDAC.
Collapse
Affiliation(s)
| | | | | | - Huyen Thi Trang Nguyen
- Aix Marseille Univ, CNRS, IBDM, Marseille, France
- University of Science and Technology of Hanoi (USTH), VAST, 18 Hoang Quoc Viet, Hanoi, Vietnam
| | | | | | | | - Milesa Simic
- Aix Marseille Univ, CNRS, INSERM, CIML, Marseille, France
| | - Jérémy Nigri
- Aix Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Marseille, France
| | - Fabienne Guillaumond
- Aix Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Marseille, France
| | - Martin Bigonnet
- Aix Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Marseille, France
| | - Nelson Dusetti
- Aix Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Marseille, France
| | - Jimmy Perrot
- Department of Anatomopathology, Lyon Sud University Hospital, Hospices Civils de Lyon, Lyon, France
| | - Jonathan Lopez
- Department of Biochemistry and Molecular Biology, Lyon Sud University Hospital, Hospices Civils de Lyon, Lyon, France
- Faculty of Medicine Lyon-Est, Lyon 1 University, Université de Lyon, Lyon, France
- Cancer Research Center of Lyon, INSERM U1052, CNRS UMR5286, Lyon, France
| | - Anders Etzerodt
- Aix Marseille Univ, CNRS, INSERM, CIML, Marseille, France
- Department of Biomedecine, Aarhus University, Aarhus, Denmark
| | - Toby Lawrence
- Aix Marseille Univ, CNRS, INSERM, CIML, Marseille, France
| | - Pierre Pudlo
- Aix Marseille Univ, CNRS, Centrale Marseille, I2M, Marseille, France
| | - Florence Hubert
- Aix Marseille Univ, CNRS, Centrale Marseille, I2M, Marseille, France
| | - Jean-Yves Scoazec
- Department of Pathology, Gustave Roussy Cancer Campus, Villejuif, France
| | | | - Richard Tomasini
- Aix Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Marseille, France
| | | | - Fanny Mann
- Aix Marseille Univ, CNRS, IBDM, Marseille, France.
| |
Collapse
|
13
|
Xia S, Ji L, Tang L, Zhang L, Zhang X, Tang Q, Feng Z, Lu L. Proteasome Subunit Alpha Type 7 Promotes Proliferation and Metastasis of Gastric Cancer Through MAPK Signaling Pathway. Dig Dis Sci 2022; 67:880-891. [PMID: 33721161 DOI: 10.1007/s10620-021-06903-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 02/12/2021] [Indexed: 12/09/2022]
Abstract
BACKGROUND Proteasome subunit alpha type 7 (PSMA7) shows a carcinogenic effect on various human malignancies, but its role and regulatory mechanism in gastric carcinoma (GC) remain unclear. AIMS This study aimed to explore the role and mechanism of PSMA7 in GC. METHODS In this study, PSMA7 expressions in GC cells and tissues were detected, and relationships between PSMA7 and clinicopathological features were explored. Then, PSMA7 levels in human GC cells were intervened, and changes in cell biological behavior were observed in vitro and vivo. Key proteins and downstream factors of MAPK signaling pathway were detected after PSMA7 intervention. RESULTS PSMA7 was upregulated in GC tissues and cell lines. PSMA7 overexpression was significantly associated with poor pTNM, cTNM stage, and high HP infection. PSMA7 can promote proliferation, invasion, and metastasis of GC cells in vitro and vivo. Furthermore, PSMA7 expression affected the phosphorylation level of JNK, P38, ERK and the expressions of their downstream factors Ap-1, c-myc, P53. CONCLUSION PSMA7 can promote GC proliferation, invasion, and metastasis through MAPK signaling pathway in GC cells.
Collapse
Affiliation(s)
- Shujing Xia
- Department of Gastroenterology, Yancheng TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Yancheng, 224000, China
- Department of Gastroenterology, Affiliated Xinghua People's Hospital, Xinghua, 225700, China
- National Health Commission Key Laboratory of Antibody Techniques, Nanjing Medical University, Nanjing, 210029, China
| | - Lei Ji
- School of Clinical Medicine, Jiangsu Health Vocational College, Nanjing, 210029, China
| | - Lizhong Tang
- Department of Pharmacy, Yancheng TCM Hospital affiliated to Nanjing University of Chinese Medicine, Yancheng, 224000, China
| | - Lili Zhang
- Department of Gastroenterology, Affiliated Xinghua People's Hospital, Xinghua, 225700, China
| | - Xiumei Zhang
- Department of Pathology, Affiliated Xinghua People's Hospital, Xinghua, 225700, China
| | - Qi Tang
- Department of Pathology, Nanjing Medical University, Nanjing, 211166, China
| | - Zhenqing Feng
- National Health Commission Key Laboratory of Antibody Techniques, Nanjing Medical University, Nanjing, 210029, China.
- Department of Pathology, Nanjing Medical University, Nanjing, 211166, China.
| | - Lungen Lu
- Department of Gastroenterology, Shanghai General Hospital, Nanjing Medical University, Shanghai, 200080, China
| |
Collapse
|
14
|
Wang Y, Xie L, Zhu M, Guo Y, Tu Y, Zhou Y, Zeng J, Zhu L, Du S, Wang Z, Zhang Y, Liu X, Song E. Shikonin alleviates choroidal neovascularization by inhibiting proangiogenic factor production from infiltrating macrophages. Exp Eye Res 2021; 213:108823. [PMID: 34752817 DOI: 10.1016/j.exer.2021.108823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 10/20/2021] [Accepted: 10/31/2021] [Indexed: 10/19/2022]
Abstract
Choroidal neovascularization (CNV), a feature of neovasular age-related macular degeneration (AMD), acts as a leading cause of vision loss in the elderly. Shikonin (SHI), a natural bioactive compound extracted from Chinese herb radix arnebiae, exerts anti-inflammatory and anti-angiogenic roles and also acts as a potential pyruvate kinase M2 (PKM2) inhibitor in macrophages. The major immune cells macrophages infiltrate the CNV lesions, where the production of pro-angiognic cytokines from macrophage facilitates the development of CNV. PKM2 contributes to the neovascular diseases. In this study, we found that SHI oral gavage alleviated the leakage, area and volume of mouse laser-induced CNV lesion and inhibited macrophage infiltration without ocular cytotoxicity. Moreover, SHI inhibited the secretion of pro-angiogenic cytokine, including basic fibroblast growth factor (FGF2), insulin-like growth factor-1 (IGF1), chemokine (C-C motif) ligand 2 (CCL2), placental growth factor and vascular endothelial growth factor (VEGF), from primary human macrophages by down-regulating PKM2/STAT3/CD163 pathway, indicating a novel potential therapy strategy for CNV.
Collapse
Affiliation(s)
- Ying Wang
- Department of Ophthalmology, Lixiang Eye Hospital of Soochow University, Suzhou, Jiangsu, China; Department of Ophthalmology, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu, China
| | - Laiqing Xie
- Department of Ophthalmology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Manhui Zhu
- Department of Ophthalmology, Lixiang Eye Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Yang Guo
- Department of Ophthalmology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Yuanyuan Tu
- Department of Ophthalmology, Lixiang Eye Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Yamei Zhou
- Department of Pathogen Biology, Medical College, Nantong University, Nantong, Jiangsu, China
| | - Jia Zeng
- Department of Pathogen Biology, Medical College, Nantong University, Nantong, Jiangsu, China
| | - Linling Zhu
- Department of Ophthalmology, Lixiang Eye Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Shu Du
- Department of Ophthalmology, Lixiang Eye Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Zhenzhen Wang
- Department of Ophthalmology, Lixiang Eye Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Yuting Zhang
- Department of Ophthalmology, Lixiang Eye Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Xiaojuan Liu
- Department of Pathogen Biology, Medical College, Nantong University, Nantong, Jiangsu, China.
| | - E Song
- Department of Ophthalmology, Lixiang Eye Hospital of Soochow University, Suzhou, Jiangsu, China.
| |
Collapse
|
15
|
Fletcher P, Hamilton RF, Rhoderick JF, Pestka JJ, Holian A. Docosahexaenoic acid impacts macrophage phenotype subsets and phagolysosomal membrane permeability with particle exposure. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2021; 84:152-172. [PMID: 33148135 PMCID: PMC7855733 DOI: 10.1080/15287394.2020.1842826] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Inhalation of particles results in pulmonary inflammation; however, treatments are currently lacking. Docosahexaenoic acid (DHA) is an omega-3 polyunsaturated fatty acid shown to exhibit anti-inflammatory capabilities. The impact of DHA on particle-induced inflammation is unclear; therefore, the aim of this study was to examine the hypothesis that DHA downregulates macrophage inflammatory responses by altering phagolysosomal membrane permeability (LMP) and shifting macrophage phenotype. Isolated Balb/c alveolar macrophages (AM) were polarized into M1, M2a, M2b, or M2c phenotypes in vitro, treated with DHA, and exposed to a multi-walled carbon nanotube (MWNCT) or crystalline silica (SiO2). Results showed minimal cytotoxicity, robust effects for silica particle uptake, and LMP differences between phenotypes. Docosahexaenoic acid prevented these effects to the greatest extent in M2c phenotype. To determine if DHA affected inflammation similarly in vivo, Balb/c mice were placed on a control or 1% DHA diet for 3 weeks, instilled with the same particles, and assessed 24 hr following instillation. Data demonstrated that in contrast to in vitro findings, DHA increased pulmonary inflammation and LMP. These results suggest that pulmonary responses in vivo may not necessarily be predicted from single-cell responses in vitro.
Collapse
Affiliation(s)
- Paige Fletcher
- Department of Biomedical and Pharmaceutical Sciences, Center for Environmental Health Sciences, University of Montana, Missoula, MT, United States
| | - Raymond F. Hamilton
- Department of Biomedical and Pharmaceutical Sciences, Center for Environmental Health Sciences, University of Montana, Missoula, MT, United States
| | - Joseph F. Rhoderick
- Department of Biomedical and Pharmaceutical Sciences, Center for Environmental Health Sciences, University of Montana, Missoula, MT, United States
| | - James J. Pestka
- Department of Food Science and Human Nutrition, Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, United States
| | - Andrij Holian
- Department of Biomedical and Pharmaceutical Sciences, Center for Environmental Health Sciences, University of Montana, Missoula, MT, United States
| |
Collapse
|
16
|
Hsu MY, Mina E, Roetto A, Porporato PE. Iron: An Essential Element of Cancer Metabolism. Cells 2020; 9:cells9122591. [PMID: 33287315 PMCID: PMC7761773 DOI: 10.3390/cells9122591] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 11/24/2020] [Accepted: 11/30/2020] [Indexed: 02/06/2023] Open
Abstract
Cancer cells undergo considerable metabolic changes to foster uncontrolled proliferation in a hostile environment characterized by nutrient deprivation, poor vascularization and immune infiltration. While metabolic reprogramming has been recognized as a hallmark of cancer, the role of micronutrients in shaping these adaptations remains scarcely investigated. In particular, the broad electron-transferring abilities of iron make it a versatile cofactor that is involved in a myriad of biochemical reactions vital to cellular homeostasis, including cell respiration and DNA replication. In cancer patients, systemic iron metabolism is commonly altered. Moreover, cancer cells deploy diverse mechanisms to increase iron bioavailability to fuel tumor growth. Although iron itself can readily participate in redox reactions enabling vital processes, its reactivity also gives rise to reactive oxygen species (ROS). Hence, cancer cells further rely on antioxidant mechanisms to withstand such stress. The present review provides an overview of the common alterations of iron metabolism occurring in cancer and the mechanisms through which iron promotes tumor growth.
Collapse
Affiliation(s)
- Myriam Y. Hsu
- Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Turin, Italy; (M.Y.H.); (E.M.)
| | - Erica Mina
- Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Turin, Italy; (M.Y.H.); (E.M.)
| | - Antonella Roetto
- Department of Clinical and Biological Science, University of Turin, AOU San Luigi Gonzaga, 10043 Orbassano, Italy
- Correspondence: (A.R.); (P.E.P.)
| | - Paolo E. Porporato
- Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Turin, Italy; (M.Y.H.); (E.M.)
- Correspondence: (A.R.); (P.E.P.)
| |
Collapse
|
17
|
Immunosuppressive Phenotype of Esophagus Tumors Stroma. Anal Cell Pathol (Amst) 2020; 2020:5424780. [PMID: 32884895 PMCID: PMC7455837 DOI: 10.1155/2020/5424780] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/21/2020] [Accepted: 08/04/2020] [Indexed: 11/30/2022] Open
Abstract
Background Tumor-associated macrophages (TAMs) and tumor-infiltrating lymphocytes (TILs) contribute significantly to the development of immunosuppressive properties of a tumor. In this study, we performed immunohistochemical analysis of immune cells of esophageal tumors stroma. Methods Paraffin-embedded tissue specimens from 48 esophageal squamous cell carcinoma (ESCC) patients were retrospectively collected for immunohistochemical analysis of stromal cells. For staining of macrophages, CD68, CD163, CD206, PU.1, and iNOS were used. For T cell detection, CD8, CD3, and FOXP3 were used. Also, we performed staining for PD-L1 that can be expressed on TAMs and tumor cells. Clinicopathological and survival data were collected and analyzed using the χ2 and Fisher exact tests, Kaplan–Meier curves, and the log-rank test. The correlation analysis was performed with Spearman's rank correlation coefficient. Results We found that FOXP3 expression was associated with age (p = 0.042) and iNOS expression was associated with the disease stage (p = 0.044). In addition, FOXP3 and CD163 appeared to be markers of good prognosis (HR = 0.4420, p = 0.0325, and HR = 0.4447, p = 0.0456, respectively). Significant association between PU.1+ and CD68+ macrophages (r = 0.833; p ≤ 0.001) and between PU.1+ and CD163+ macrophages (r = 0.500; p ≤ 0.001) was established; positive association between PU.1 and CD206 expression was also observed (r = 0.250; p = 0.043). Conclusions Large amounts of CD163+ macrophages and FOXP3+ Т cells appear to be markers of good prognosis of ESCC. The number of PU.1+ macrophages strongly correlates with the number of CD68+ macrophages; therefore, usage of PU.1 as a potential macrophage marker can be recommended for esophageal tumors.
Collapse
|
18
|
Aydin AM, Chahoud J, Adashek JJ, Azizi M, Magliocco A, Ross JS, Necchi A, Spiess PE. Understanding genomics and the immune environment of penile cancer to improve therapy. Nat Rev Urol 2020; 17:555-570. [DOI: 10.1038/s41585-020-0359-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/03/2020] [Indexed: 02/07/2023]
|
19
|
Skytthe MK, Graversen JH, Moestrup SK. Targeting of CD163 + Macrophages in Inflammatory and Malignant Diseases. Int J Mol Sci 2020; 21:E5497. [PMID: 32752088 PMCID: PMC7432735 DOI: 10.3390/ijms21155497] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/28/2020] [Accepted: 07/29/2020] [Indexed: 02/07/2023] Open
Abstract
The macrophage is a key cell in the pro- and anti-inflammatory response including that of the inflammatory microenvironment of malignant tumors. Much current drug development in chronic inflammatory diseases and cancer therefore focuses on the macrophage as a target for immunotherapy. However, this strategy is complicated by the pleiotropic phenotype of the macrophage that is highly responsive to its microenvironment. The plasticity leads to numerous types of macrophages with rather different and, to some extent, opposing functionalities, as evident by the existence of macrophages with either stimulating or down-regulating effect on inflammation and tumor growth. The phenotypes are characterized by different surface markers and the present review describes recent progress in drug-targeting of the surface marker CD163 expressed in a subpopulation of macrophages. CD163 is an abundant endocytic receptor for multiple ligands, quantitatively important being the haptoglobin-hemoglobin complex. The microenvironment of inflammation and tumorigenesis is particular rich in CD163+ macrophages. The use of antibodies for directing anti-inflammatory (e.g., glucocorticoids) or tumoricidal (e.g., doxorubicin) drugs to CD163+ macrophages in animal models of inflammation and cancer has demonstrated a high efficacy of the conjugate drugs. This macrophage-targeting approach has a low toxicity profile that may highly improve the therapeutic window of many current drugs and drug candidates.
Collapse
Affiliation(s)
- Maria K. Skytthe
- Department of Molecular Medicine, University of Southern Denmark, 5000 Odense, Denmark; (M.K.S.); (S.K.M.)
| | - Jonas Heilskov Graversen
- Department of Molecular Medicine, University of Southern Denmark, 5000 Odense, Denmark; (M.K.S.); (S.K.M.)
| | - Søren K. Moestrup
- Department of Molecular Medicine, University of Southern Denmark, 5000 Odense, Denmark; (M.K.S.); (S.K.M.)
- Department of Biomedicine, Aarhus University, 8200 Aarhus, Denmark
| |
Collapse
|
20
|
STAT3 Pathway in Gastric Cancer: Signaling, Therapeutic Targeting and Future Prospects. BIOLOGY 2020; 9:biology9060126. [PMID: 32545648 PMCID: PMC7345582 DOI: 10.3390/biology9060126] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 06/02/2020] [Accepted: 06/04/2020] [Indexed: 12/11/2022]
Abstract
Molecular signaling pathways play a significant role in the regulation of biological mechanisms, and their abnormal expression can provide the conditions for cancer development. The signal transducer and activator of transcription 3 (STAT3) is a key member of the STAT proteins and its oncogene role in cancer has been shown. STAT3 is able to promote the proliferation and invasion of cancer cells and induces chemoresistance. Different downstream targets of STAT3 have been identified in cancer and it has also been shown that microRNA (miR), long non-coding RNA (lncRNA) and other molecular pathways are able to function as upstream mediators of STAT3 in cancer. In the present review, we focus on the role and regulation of STAT3 in gastric cancer (GC). miRs and lncRNAs are considered as potential upstream mediators of STAT3 and they are able to affect STAT3 expression in exerting their oncogene or onco-suppressor role in GC cells. Anti-tumor compounds suppress the STAT3 signaling pathway to restrict the proliferation and malignant behavior of GC cells. Other molecular pathways, such as sirtuin, stathmin and so on, can act as upstream mediators of STAT3 in GC. Notably, the components of the tumor microenvironment that are capable of targeting STAT3 in GC, such as fibroblasts and macrophages, are discussed in this review. Finally, we demonstrate that STAT3 can target oncogene factors to enhance the proliferation and metastasis of GC cells.
Collapse
|
21
|
KSHV infection skews macrophage polarisation towards M2-like/TAM and activates Ire1 α-XBP1 axis up-regulating pro-tumorigenic cytokine release and PD-L1 expression. Br J Cancer 2020; 123:298-306. [PMID: 32418990 PMCID: PMC7374093 DOI: 10.1038/s41416-020-0872-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 02/27/2020] [Accepted: 04/15/2020] [Indexed: 12/18/2022] Open
Abstract
Background Kaposi’s Sarcoma Herpesvirus (KSHV) is a gammaherpesvirus strongly linked to human cancer. The virus is also able to induce immune suppression, effect that contributes to onset/progression of the viral-associated malignancies. As KSHV may infect macrophages and these cells abundantly infiltrate Kaposi’s sarcoma lesions, in this study we investigated whether KSHV-infection could affect macrophage polarisation to promote tumorigenesis. Methods FACS analysis was used to detect macrophage markers and PD-L1 expression. KSHV infection and the molecular pathways activated were investigated by western blot analysis and by qRT-PCR while cytokine release was assessed by Multi-analyte Kit. Results We found that KSHV infection reduced macrophage survival and skewed their polarisation towards M2 like/TAM cells, based on the expression of CD163, on the activation of STAT3 and STAT6 pathways and the release of pro-tumorigenic cytokines such as IL-10, VEGF, IL-6 and IL-8. We also found that KSHV triggered Ire1 α-XBP1 axis activation in infected macrophages to increase the release of pro-tumorigenic cytokines and to up-regulate PD-L1 surface expression. Conclusions The findings that KSHV infection of macrophages skews their polarisation towards M2/TAM and that activate Ire1 α-XBP1 to increase the release of pro-tumorigenic cytokines and the expression of PD-L1, suggest that manipulation of UPR could be exploited to prevent or improve the treatment of KSHV-associated malignancies.
Collapse
|
22
|
Lack of CD8 + T-cell co-localization with Kaposi's sarcoma-associated herpesvirus infected cells in Kaposi's sarcoma tumors. Oncotarget 2020; 11:1556-1572. [PMID: 32391124 PMCID: PMC7197452 DOI: 10.18632/oncotarget.27569] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 04/03/2020] [Indexed: 12/13/2022] Open
Abstract
Despite the close association between Kaposi’s sarcoma (KS) and immune dysfunction, it remains unclear whether tumor infiltrating immune cells (TIIC), by their absence, presence, or dysfunction, are mechanistically correlated with KS pathogenesis. Therefore, their potential capacity to serve as prognostic biomarkers of KS disease progression or control is unclear. Because epidemic-KS (EpKS) occurs with HIV-1 co-infection, it is particularly important to compare TIIC between EpKS and HIV-negative African endemic-KS (EnKS) to dissect the roles of HIV-1 and Kaposi Sarcoma-associated herpesvirus (KSHV) in KS pathogenesis. This cross-sectional study of 13 advanced KS (4 EnKS, 9 EpKS) patients and 3 healthy controls utilized single-color immunohistochemistry and dual-color immunofluorescence assays to characterize and quantify KSHV infected cells in relation to various TIIC in KS biopsies. Analysis of variance (ANOVA) and Mann-Whitney tests were used to assess differences between groups where P-values < 0.05 were considered significant. The abundance of KSHV infected cells was heterogeneous in KS biopsies. Despite the presence of T-cell chemoattractant chemokine CxCL-9 in biopsies, CD8+ T-cells were sparsely distributed in regions with evident KSHV infected cells but were readily detectable in regions devoid of KSHV infected cells (P < 0.0001). CD68+ (M1) macrophages were evenly and diffusely distributed in KS biopsies, whereas, the majority of CD163+ (M2) macrophages were localized in regions devoid of KSHV infected cells (P < 0.0001). Overall, the poor immune cell infiltration or co-localization in KS biopsies independent of HIV-1 co-infection suggests a fundamental tumor immune evasion mechanism that warrants further investigation.
Collapse
|
23
|
Brown RAM, Richardson KL, Kabir TD, Trinder D, Ganss R, Leedman PJ. Altered Iron Metabolism and Impact in Cancer Biology, Metastasis, and Immunology. Front Oncol 2020; 10:476. [PMID: 32328462 PMCID: PMC7160331 DOI: 10.3389/fonc.2020.00476] [Citation(s) in RCA: 150] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 03/17/2020] [Indexed: 12/12/2022] Open
Abstract
Iron is an essential nutrient that plays a complex role in cancer biology. Iron metabolism must be tightly controlled within cells. Whilst fundamental to many cellular processes and required for cell survival, excess labile iron is toxic to cells. Increased iron metabolism is associated with malignant transformation, cancer progression, drug resistance and immune evasion. Depleting intracellular iron stores, either with the use of iron chelating agents or mimicking endogenous regulation mechanisms, such as microRNAs, present attractive therapeutic opportunities, some of which are currently under clinical investigation. Alternatively, iron overload can result in a form of regulated cell death, ferroptosis, which can be activated in cancer cells presenting an alternative anti-cancer strategy. This review focuses on alterations in iron metabolism that enable cancer cells to meet metabolic demands required during different stages of tumorigenesis in relation to metastasis and immune response. The strength of current evidence is considered, gaps in knowledge are highlighted and controversies relating to the role of iron and therapeutic targeting potential are discussed. The key question we address within this review is whether iron modulation represents a useful approach for treating metastatic disease and whether it could be employed in combination with existing targeted drugs and immune-based therapies to enhance their efficacy.
Collapse
Affiliation(s)
- Rikki A. M. Brown
- Queen Elizabeth II Medical Centre, Harry Perkins Institute of Medical Research, Perth, WA, Australia
- UWA Centre for Medical Research, University of Western Australia, Perth, WA, Australia
- UWA Medical School, University of Western Australia, Perth, WA, Australia
| | - Kirsty L. Richardson
- Queen Elizabeth II Medical Centre, Harry Perkins Institute of Medical Research, Perth, WA, Australia
- UWA Centre for Medical Research, University of Western Australia, Perth, WA, Australia
| | - Tasnuva D. Kabir
- Queen Elizabeth II Medical Centre, Harry Perkins Institute of Medical Research, Perth, WA, Australia
- UWA Centre for Medical Research, University of Western Australia, Perth, WA, Australia
| | - Debbie Trinder
- Queen Elizabeth II Medical Centre, Harry Perkins Institute of Medical Research, Perth, WA, Australia
- UWA Centre for Medical Research, University of Western Australia, Perth, WA, Australia
- UWA Medical School, University of Western Australia, Perth, WA, Australia
| | - Ruth Ganss
- Queen Elizabeth II Medical Centre, Harry Perkins Institute of Medical Research, Perth, WA, Australia
- UWA Centre for Medical Research, University of Western Australia, Perth, WA, Australia
| | - Peter J. Leedman
- Queen Elizabeth II Medical Centre, Harry Perkins Institute of Medical Research, Perth, WA, Australia
- UWA Centre for Medical Research, University of Western Australia, Perth, WA, Australia
- UWA Medical School, University of Western Australia, Perth, WA, Australia
| |
Collapse
|
24
|
Li Z, Zheng Z, Li C, Li Z, Wu J, Zhang B. Therapeutic drugs and drug delivery systems targeting stromal cells for cancer therapy: a review. J Drug Target 2020; 28:714-726. [DOI: 10.1080/1061186x.2020.1744157] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Zhaohuan Li
- School of Pharmacy, Weifang Medical University, Weifang, China
| | - Zengjuan Zheng
- School of Pharmacy, Weifang Medical University, Weifang, China
| | - Chenglei Li
- School of Pharmacy, Weifang Medical University, Weifang, China
| | - Zhipeng Li
- School of Bioscience and Technology, Weifang Medical University, Weifang, China
| | - Jingliang Wu
- School of Bioscience and Technology, Weifang Medical University, Weifang, China
| | - Bo Zhang
- School of Pharmacy, Weifang Medical University, Weifang, China
| |
Collapse
|
25
|
Griess B, Mir S, Datta K, Teoh-Fitzgerald M. Scavenging reactive oxygen species selectively inhibits M2 macrophage polarization and their pro-tumorigenic function in part, via Stat3 suppression. Free Radic Biol Med 2020; 147:48-60. [PMID: 31863907 PMCID: PMC10035558 DOI: 10.1016/j.freeradbiomed.2019.12.018] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 11/21/2019] [Accepted: 12/17/2019] [Indexed: 12/14/2022]
Abstract
Tumor associated macrophages (TAM) enhance the aggressiveness of breast cancer via promoting cancer cell growth, metastasis, and suppression of the patient's immune system. These TAMs are polarized in breast cancer with features more closely resembling the pro-tumorigenic and immunosuppressive M2 type rather than the anti-tumor and pro-inflammatory M1 type. The goal of our study was to examine primary human monocyte-derived M1 and M2 macrophages for key redox differences and determine sensitivities of these macrophages to the redox-active drug, MnTE-2-PyP5+. This compound reduced levels of M2 markers and inhibited their ability to promote cancer cell growth and suppress T cell activation. The surface levels of the T cell suppressing molecule, PD-L2, were reduced by MnTE-2-PyP5+ in a dose-dependent manner. This study also examined key differences in ROS generation and scavenging between M1 and M2 macrophages. Our results indicate that M2 macrophages have lower levels of reactive oxygen species (ROS) and lower production of extracellular hydrogen peroxide compared to the M1 macrophages. These differences are due in part to reduced expression levels of pro-oxidants, Nox2, Nox5, and the non-enzymatic members of the Nox complex, p22phox and p47phox, as well as higher levels of antioxidant enzymes, Cu/ZnSOD, Gpx1, and catalase. More importantly, we found that despite having lower ROS levels, M2 macrophages require ROS for proper polarization, as addition of hydrogen peroxide increased M2 markers. These TAM-like macrophages are also more sensitive to the ROS modulator and a pan-Nox inhibitor. Both MnTE-2-PyP5+ and DPI inhibited expression levels of M2 marker genes. We have further shown that this inhibition was partly mediated through a decrease in Stat3 activation during IL4-induced M2 polarization. Overall, this study reveals key redox differences between M1 and M2 primary human macrophages and that redox-active drugs can be used to inhibit the pro-tumor and immunosuppressive phenotype of TAM-like M2 macrophages. This study also provides rationale for combining MnTE-2-PyP5+ with immunotherapies.
Collapse
Affiliation(s)
- Brandon Griess
- Department of Biochemistry and Molecular Biology, Fred and Pamela Buffett Cancer Center, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Shakeel Mir
- Department of Biochemistry and Molecular Biology, Fred and Pamela Buffett Cancer Center, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Kaustubh Datta
- Department of Biochemistry and Molecular Biology, Fred and Pamela Buffett Cancer Center, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Melissa Teoh-Fitzgerald
- Department of Biochemistry and Molecular Biology, Fred and Pamela Buffett Cancer Center, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| |
Collapse
|
26
|
Targeting STAT3 and STAT5 in Tumor-Associated Immune Cells to Improve Immunotherapy. Cancers (Basel) 2019; 11:cancers11121832. [PMID: 31766350 PMCID: PMC6966642 DOI: 10.3390/cancers11121832] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 11/16/2019] [Accepted: 11/18/2019] [Indexed: 02/06/2023] Open
Abstract
Oncogene-induced STAT3-activation is central to tumor progression by promoting cancer cell expression of pro-angiogenic and immunosuppressive factors. STAT3 is also activated in infiltrating immune cells including tumor-associated macrophages (TAM) amplifying immune suppression. Consequently, STAT3 is considered as a target for cancer therapy. However, its interplay with other STAT-family members or transcription factors such as NF-κB has to be considered in light of their concerted regulation of immune-related genes. Here, we discuss new attempts at re-educating immune suppressive tumor-associated macrophages towards a CD8 T cell supporting profile, with an emphasis on the role of STAT transcription factors on TAM functional programs. Recent clinical trials using JAK/STAT inhibitors highlighted the negative effects of these molecules on the maintenance and function of effector/memory T cells. Concerted regulation of STAT3 and STAT5 activation in CD8 T effector and memory cells has been shown to impact their tumor-specific responses including intra-tumor accumulation, long-term survival, cytotoxic activity and resistance toward tumor-derived immune suppression. Interestingly, as an escape mechanism, melanoma cells were reported to impede STAT5 nuclear translocation in both CD8 T cells and NK cells. Ours and others results will be discussed in the perspective of new developments in engineered T cell-based adoptive therapies to treat cancer patients.
Collapse
|
27
|
Rébé C, Ghiringhelli F. STAT3, a Master Regulator of Anti-Tumor Immune Response. Cancers (Basel) 2019; 11:E1280. [PMID: 31480382 PMCID: PMC6770459 DOI: 10.3390/cancers11091280] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 08/29/2019] [Accepted: 08/29/2019] [Indexed: 12/27/2022] Open
Abstract
Immune cells in the tumor microenvironment regulate cancer growth. Thus cancer progression is dependent on the activation or repression of transcription programs involved in the proliferation/activation of lymphoid and myeloid cells. One of the main transcription factors involved in many of these pathways is the signal transducer and activator of transcription 3 (STAT3). In this review we will focus on the role of STAT3 and its regulation, e.g. by phosphorylation or acetylation in immune cells and how it might impact immune cell function and tumor progression. Moreover, we will review the ability of STAT3 to regulate checkpoint inhibitors.
Collapse
Affiliation(s)
- Cédric Rébé
- Platform of Transfer in Cancer Biology, Centre Georges François Leclerc, INSERM LNC UMR1231,University of Bourgogne Franche-Comté, F-21000 Dijon, France.
| | - François Ghiringhelli
- Platform of Transfer in Cancer Biology, Centre Georges François Leclerc, INSERM LNC UMR1231,University of Bourgogne Franche-Comté, F-21000 Dijon, France.
| |
Collapse
|
28
|
Abu El-Asrar AM, Ahmad A, Allegaert E, Siddiquei MM, Gikandi PW, De Hertogh G, Opdenakker G. Interleukin-11 Overexpression and M2 Macrophage Density are Associated with Angiogenic Activity in Proliferative Diabetic Retinopathy. Ocul Immunol Inflamm 2019; 28:575-588. [DOI: 10.1080/09273948.2019.1616772] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Ahmed M. Abu El-Asrar
- Department of Ophthalmology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
- Dr. Nasser Al-Rashid Research Chair in Ophthalmology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Ajmal Ahmad
- Department of Ophthalmology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Eef Allegaert
- Laboratory of Histochemistry and Cytochemistry, University of Leuven, Leuven, Belgium
| | | | - Priscilla W. Gikandi
- Department of Ophthalmology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Gert De Hertogh
- Laboratory of Histochemistry and Cytochemistry, University of Leuven, Leuven, Belgium
| | - Ghislain Opdenakker
- Rega Institute for Medical Research, Department of Microbiology and Immunology, University of Leuven, Leuven, Belgium
| |
Collapse
|
29
|
Larionova I, Cherdyntseva N, Liu T, Patysheva M, Rakina M, Kzhyshkowska J. Interaction of tumor-associated macrophages and cancer chemotherapy. Oncoimmunology 2019. [PMID: 31143517 DOI: 10.1080/2162402x.2019.1596004] [] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2022] Open
Abstract
It has been recently recognized that the tumor microenvironment (TME) is an essential factor that defines the efficiency of chemotherapy. The local TME, consisting of immune cells with diverse phenotypes and functions, can strongly modulate the response to chemotherapy. Tumor-associated macrophages (TAMs) that display pronounced heterogeneity and phenotypic plasticity are the major innate immune component in the microenvironment of solid tumors. In our review, we elucidate the complex role of TAMs in the progression of different types of solid tumors, summarize the current knowledge about the effects of different anticancer chemotherapeutic agents on monocytes/macrophages, and describe the mechanisms of chemotherapy resistance mediated by TAMs.
Collapse
Affiliation(s)
- Irina Larionova
- Laboratory of Translational Cellular and Molecular Biomedicine, National Research Tomsk State University, Tomsk, Russia.,laboratory of molecular oncology and immunology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Nadezhda Cherdyntseva
- Laboratory of Translational Cellular and Molecular Biomedicine, National Research Tomsk State University, Tomsk, Russia.,laboratory of molecular oncology and immunology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Tengfei Liu
- Department of Innate Immunity and Tolerance, University of Heidelberg, Medical Faculty Mannheim, Institute of Transfusion Medicine and Immunology, Mannheim, Germany
| | - Marina Patysheva
- laboratory of molecular oncology and immunology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Militsa Rakina
- Laboratory of Translational Cellular and Molecular Biomedicine, National Research Tomsk State University, Tomsk, Russia
| | - Julia Kzhyshkowska
- Laboratory of Translational Cellular and Molecular Biomedicine, National Research Tomsk State University, Tomsk, Russia.,Department of Innate Immunity and Tolerance, University of Heidelberg, Medical Faculty Mannheim, Institute of Transfusion Medicine and Immunology, Mannheim, Germany.,German Red Cross Blood Service Baden-Württemberg - Hessen, Mannheim, Germany
| |
Collapse
|
30
|
Troiano G, Caponio VCA, Adipietro I, Tepedino M, Santoro R, Laino L, Lo Russo L, Cirillo N, Lo Muzio L. Prognostic significance of CD68 + and CD163 + tumor associated macrophages in head and neck squamous cell carcinoma: A systematic review and meta-analysis. Oral Oncol 2019; 93:66-75. [PMID: 31109698 DOI: 10.1016/j.oraloncology.2019.04.019] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 03/21/2019] [Accepted: 04/24/2019] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Tumor associated macrophages (TAMs) are among the most abundant cells of the tumor microenvironment. Several studies have been performed to investigate whether TAM markers, namely CD68 and CD163, could serve as prognostic factors in patients with squamous cell carcinoma of the head and neck (SCCHN). The aim of this systematic review and meta-analysis was to synthetize the available evidence of the literature about the role of CD68+ and CD163+ TAMs as prognostic factors in SCCHN. MATERIALS AND METHODS This systematic review was performed according to the guidelines reported in the Cochrane Handbook and the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement. Meta-analysis of overall survival, disease-free survival and progression-free survival was performed using the inverse of variance test. A random- or a fixed- effect model was used on the basis of the presence of heterogeneity. Risk of bias assessment and subgroup analysis were also performed. RESULTS High stromal expression of CD163+ TAMs correlated with both poor overall survival (HR, 2.26; 95% CI: [1.47, 3.47]; P < 0.001) and progression-free survival (HR, 2.29; 95% CI: [1.11, 4.71]; P = 0.03). Conversely, abundance of CD68+ TAMs was not associated with overall survival (HR, 1.25; 95% CI: [0.86, 1.80]; P = 0.24) and disease-free survival (HR, 2.06; 95% CI: [0.84, 5.05]; P = 0.11). CONCLUSIONS Findings from this study revealed that whilst IHC analysis of the generic macrophage marker CD68+ has no prognostic utility in patients with SCCHN, the M2-like marker CD163+ predicts poor prognosis. Our data suggest that assessment of CD163+ TAMs in SCCHN has potential for future clinical use. Further well-standardized studies should be performed to confirm these results.
Collapse
Affiliation(s)
- Giuseppe Troiano
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy.
| | | | - Iolanda Adipietro
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Michele Tepedino
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Rossella Santoro
- Multidisciplinary Department of Medical-Surgical and Odontostomatological Specialties, Second University of Naples, Naples, Italy
| | - Luigi Laino
- Multidisciplinary Department of Medical-Surgical and Odontostomatological Specialties, Second University of Naples, Naples, Italy
| | - Lucio Lo Russo
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Nicola Cirillo
- Melbourne Dental School, The University of Melbourne, Melbourne, Victoria, Australia
| | - Lorenzo Lo Muzio
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| |
Collapse
|
31
|
Liu S, Zhang C, Maimela NR, Yang L, Zhang Z, Ping Y, Huang L, Zhang Y. Molecular and clinical characterization of CD163 expression via large-scale analysis in glioma. Oncoimmunology 2019; 8:1601478. [PMID: 31143523 DOI: 10.1080/2162402x.2019.1601478] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 03/19/2019] [Accepted: 03/22/2019] [Indexed: 01/28/2023] Open
Abstract
The expression and function of CD163 in glioma are not fully understood. In this report, we collected totally 1323 glioma samples from the Chinese Glioma Genome Atlas (CGGA) dataset, including 325 RNA-seq data and 301 mRNA microarray data, and 697 glioma samples from The Cancer Genome Atlas (TCGA) dataset to characterize the molecular and clinical features of CD163 in glioma by conducting a large-scale study. We found that CD163 expression was positively associated with the grade of malignancy of glioma. CD163 expression was up-regulated in IDH wild-type glioma and mesenchymal subtype. Gene ontology analysis suggested that CD163-related genes were more involved in immune response and angiogenesis in glioma. Moreover, CD163 showed a positive relationship with stromal and immune cell populations. Kaplan-Meier curves analysis revealed that higher CD163 expression indicated significantly poor survival in glioma and glioblastoma multiforme (GBM). Pearson correlation analysis revealed that CD163 was robustly associated with the immune checkpoints and other macrophage markers. These results demonstrated that CD163 predicts poor prognosis in glioma patients. Additionally, combination of CD163 and immune checkpoints may impair angiogenesis and reverse dysfunctional phenotypes of T cells, which suggest that CD163 may be a promising biomarker and target for immunotherapeutic strategies. Abbreviations: CGGA: Chinese Glioma Genome Atlas; TCGA: The Cancer Genome Atlas; TAMs: Tumor associated macrophages; IDH: isocitrate dehydrogenase; GBM: glioblastoma.
Collapse
Affiliation(s)
- Shasha Liu
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Chaoqi Zhang
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Department of Thoracic Surgery, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | | | - Li Yang
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Zhen Zhang
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou,Henan, China
| | - Yu Ping
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Lan Huang
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yi Zhang
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou,Henan, China.,School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China.,Henan Key Laboratory for Tumor Immunology and Biotherapy, Zhengzhou, Henan, China
| |
Collapse
|
32
|
Larionova I, Cherdyntseva N, Liu T, Patysheva M, Rakina M, Kzhyshkowska J. Interaction of tumor-associated macrophages and cancer chemotherapy. Oncoimmunology 2019; 8:1596004. [PMID: 31143517 PMCID: PMC6527283 DOI: 10.1080/2162402x.2019.1596004] [Citation(s) in RCA: 212] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 02/17/2019] [Accepted: 03/09/2019] [Indexed: 02/08/2023] Open
Abstract
It has been recently recognized that the tumor microenvironment (TME) is an essential factor that defines the efficiency of chemotherapy. The local TME, consisting of immune cells with diverse phenotypes and functions, can strongly modulate the response to chemotherapy. Tumor-associated macrophages (TAMs) that display pronounced heterogeneity and phenotypic plasticity are the major innate immune component in the microenvironment of solid tumors. In our review, we elucidate the complex role of TAMs in the progression of different types of solid tumors, summarize the current knowledge about the effects of different anticancer chemotherapeutic agents on monocytes/macrophages, and describe the mechanisms of chemotherapy resistance mediated by TAMs.
Collapse
Affiliation(s)
- Irina Larionova
- Laboratory of Translational Cellular and Molecular Biomedicine, National Research Tomsk State University, Tomsk, Russia.,laboratory of molecular oncology and immunology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Nadezhda Cherdyntseva
- Laboratory of Translational Cellular and Molecular Biomedicine, National Research Tomsk State University, Tomsk, Russia.,laboratory of molecular oncology and immunology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Tengfei Liu
- Department of Innate Immunity and Tolerance, University of Heidelberg, Medical Faculty Mannheim, Institute of Transfusion Medicine and Immunology, Mannheim, Germany
| | - Marina Patysheva
- laboratory of molecular oncology and immunology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Militsa Rakina
- Laboratory of Translational Cellular and Molecular Biomedicine, National Research Tomsk State University, Tomsk, Russia
| | - Julia Kzhyshkowska
- Laboratory of Translational Cellular and Molecular Biomedicine, National Research Tomsk State University, Tomsk, Russia.,Department of Innate Immunity and Tolerance, University of Heidelberg, Medical Faculty Mannheim, Institute of Transfusion Medicine and Immunology, Mannheim, Germany.,German Red Cross Blood Service Baden-Württemberg - Hessen, Mannheim, Germany
| |
Collapse
|
33
|
Zhang H, Jiang H, Zhang H, Liu J, Hu X, Chen L. miR-4262, low level of which predicts poor prognosis, targets proto-oncogene CD163 to suppress cell proliferation and invasion in gastric cancer. Onco Targets Ther 2019; 12:599-607. [PMID: 30697057 PMCID: PMC6339465 DOI: 10.2147/ott.s187881] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND miR-4262 was identified as a tumor promoter in several cancers, but its exact role in gastric carcinoma is still largely unknown. METHODS The expression of miR-4262 was detected in gastric cancer tissues. Different concentrations of miR-4262 mimic and miR-4262 antagomir were respectively transfected into primary gastric carcinoma cells. After incubation for 72 h, the overexpression efficiencies were confirmed by qPCR, cell proliferation was detected with the CCK-8 assay, cell apoptosis was detected by using the PI/Annexin V Cell Apoptosis Kit, and cell invasion was detected with the Transwell invasion assay. The molecular mechanisms underlying the action of miR-4262 in gastric carcinoma cells were also explored. RESULTS In this study, we found that miR-4262 was significantly downregulated in gastric tissue from gastric cancer patients compared with that from the control group. Moreover, the level of miR-4262 was significantly lower in advanced gastric carcinoma. Additionally, lower level of miR-4262 was correlated with poorer prognosis and lower survival rate in gastric cancer patients. Then, different concentrations of miR-4262 mimic and miR-4262 antagomir were transfected into primary gastric carcinoma cells, respectively. The results showed that miR-4262 mimic suppressed proliferation and invasion and promoted cell apoptosis in a dose-dependent manner in gastric carcinoma cells. In contrast, miR-4262 antagomir increased proliferation and invasion and decreased cell apoptosis in a dose-dependent manner in gastric carcinoma cells. Furthermore, miR-4262 could directly target and suppress the expression of the proto-oncogene CD163. CONCLUSION Our findings indicate that lower level of miR-4262 predicts poorer prognosis in gastric patients, and miR-4262 can target proto-oncogene CD163 to suppress gastric cancer cell proliferation and invasion.
Collapse
Affiliation(s)
- Hongzhi Zhang
- Department of Radiotherapy, Huaihe Hospital of Henan University, Kaifeng 475000, Henan, China,
| | - Huijuan Jiang
- Department of Radiotherapy, Huaihe Hospital of Henan University, Kaifeng 475000, Henan, China,
| | - Huixiang Zhang
- Department of Radiotherapy, Huaihe Hospital of Henan University, Kaifeng 475000, Henan, China,
| | - Juncai Liu
- Department of Radiotherapy, Huaihe Hospital of Henan University, Kaifeng 475000, Henan, China,
| | - Xigang Hu
- Department of Radiotherapy, Huaihe Hospital of Henan University, Kaifeng 475000, Henan, China,
| | - Lei Chen
- Department of Radiotherapy, Huaihe Hospital of Henan University, Kaifeng 475000, Henan, China,
| |
Collapse
|
34
|
Comparative transcriptomic profile of tolerogenic dendritic cells differentiated with vitamin D3, dexamethasone and rapamycin. Sci Rep 2018; 8:14985. [PMID: 30297862 PMCID: PMC6175832 DOI: 10.1038/s41598-018-33248-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 09/20/2018] [Indexed: 12/13/2022] Open
Abstract
Tolerogenic dendritic cell (tolDC)-based therapies have become a promising approach for the treatment of autoimmune diseases by their potential ability to restore immune tolerance in an antigen-specific manner. However, the broad variety of protocols used to generate tolDC in vitro and their functional and phenotypical heterogeneity are evidencing the need to find robust biomarkers as a key point towards their translation into the clinic, as well as better understanding the mechanisms involved in the induction of immune tolerance. With that aim, in this study we have compared the transcriptomic profile of tolDC induced with either vitamin D3 (vitD3-tolDC), dexamethasone (dexa-tolDC) or rapamycin (rapa-tolDC) through a microarray analysis in 5 healthy donors. The results evidenced that common differentially expressed genes could not be found for the three different tolDC protocols. However, individually, CYP24A1, MUCL1 and MAP7 for vitD3-tolDC; CD163, CCL18, C1QB and C1QC for dexa-tolDC; and CNGA1 and CYP7B1 for rapa-tolDC, constituted good candidate biomarkers for each respective cellular product. In addition, a further gene set enrichment analysis of the data revealed that dexa-tolDC and vitD3-tolDC share several immune regulatory and anti-inflammatory pathways, while rapa-tolDC seem to be playing a totally different role towards tolerance induction through a strong immunosuppression of their cellular processes.
Collapse
|