1
|
Abstract
Sirtuin 7 (SIRT7) is a member of the sirtuin family and has emerged as a key player in numerous cellular processes. It exhibits various enzymatic activities and is predominantly localized in the nucleolus, playing a role in ribosomal RNA expression, DNA damage repair, stress response and chromatin compaction. Recent studies have revealed its involvement in diseases such as cancer, cardiovascular and bone diseases, and obesity. In cancer, SIRT7 has been found to be overexpressed in multiple types of cancer, including breast cancer, clear cell renal cell carcinoma, lung adenocarcinoma, prostate adenocarcinoma, hepatocellular carcinoma, and gastric cancer, among others. In general, cancer cells exploit SIRT7 to enhance cell growth and metabolism through ribosome biogenesis, adapt to stress conditions and exert epigenetic control over cancer-related genes. The aim of this review is to provide an in-depth understanding of the role of SIRT7 in cancer carcinogenesis, evolution and progression by elucidating the underlying molecular mechanisms. Emphasis is placed on unveiling the intricate molecular pathways through which SIRT7 exerts its effects on cancer cells. In addition, this review discusses the feasibility and challenges associated with the development of drugs that can modulate SIRT7 activity.
Collapse
Affiliation(s)
- Francisco Alejandro Lagunas-Rangel
- Department of Genetics and Molecular Biology, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, San Pedro Zacatenco, Gustavo A. Madero, 07480, Mexico City, Mexico.
| |
Collapse
|
2
|
Hachem S, Yehya A, El Masri J, Mavingire N, Johnson JR, Dwead AM, Kattour N, Bouchi Y, Kobeissy F, Rais-Bahrami S, Mechref Y, Abou-Kheir W, Woods-Burnham L. Contemporary Update on Clinical and Experimental Prostate Cancer Biomarkers: A Multi-Omics-Focused Approach to Detection and Risk Stratification. BIOLOGY 2024; 13:762. [PMID: 39452071 PMCID: PMC11504278 DOI: 10.3390/biology13100762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/11/2024] [Accepted: 09/20/2024] [Indexed: 10/26/2024]
Abstract
Prostate cancer remains a significant health challenge, being the most prevalent non-cutaneous cancer in men worldwide. This review discusses the critical advancements in biomarker discovery using single-omics and multi-omics approaches. Multi-omics, integrating genomic, transcriptomic, proteomic, metabolomic, and epigenomic data, offers a comprehensive understanding of the molecular heterogeneity of prostate cancer, leading to the identification of novel biomarkers and therapeutic targets. This holistic approach not only enhances the specificity and sensitivity of prostate cancer detection but also supports the development of personalized treatment strategies. Key studies highlighted include the identification of novel genes, genetic mutations, peptides, metabolites, and potential biomarkers through multi-omics analyses, which have shown promise in improving prostate cancer management. The integration of multi-omics in clinical practice can potentially revolutionize prostate cancer prognosis and treatment, paving the way for precision medicine. This review underscores the importance of continued research and the application of multi-omics to overcome current challenges in prostate cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Sana Hachem
- Department of Anatomy, Cell Biology, and Physiological Sciences, American University of Beirut, Beirut 1107-2020, Lebanon (A.Y.)
| | - Amani Yehya
- Department of Anatomy, Cell Biology, and Physiological Sciences, American University of Beirut, Beirut 1107-2020, Lebanon (A.Y.)
| | - Jad El Masri
- Department of Anatomy, Cell Biology, and Physiological Sciences, American University of Beirut, Beirut 1107-2020, Lebanon (A.Y.)
| | - Nicole Mavingire
- Department of Surgery, Morehouse School of Medicine, Atlanta, GA 30310, USA; (N.M.)
| | - Jabril R. Johnson
- Department of Microbiology, Biochemistry, & Immunology, Morehouse School of Medicine, Atlanta, GA 30310, USA;
| | - Abdulrahman M. Dwead
- Department of Surgery, Morehouse School of Medicine, Atlanta, GA 30310, USA; (N.M.)
| | - Naim Kattour
- Department of Anatomy, Cell Biology, and Physiological Sciences, American University of Beirut, Beirut 1107-2020, Lebanon (A.Y.)
| | - Yazan Bouchi
- Department of Neurobiology, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - Firas Kobeissy
- Department of Neurobiology, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - Soroush Rais-Bahrami
- Department of Urology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Department of Radiology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- O’Neal Comprehensive Cancer Center, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Yehia Mechref
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA
| | - Wassim Abou-Kheir
- Department of Anatomy, Cell Biology, and Physiological Sciences, American University of Beirut, Beirut 1107-2020, Lebanon (A.Y.)
| | - Leanne Woods-Burnham
- Department of Surgery, Morehouse School of Medicine, Atlanta, GA 30310, USA; (N.M.)
| |
Collapse
|
3
|
Tao J, Bian X, Zhou J, Zhang M. From microscopes to molecules: The evolution of prostate cancer diagnostics. Cytojournal 2024; 21:29. [PMID: 39391208 PMCID: PMC11464998 DOI: 10.25259/cytojournal_36_2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 05/27/2024] [Indexed: 10/12/2024] Open
Abstract
In the ever-evolving landscape of oncology, the battle against prostate cancer (PCa) stands at a transformative juncture, propelled by the integration of molecular diagnostics into traditional cytopathological frameworks. This synthesis not only heralds a new epoch of precision medicine but also significantly enhances our understanding of the disease's genetic intricacies. Our comprehensive review navigates through the latest advancements in molecular biomarkers and their detection technologies, illuminating the potential these innovations hold for the clinical realm. With PCa persisting as one of the most common malignancies among men globally, the quest for early and precise diagnostic methods has never been more critical. The spotlight in this endeavor shines on the molecular diagnostics that reveal the genetic underpinnings of PCa, offering insights into its onset, progression, and resistance to conventional therapies. Among the genetic aberrations, the TMPRSS2-ERG fusion and mutations in genes such as phosphatase and tensin homolog (PTEN) and myelocytomatosis viral oncogene homolog (MYC) are identified as significant players in the disease's pathology, providing not only diagnostic markers but also potential therapeutic targets. This review underscores a multimodal diagnostic approach, merging molecular diagnostics with cytopathology, as a cornerstone in managing PCa effectively. This strategy promises a future where treatment is not only tailored to the individual's genetic makeup but also anticipates the disease's trajectory, offering hope for improved prognosis and quality of life for patients.
Collapse
Affiliation(s)
- Junyue Tao
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Xiaokang Bian
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Jun Zhou
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Meng Zhang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
4
|
Mishra J, Chakraborty S, Nandi P, Manna S, Baral T, Niharika, Roy A, Mishra P, Patra SK. Epigenetic regulation of androgen dependent and independent prostate cancer. Adv Cancer Res 2024; 161:223-320. [PMID: 39032951 DOI: 10.1016/bs.acr.2024.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
Prostate cancer is one of the most common malignancies among men worldwide. Besides genetic alterations, epigenetic modulations including DNA methylation, histone modifications and miRNA mediated alteration of gene expression are the key driving forces for the prostate tumor development and cancer progression. Aberrant expression and/or the activity of the epigenetic modifiers/enzymes, results in aberrant expression of genes involved in DNA repair, cell cycle regulation, cell adhesion, apoptosis, autophagy, tumor suppression and hormone response and thereby disease progression. Altered epigenome is associated with prostate cancer recurrence, progression, aggressiveness and transition from androgen-dependent to androgen-independent phenotype. These epigenetic modifications are reversible and various compounds/drugs targeting the epigenetic enzymes have been developed that are effective in cancer treatment. This chapter focuses on the epigenetic alterations in prostate cancer initiation and progression, listing different epigenetic biomarkers for diagnosis and prognosis of the disease and their potential as therapeutic targets. This chapter also summarizes different epigenetic drugs approved for prostate cancer therapy and the drugs available for clinical trials.
Collapse
Affiliation(s)
- Jagdish Mishra
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha, India
| | - Subhajit Chakraborty
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha, India
| | - Piyasa Nandi
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha, India
| | - Soumen Manna
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha, India
| | - Tirthankar Baral
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha, India
| | - Niharika
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha, India
| | - Ankan Roy
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha, India
| | - Prahallad Mishra
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha, India
| | - Samir Kumar Patra
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha, India.
| |
Collapse
|
5
|
Enikeeva K, Rafikova G, Sharifyanova Y, Mulyukova D, Vanzin A, Pavlov V. Epigenetics as a Key Factor in Prostate Cancer. Adv Biol (Weinh) 2024; 8:e2300520. [PMID: 38379272 DOI: 10.1002/adbi.202300520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/01/2024] [Indexed: 02/22/2024]
Abstract
Nowadays, prostate cancer is one of the most common forms of malignant neoplasms in men all over the world. Against the background of increasing incidence, there is a high mortality rate from prostate cancer, which is associated with an inadequate treatment strategy. Such a high prevalence of prostate cancer requires the development of methods that can ensure early detection of the disease, improve the effectiveness of treatment, and predict the therapeutic effect. Under these circumstances, it becomes crucial to focus on the development of effective diagnostic and therapeutic approaches. Due to the development of molecular genetic methods, a large number of studies have been accumulated on the role of epigenetic regulation of gene activity in cancer development, since it is epigenetic changes that can be detected at the earliest stages of cancer development. The presence of epigenetic aberrations in tumor tissue and correlations with drug resistance suggest new therapeutic approaches. Detection of epigenetic alterations such as CpG island methylation, histone modification, and microRNAs as biomarkers will improve the diagnosis of the disease, and the use of these strategies as targets for therapy will allow for greater personalization of prostate cancer treatment.
Collapse
Affiliation(s)
- Kadriia Enikeeva
- Institute of Urology and Clinical Oncology, Bashkir State Medical University, Ufa, 450008, Russia
| | - Guzel Rafikova
- Institute of Urology and Clinical Oncology, Bashkir State Medical University, Ufa, 450008, Russia
| | - Yuliya Sharifyanova
- Institute of Urology and Clinical Oncology, Bashkir State Medical University, Ufa, 450008, Russia
| | - Diana Mulyukova
- Institute of Urology and Clinical Oncology, Bashkir State Medical University, Ufa, 450008, Russia
| | - Alexandr Vanzin
- Institute of Urology and Clinical Oncology, Bashkir State Medical University, Ufa, 450008, Russia
| | - Valentin Pavlov
- Institute of Urology and Clinical Oncology, Bashkir State Medical University, Ufa, 450008, Russia
| |
Collapse
|
6
|
Ianni A, Kumari P, Tarighi S, Braun T, Vaquero A. SIRT7: a novel molecular target for personalized cancer treatment? Oncogene 2024; 43:993-1006. [PMID: 38383727 PMCID: PMC10978493 DOI: 10.1038/s41388-024-02976-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/06/2024] [Accepted: 02/08/2024] [Indexed: 02/23/2024]
Abstract
The Sirtuin family of NAD+-dependent enzymes assumes a pivotal role in orchestrating adaptive responses to environmental fluctuations and stress stimuli, operating at both genomic and metabolic levels. Within this family, SIRT7 emerges as a versatile player in tumorigenesis, displaying both pro-tumorigenic and tumor-suppressive functions in a context-dependent manner. While other sirtuins, such as SIRT1 and SIRT6, exhibit a similar dual role in cancer, SIRT7 stands out due to distinctive attributes that sharply distinguish it from other family members. Among these are a unique key role in regulation of nucleolar functions, a close functional relationship with RNA metabolism and processing -exceptional among sirtuins- and a complex multienzymatic nature, which provides a diverse range of molecular targets. This review offers a comprehensive overview of the current understanding of the role of SIRT7 in various malignancies, placing particular emphasis on the intricate molecular mechanisms employed by SIRT7 to either stimulate or counteract tumorigenesis. Additionally, it delves into the unique features of SIRT7, discussing their potential and specific implications in tumor initiation and progression, underscoring the promising avenue of targeting SIRT7 for the development of innovative anti-cancer therapies.
Collapse
Affiliation(s)
- Alessandro Ianni
- Chromatin Biology Laboratory, Josep Carreras Leukaemia Research Institute (IJC), Ctra de Can Ruti, Camí de les Escoles, Badalona, Barcelona, Catalonia, 08916, Spain.
- Department of Cardiac Development and Remodeling, Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, 61231, Germany.
| | - Poonam Kumari
- Department of Cardiac Development and Remodeling, Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, 61231, Germany
| | - Shahriar Tarighi
- Department of Cardiac Development and Remodeling, Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, 61231, Germany
| | - Thomas Braun
- Department of Cardiac Development and Remodeling, Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, 61231, Germany
| | - Alejandro Vaquero
- Chromatin Biology Laboratory, Josep Carreras Leukaemia Research Institute (IJC), Ctra de Can Ruti, Camí de les Escoles, Badalona, Barcelona, Catalonia, 08916, Spain.
| |
Collapse
|
7
|
Rafikova G, Gilyazova I, Enikeeva K, Pavlov V, Kzhyshkowska J. Prostate Cancer: Genetics, Epigenetics and the Need for Immunological Biomarkers. Int J Mol Sci 2023; 24:12797. [PMID: 37628978 PMCID: PMC10454494 DOI: 10.3390/ijms241612797] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/08/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
Epidemiological data highlight prostate cancer as a significant global health issue, with high incidence and substantial impact on patients' quality of life. The prevalence of this disease is associated with various factors, including age, heredity, and race. Recent research in prostate cancer genetics has identified several genetic variants that may be associated with an increased risk of developing the disease. However, despite the significance of these findings, genetic markers for prostate cancer are not currently utilized in clinical practice as reliable indicators of the disease. In addition to genetics, epigenetic alterations also play a crucial role in prostate cancer development. Aberrant DNA methylation, changes in chromatin structure, and microRNA (miRNA) expression are major epigenetic events that influence oncogenesis. Existing markers for prostate cancer, such as prostate-specific antigen (PSA), have limitations in terms of sensitivity and specificity. The cost of testing, follow-up procedures, and treatment for false-positive results and overdiagnosis contributes to the overall healthcare expenditure. Improving the effectiveness of prostate cancer diagnosis and prognosis requires either narrowing the risk group by identifying new genetic factors or enhancing the sensitivity and specificity of existing markers. Immunological biomarkers (both circulating and intra-tumoral), including markers of immune response and immune dysfunction, represent a potentially useful area of research for enhancing the diagnosis and prognosis of prostate cancer. Our review emphasizes the need for developing novel immunological biomarkers to improve the diagnosis, prognosis, and management of prostate cancer. We highlight the most recent achievements in the identification of biomarkers provided by circulating monocytes and tumor-associated macrophages (TAMs). We highlight that monocyte-derived and TAM-derived biomarkers can enable to establish the missing links between genetic predisposition, hormonal metabolism and immune responses in prostate cancer.
Collapse
Affiliation(s)
- Guzel Rafikova
- Institute of Urology and Clinical Oncology, Bashkir State Medical University, 450077 Ufa, Russia (K.E.); (V.P.)
| | - Irina Gilyazova
- Institute of Urology and Clinical Oncology, Bashkir State Medical University, 450077 Ufa, Russia (K.E.); (V.P.)
- Institute of Biochemistry and Genetics, Ufa Federal Research Center of the Russian Academy of Sciences, 450054 Ufa, Russia
| | - Kadriia Enikeeva
- Institute of Urology and Clinical Oncology, Bashkir State Medical University, 450077 Ufa, Russia (K.E.); (V.P.)
| | - Valentin Pavlov
- Institute of Urology and Clinical Oncology, Bashkir State Medical University, 450077 Ufa, Russia (K.E.); (V.P.)
| | - Julia Kzhyshkowska
- Laboratory for Translational Cellular and Molecular Biomedicine, Tomsk State University, 634050 Tomsk, Russia
- Genetic Technology Laboratory, Siberian State Medical University, 634050 Tomsk, Russia
- Institute of Transfusion Medicine and Immunology, Mannheim Institute of Innate Immunosciences (MI3), Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
- German Red Cross Blood Service Baden-Württemberg—Hessen, 68167 Mannheim, Germany
| |
Collapse
|
8
|
Onyiba CI, Scarlett CJ, Weidenhofer J. The Mechanistic Roles of Sirtuins in Breast and Prostate Cancer. Cancers (Basel) 2022; 14:cancers14205118. [PMID: 36291902 PMCID: PMC9600935 DOI: 10.3390/cancers14205118] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/06/2022] [Accepted: 10/14/2022] [Indexed: 12/02/2022] Open
Abstract
Simple Summary There are diverse reports of the dual role of sirtuin genes and proteins in breast and prostate cancers. This review discusses the current information on the tumor promotion or suppression roles of SIRT1–7 in breast and prostate cancers. Precisely, we highlight that sirtuins regulate various proteins implicated in proliferation, apoptosis, autophagy, chemoresistance, invasion, migration, and metastasis of both breast and prostate cancer. We also provide evidence of the direct regulation of sirtuins by miRNAs, highlighting the consequences of this regulation in breast and prostate cancer. Overall, this review reveals the potential value of sirtuins as biomarkers and/or targets for improved treatment of breast and prostate cancers. Abstract Mammalian sirtuins (SIRT1–7) are involved in a myriad of cellular processes, including apoptosis, proliferation, differentiation, epithelial-mesenchymal transition, aging, DNA repair, senescence, viability, survival, and stress response. In this review, we discuss the current information on the mechanistic roles of SIRT1–7 and their downstream effects (tumor promotion or suppression) in cancers of the breast and prostate. Specifically, we highlight the involvement of sirtuins in the regulation of various proteins implicated in proliferation, apoptosis, autophagy, chemoresistance, invasion, migration, and metastasis of breast and prostate cancer. Additionally, we highlight the available information regarding SIRT1–7 regulation by miRNAs, laying much emphasis on the consequences in the progression of breast and prostate cancer.
Collapse
Affiliation(s)
- Cosmos Ifeanyi Onyiba
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Ourimbah, NSW 2258, Australia
- Correspondence:
| | - Christopher J. Scarlett
- School of Environmental and Life Sciences, College of Engineering, Science and Environment, University of Newcastle, Ourimbah, NSW 2258, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| | - Judith Weidenhofer
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Ourimbah, NSW 2258, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| |
Collapse
|
9
|
Ashrafizadeh M, Paskeh MDA, Mirzaei S, Gholami MH, Zarrabi A, Hashemi F, Hushmandi K, Hashemi M, Nabavi N, Crea F, Ren J, Klionsky DJ, Kumar AP, Wang Y. Targeting autophagy in prostate cancer: preclinical and clinical evidence for therapeutic response. J Exp Clin Cancer Res 2022; 41:105. [PMID: 35317831 PMCID: PMC8939209 DOI: 10.1186/s13046-022-02293-6] [Citation(s) in RCA: 84] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 02/16/2022] [Indexed: 02/08/2023] Open
Abstract
Prostate cancer is a leading cause of death worldwide and new estimates revealed prostate cancer as the leading cause of death in men in 2021. Therefore, new strategies are pertinent in the treatment of this malignant disease. Macroautophagy/autophagy is a “self-degradation” mechanism capable of facilitating the turnover of long-lived and toxic macromolecules and organelles. Recently, attention has been drawn towards the role of autophagy in cancer and how its modulation provides effective cancer therapy. In the present review, we provide a mechanistic discussion of autophagy in prostate cancer. Autophagy can promote/inhibit proliferation and survival of prostate cancer cells. Besides, metastasis of prostate cancer cells is affected (via induction and inhibition) by autophagy. Autophagy can affect the response of prostate cancer cells to therapy such as chemotherapy and radiotherapy, given the close association between autophagy and apoptosis. Increasing evidence has demonstrated that upstream mediators such as AMPK, non-coding RNAs, KLF5, MTOR and others regulate autophagy in prostate cancer. Anti-tumor compounds, for instance phytochemicals, dually inhibit or induce autophagy in prostate cancer therapy. For improving prostate cancer therapy, nanotherapeutics such as chitosan nanoparticles have been developed. With respect to the context-dependent role of autophagy in prostate cancer, genetic tools such as siRNA and CRISPR-Cas9 can be utilized for targeting autophagic genes. Finally, these findings can be translated into preclinical and clinical studies to improve survival and prognosis of prostate cancer patients. • Prostate cancer is among the leading causes of death in men where targeting autophagy is of importance in treatment; • Autophagy governs proliferation and metastasis capacity of prostate cancer cells; • Autophagy modulation is of interest in improving the therapeutic response of prostate cancer cells; • Molecular pathways, especially involving non-coding RNAs, regulate autophagy in prostate cancer; • Autophagy possesses both diagnostic and prognostic roles in prostate cancer, with promises for clinical application.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla, 34956, Istanbul, Turkey.
| | - Mahshid Deldar Abad Paskeh
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.,Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | | | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, 34396, Istanbul, Turkey
| | - Farid Hashemi
- Department of Comparative Biosciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, 1417466191, Iran
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology & Zoonoses, Faculty of Veterinary Medicine University of Tehran, Tehran, Iran
| | - Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.,Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Noushin Nabavi
- Department of Urological Sciences and Vancouver Prostate Centre, University of British Columbia, V6H3Z6, Vancouver, BC, Canada
| | - Francesco Crea
- Cancer Research Group-School of Life Health and Chemical Sciences, The Open University, Walton Hall, Milton Keynes, MK7 6AA, UK
| | - Jun Ren
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98195, USA.,Shanghai Institute of Cardiovascular Diseases, Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Daniel J Klionsky
- Life Sciences Institute & Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Alan Prem Kumar
- Cancer Science Institute of Singapore and Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore. .,NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| | - Yuzhuo Wang
- Department of Urological Sciences and Vancouver Prostate Centre, University of British Columbia, V6H3Z6, Vancouver, BC, Canada.
| |
Collapse
|
10
|
Wu MH, Hui SC, Chen YS, Chiou HL, Lin CY, Lee CH, Hsieh YH. Norcantharidin combined with paclitaxel induces endoplasmic reticulum stress mediated apoptotic effect in prostate cancer cells by targeting SIRT7 expression. ENVIRONMENTAL TOXICOLOGY 2021; 36:2206-2216. [PMID: 34272796 DOI: 10.1002/tox.23334] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 06/15/2021] [Accepted: 07/07/2021] [Indexed: 06/13/2023]
Abstract
Prostate cancer (PCa), an extremely common malignancy in males, is the most prevalent disease in several countries. Norcantharidin (NCTD) has antiproliferation, antimetastasis, apoptosis, and autophagy effects in various tumor cells. Nevertheless, the antitumor effect of NCTD combined with paclitaxel (PTX), a chemotherapeutic drug, in PCa remains unknown. The cell growth, proliferative rate, cell cycle distribution, and cell death were determined by 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyltetrazolium bromide, colony formation assay, PI staining, and Annexin V/PI staining by flow cytomertry, whereas the mitochondrial membrane potential (MMP) and endoplasmic reticulum (ER) stress was evaluated using the MitoPotential assay and ER-ID red assay. We also evaluated the protein and mRNA expression of SIRTs by Western blotting and qRTPCR assay. Overexpression effectivity was measured by DNA transfection assay. Our study showed that cell viability and proliferative PC3 and DU145 rates were effectively inhibited after NCTD-PTX combination. We also found that NCTD-PTX combination treatment significantly enhance G2/M phase arrest, induction of cell death and ER stress, loss of MMP, and ER- or apoptotic-related protein expression. Furthermore, NCTD-PTX combination treatment was significantly decreasing the protein and mRNA expression of SIRT7 in PCa cells. Combination therapy effectively reduced cell viability, ER stress-mediated apoptosis and p-eIF2α/ATF4/CHOP/cleaved-PARP expression inhibition in SIRT7 overexpression of PCa cells. These results indicate that NCTD combined with PTX induces ER stress-mediated apoptosis of PCa cells by regulating the SIRT7 expression axis. Moreover, combination therapy may become a potential therapeutic strategy against human PCa.
Collapse
Affiliation(s)
- Min-Hua Wu
- Laboratory Department, Chung-Kang Branch, Cheng-Ching General Hospital, Taichung, Taiwan
- Department of Medicinal Botanicals and Health Applications, Da-Yeh University, Chunghua, Taiwan
| | - Su-Chun Hui
- Laboratory Department, Chung-Kang Branch, Cheng-Ching General Hospital, Taichung, Taiwan
| | - Yong-Syuan Chen
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Hui-Ling Chiou
- School of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung, Taiwan
| | - Ching-Yi Lin
- Division of Chest Medicine, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Chien-Hsing Lee
- Division of Pediatric Surgery, Department of Surgery, China Medical University Children's Hospital, Taichung, Taiwan
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Yi-Hsien Hsieh
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
11
|
Macedo-Silva C, Benedetti R, Ciardiello F, Cappabianca S, Jerónimo C, Altucci L. Epigenetic mechanisms underlying prostate cancer radioresistance. Clin Epigenetics 2021; 13:125. [PMID: 34103085 PMCID: PMC8186094 DOI: 10.1186/s13148-021-01111-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 06/02/2021] [Indexed: 12/24/2022] Open
Abstract
Radiotherapy (RT) is one of the mainstay treatments for prostate cancer (PCa), a highly prevalent neoplasm among males worldwide. About 30% of newly diagnosed PCa patients receive RT with a curative intent. However, biochemical relapse occurs in 20–40% of advanced PCa treated with RT either alone or in combination with adjuvant-hormonal therapy. Epigenetic alterations, frequently associated with molecular variations in PCa, contribute to the acquisition of a radioresistant phenotype. Increased DNA damage repair and cell cycle deregulation decreases radio-response in PCa patients. Moreover, the interplay between epigenome and cell growth pathways is extensively described in published literature. Importantly, as the clinical pattern of PCa ranges from an indolent tumor to an aggressive disease, discovering specific targetable epigenetic molecules able to overcome and predict PCa radioresistance is urgently needed. Currently, histone-deacetylase and DNA-methyltransferase inhibitors are the most studied classes of chromatin-modifying drugs (so-called ‘epidrugs’) within cancer radiosensitization context. Nonetheless, the lack of reliable validation trials is a foremost drawback. This review summarizes the major epigenetically induced changes in radioresistant-like PCa cells and describes recently reported targeted epigenetic therapies in pre-clinical and clinical settings. ![]()
Collapse
Affiliation(s)
- Catarina Macedo-Silva
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Vico L. De Crecchio 7, 80138, Naplei, Italy.,Cancer Biology and Epigenetics Group, Research Center at Portuguese Oncology Institute of Porto, F Bdg, 1st Floor, Rua Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal
| | - Rosaria Benedetti
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Vico L. De Crecchio 7, 80138, Naplei, Italy
| | - Fortunato Ciardiello
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Vico L. De Crecchio 7, 80138, Naplei, Italy
| | - Salvatore Cappabianca
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Vico L. De Crecchio 7, 80138, Naplei, Italy
| | - Carmen Jerónimo
- Cancer Biology and Epigenetics Group, Research Center at Portuguese Oncology Institute of Porto, F Bdg, 1st Floor, Rua Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal. .,Department of Pathology and Molecular Immunology at School of Medicine and Biomedical Sciences, University of Porto (ICBAS-UP), Porto, Portugal.
| | - Lucia Altucci
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Vico L. De Crecchio 7, 80138, Naplei, Italy.
| |
Collapse
|
12
|
Samaržija I. Post-Translational Modifications That Drive Prostate Cancer Progression. Biomolecules 2021; 11:247. [PMID: 33572160 PMCID: PMC7915076 DOI: 10.3390/biom11020247] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 02/04/2021] [Accepted: 02/06/2021] [Indexed: 02/07/2023] Open
Abstract
While a protein primary structure is determined by genetic code, its specific functional form is mostly achieved in a dynamic interplay that includes actions of many enzymes involved in post-translational modifications. This versatile repertoire is widely used by cells to direct their response to external stimuli, regulate transcription and protein localization and to keep proteostasis. Herein, post-translational modifications with evident potency to drive prostate cancer are explored. A comprehensive list of proteome-wide and single protein post-translational modifications and their involvement in phenotypic outcomes is presented. Specifically, the data on phosphorylation, glycosylation, ubiquitination, SUMOylation, acetylation, and lipidation in prostate cancer and the enzymes involved are collected. This type of knowledge is especially valuable in cases when cancer cells do not differ in the expression or mutational status of a protein, but its differential activity is regulated on the level of post-translational modifications. Since their driving roles in prostate cancer, post-translational modifications are widely studied in attempts to advance prostate cancer treatment. Current strategies that exploit the potential of post-translational modifications in prostate cancer therapy are presented.
Collapse
Affiliation(s)
- Ivana Samaržija
- Laboratory for Epigenomics, Division of Molecular Medicine, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| |
Collapse
|
13
|
The SIRT3 and SIRT6 Promote Prostate Cancer Progression by Inhibiting Necroptosis-Mediated Innate Immune Response. J Immunol Res 2020; 2020:8820355. [PMID: 33282964 PMCID: PMC7685829 DOI: 10.1155/2020/8820355] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 09/17/2020] [Accepted: 10/23/2020] [Indexed: 12/24/2022] Open
Abstract
The sirtuins (SIRTs), including seven family members, belong to class III histone deacetylase (HDAC) enzymes, which have been intensively investigated in cancers. Although the function of SIRTs in the cancer immunology is explored, SIRT-specific mechanisms regulating necroptosis-related innate immune response are not clear. In our present study, we found that both the mRNA and protein expression levels of SIRT3 and SIRT6 are significantly increased in the PCa tissues (HR, CI P = 3.30E - 03; HR, CI P = 2.35E - 08; and HR, CI P = 9.20E - 08) and were associated with patients' Gleason score and nodal metastasis. Furthermore, multivariate analysis showed that the PCa patients with higher expression levels of SIRT3 and SIRT6 had shorter overall survival (OS). Mechanistically, we found that SIRT3 and SIRT6 promote prostate cancer progress by inhibiting RIPK3-mediated necroptosis and innate immune response. Knockdown of both SIRT3 and SIRT6 not only activates TNF-induced necroptosis but also refreshes the corresponding recruitment of macrophages and neutrophils. Overall, our study identified that SIRT3 and SIRT6 are key regulators of necroptosis during prostate cancer progression.
Collapse
|
14
|
Wang W, Im J, Kim S, Jang S, Han Y, Yang KM, Kim SJ, Dhanasekaran DN, Song YS. ROS-Induced SIRT2 Upregulation Contributes to Cisplatin Sensitivity in Ovarian Cancer. Antioxidants (Basel) 2020; 9:antiox9111137. [PMID: 33207824 PMCID: PMC7698236 DOI: 10.3390/antiox9111137] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/12/2020] [Accepted: 11/13/2020] [Indexed: 01/22/2023] Open
Abstract
Cisplatin resistance remains a significant obstacle for improving the clinical outcome of ovarian cancer patients. Recent studies have demonstrated that cisplatin is an important inducer of intracellullar reactive oxygen species (ROS), triggering cancer cell death. Sirtuin 2 (SIRT2), a member of class III NAD+ dependent histone deacetylases (HDACs), has been reported to be involved in regulating cancer hallmarks including drug response. In this study, we aimed to identify the role of SIRT2 in oxidative stress and cisplatin response in cancer. Two ovarian cancer cell lines featuring different sensitivities to cisplatin were used in this study. We found different expression patterns of SIRT2 in cisplatin-sensitive (A2780/S) and cisplatin-resistant (A2780/CP) cancer cells with cisplatin treatment, where SIRT2 expression was augmented only in A2780/S cells. Furthermore, cisplatin-induced ROS generation was responsible for the upregulation of SIRT2 in A2780/S cells, whereas overexpression of SIRT2 significantly enhanced the sensitivity of cisplatin-resistant counterpart cells to cisplatin. Our study proposes that targeting SIRT2 may provide new strategies to potentiate platinum-based chemotherapy in ovarian cancer patients.
Collapse
Affiliation(s)
- Wenyu Wang
- Interdisciplinary Program in Cancer Biology, Seoul National University College of Medicine, Seoul 03080, Korea;
- Cancer Research Institute, Seoul National University College of Medicine, Seoul 03080, Korea; (J.I.); (S.J.); (Y.H.)
| | - Jihye Im
- Cancer Research Institute, Seoul National University College of Medicine, Seoul 03080, Korea; (J.I.); (S.J.); (Y.H.)
- WCU Biomodulation, Department of Agricultural Biotechnology, Seoul National University, Seoul 03080, Korea
| | - Soochi Kim
- Department of Neurology and Neurological Sciences, Stanford University, School of Medicine, Stanford, CA 94305-5101, USA;
| | - Suin Jang
- Cancer Research Institute, Seoul National University College of Medicine, Seoul 03080, Korea; (J.I.); (S.J.); (Y.H.)
- WCU Biomodulation, Department of Agricultural Biotechnology, Seoul National University, Seoul 03080, Korea
| | - Youngjin Han
- Cancer Research Institute, Seoul National University College of Medicine, Seoul 03080, Korea; (J.I.); (S.J.); (Y.H.)
- WCU Biomodulation, Department of Agricultural Biotechnology, Seoul National University, Seoul 03080, Korea
| | - Kyung-Min Yang
- Precision Medicine Research Center, Advanced Institute of Convergence Technology, Seoul National University, Suwon, Gyeonggi-do 16229, Korea; (K.-M.Y.); (S.-J.K.)
| | - Seong-Jin Kim
- Precision Medicine Research Center, Advanced Institute of Convergence Technology, Seoul National University, Suwon, Gyeonggi-do 16229, Korea; (K.-M.Y.); (S.-J.K.)
- Department of Transdisciplinary Studies, Graduate School of Convergence Science and Technology, Seoul National University, Suwon, Gyeonggi-do 16229, Korea
- MedPacto Inc., 92, Myeongdal-ro, Seocho-gu, Seoul 06668, Korea
| | - Danny N. Dhanasekaran
- Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA;
- Department of Cell Biology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Yong Sang Song
- Interdisciplinary Program in Cancer Biology, Seoul National University College of Medicine, Seoul 03080, Korea;
- Cancer Research Institute, Seoul National University College of Medicine, Seoul 03080, Korea; (J.I.); (S.J.); (Y.H.)
- WCU Biomodulation, Department of Agricultural Biotechnology, Seoul National University, Seoul 03080, Korea
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul 03080, Korea
- Correspondence: ; Tel.: +82-2-2072-2822
| |
Collapse
|
15
|
Zhao Y, Ye X, Chen R, Gao Q, Zhao D, Ling C, Qian Y, Xu C, Tao M, Xie Y. Sirtuin 7 promotes non‑small cell lung cancer progression by facilitating G1/S phase and epithelial‑mesenchymal transition and activating AKT and ERK1/2 signaling. Oncol Rep 2020; 44:959-972. [PMID: 32705247 PMCID: PMC7388485 DOI: 10.3892/or.2020.7672] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 05/29/2020] [Indexed: 12/11/2022] Open
Abstract
Increasing evidence has indicated the roles of sirtuin 7 (SIRT7) in numerous human cancers. However, the effects and the clinical significance of SIRT7 in human lung cancer is largely unknown. The present research demonstrated that SIRT7 was increased in human lung cancer tumor tissues. SIRT7 upregulation was associated with clinicopathological characteristics of lung cancer malignancy including positive lymph node metastasis, high pathologic stage and large tumor size. SIRT7 was also upregulated in human non-small cell lung cancer (NSCLC) cell lines. Furthermore SIRT7-overexpressed A549 (A549-SIRT7) and SIRT7-knocked down H292 (H292-shSIRT7) human NSCLC cell lines were established. Using these NSCLC cells and xenograft mouse models, it was revealed that SIRT7 overexpression markedly promoted growth and G1 to S cell cycle phase transition as well as migration, invasion and distant lung metastasis in A549 NSCLC cells, whereas SIRT7 knockdown suppressed these processes in H292 NSCLC cells. Mechanistically, in A549 NSCLC cells, SIRT7 overexpression significantly activated not only protein kinase B (AKT) signaling but also extracellular signal-regulated kinase 1/2 (ERK1/2) signaling. SIRT7 overexpression also significantly downregulated cyclin-dependent kinase (CDK) inhibitors including p21 and p27 as well as upregulated cyclins including cyclin D1 and cyclin E1, and CDKs including CDK2 and CDK4. Notably, the epithelial-mesenchymal transition (EMT) process of A549 NSCLC cells was facilitated by SIRT7 overexpression, as evidenced by E-cadherin epithelial marker downregulation and mesenchymal markers (N-cadherin, vimentin, Snail and Slug) upregulation. In addition, SIRT7 knockdown in H292 NSCLC cells exhibited the opposite regulatory effects. Moreover, inhibition of AKT signaling abated the promoting effects of SIRT7 in NSCLC cell proliferation and EMT progression. The present data indicated that SIRT7 accelerated human NSCLC cell growth and metastasis possibly by promotion of G1 to S-phase transition and EMT through modulation of the expression of G1-phase checkpoint molecules and EMT markers as well as activation of AKT and ERK1/2 signaling. SIRT7 could be an innovative potential target for human NSCLC therapy.
Collapse
Affiliation(s)
- Yingying Zhao
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Xia Ye
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Ruifang Chen
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Qian Gao
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Daguo Zhao
- Department of Respiratory Medicine, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Chunhua Ling
- Department of Respiratory Medicine, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Yulan Qian
- Department of Pharmacy, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Chun Xu
- Department of Cardio‑Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Min Tao
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Yufeng Xie
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| |
Collapse
|
16
|
Li Y, Shi H, Yuan J, Qiao L, Dong L, Wang Y. Downregulation of circular RNA circPVT1 restricts cell growth of hepatocellular carcinoma through downregulation of Sirtuin 7 via microRNA-3666. Clin Exp Pharmacol Physiol 2020; 47:1291-1300. [PMID: 32017171 DOI: 10.1111/1440-1681.13273] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 12/20/2019] [Accepted: 02/01/2020] [Indexed: 01/16/2023]
Abstract
Circular RNAs (circRNAs) have been identified recently as pivotal regulators in the development and progression of cancers, generally by acting as competing endogenous RNAs of microRNAs (miRNAs) to regulate gene expression. The dysregulation of circRNAs in hepatocellular carcinoma (HCC) has attracted much attention, but the precise role of circRNAs in HCC remains largely unknown. In this study, we aimed to investigate the potential role of circular RNA PVT1 (circPVT1), a newly identified cancer-related circRNA, in HCC. Herein, we found that circPVT1 expression was significantly upregulated in HCC tissues and cell lines. Knockdown of circPVT1 significantly reduced the growth and colony formation, and increased cell apoptosis, of HCC cells. Our results further identified circPVT1 as a sponge for miR-3666. Knockdown of circPVT1 significantly increased miR-3666 expression in HCC cells. Moreover, miR-3666 expression was significantly downregulated in HCC tissues and was inversely correlated with circPVT1 expression. In addition, the overexpression of miR-3666 inhibited the growth of HCC cells by targeting Sirtuin 7 (SIRT7). Notably, miR-3666 inhibition or SIRT7 overexpression partially reversed the circPVT1 knockdown-mediated inhibitory effect on HCC cell growth. Overall, these results demonstrate that downregulation of circPVT1 represses HCC cell growth by upregulating miR-3666 to inhibit SIRT7, suggesting circPVT1 as a potential therapeutic target for HCC. Our study highlights the involvement of circPVT1/miR-3666/SIRT7 in regulating HCC cell growth.
Collapse
Affiliation(s)
- Yong Li
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Haitao Shi
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jia Yuan
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Lu Qiao
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Lei Dong
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yan Wang
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
17
|
Ding M, Jiang CY, Zhang Y, Zhao J, Han BM, Xia SJ. SIRT7 depletion inhibits cell proliferation and androgen-induced autophagy by suppressing the AR signaling in prostate cancer. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:28. [PMID: 32019578 PMCID: PMC6998106 DOI: 10.1186/s13046-019-1516-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 12/23/2019] [Indexed: 01/08/2023]
Abstract
BACKGROUND Sirtuin-7 (SIRT7) is associated with the maintenance of tumorigenesis. However, its functional roles and oncogenic mechanisms in prostate cancer (PCa) are poorly understood. Here, we investigated the roles and underlying molecular mechanisms of SIRT7 in PCa cell growth and androgen-induced autophagy. METHODS The LNCap and 22Rv1 PCa cell lines were subjected to quantitative reverse transcription (RT)-PCR to characterize their genes encoding SIRT7, AR, and SMAD4. The proteins produced from these genes were quantified by western blotting and immunoprecipitation analysis. SIRT7-depleted cells were produced by transfection with plasmid vectors bearing short hairpin RNAs against SIRT7. The proliferation of each cell line was assessed by CCK8 and EdU assays. Autophagic flux was tracked by mRFP-GFP-LC3 adenovirus under an immunofluorescence microscope. Apoptosis was evaluated by flow cytometry. Tumors were induced in mouse axillae by injection of the cell lines into mice. Tumor morphology was examined by immunohistochemistry and relative tumor growth and metastases were compared by a bioluminescence-based in vivo imaging system. RESULTS SIRT7 depletion significantly inhibited cell proliferation, androgen-induced autophagy, and invasion in LNCap and 22Rv1 cells (in vitro) and mouse xenograft tumors induced by injection of these cells (in vivo). SIRT7 knockdown also increased the sensitivity of PCa cells to radiation. Immunohistochemical analysis of 93 specimens and bioinformatic analysis revealed that SIRT7 expression was positively associated with androgen receptor (AR). Moreover, the AR signal pathway participated in SIRT7-mediated regulation of PCa cell proliferation, autophagy, and invasion. SIRT7 depletion downregulated the AR signal pathway by upregulating the level of SMAD4 protein in PCa cells. CONCLUSION SIRT7 plays an important role in the development and progression of human PCa and may be a promising prognostic marker for prostate cancer.
Collapse
Affiliation(s)
- Mao Ding
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No.100 Haining Road, Hongkou district, Shanghai, 200080, China
| | - Chen-Yi Jiang
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No.100 Haining Road, Hongkou district, Shanghai, 200080, China
| | - Yu Zhang
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No.100 Haining Road, Hongkou district, Shanghai, 200080, China
| | - Jing Zhao
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No.100 Haining Road, Hongkou district, Shanghai, 200080, China
| | - Bang-Min Han
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No.100 Haining Road, Hongkou district, Shanghai, 200080, China.
| | - Shu-Jie Xia
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No.100 Haining Road, Hongkou district, Shanghai, 200080, China.
| |
Collapse
|
18
|
Hassell KN. Histone Deacetylases and their Inhibitors in Cancer Epigenetics. Diseases 2019; 7:diseases7040057. [PMID: 31683808 PMCID: PMC6955926 DOI: 10.3390/diseases7040057] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 10/25/2019] [Accepted: 10/30/2019] [Indexed: 02/06/2023] Open
Abstract
Histone deacetylases (HDAC) and histone deacetylase inhibitors (HDACi) have greatly impacted the war on cancer. Their role in epigenetics has significantly altered the development of anticancer drugs used to treat the most rare, persistent forms of cancer. During transcription, HDAC and HDACi are used to regulate the genetic mutations found in cancerous cells by removing and/or preventing the removal of the acetyl group on specific histones. This activity determines the relaxed or condensed conformation of the nucleosome, changing the accessibility zones for transcription factors. These modifications lead to other biological processes for the cell, including cell cycle progression, proliferation, and differentiation. Each HDAC and HDACi class or group has a distinctive mechanism of action that can be utilized to halt the progression of cancerous cell growth. While the use of HDAC- and HDACi-derived compounds are relatively new in treatment of cancers, they have a proven efficacy when the appropriately utilized. This following manuscript highlights the mechanisms of action utilized by HDAC and HDACi in various cancer, their role in epigenetics, current drug manufacturers, and the impact predicative modeling systems have on cancer therapeutic drug discovery.
Collapse
Affiliation(s)
- Kelly N Hassell
- Department of Biology, College of St. Elizabeth, Morristown, NJ 07960, USA.
| |
Collapse
|
19
|
H3K18Ac as a Marker of Cancer Progression and Potential Target of Anti-Cancer Therapy. Cells 2019; 8:cells8050485. [PMID: 31121824 PMCID: PMC6562857 DOI: 10.3390/cells8050485] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 05/13/2019] [Accepted: 05/16/2019] [Indexed: 02/07/2023] Open
Abstract
Acetylation and deacetylation are posttranslational modifications (PTMs) which affect the regulation of chromatin structure and its remodeling. Acetylation of histone 3 at lysine placed on position 18 (H3K18Ac) plays an important role in driving progression of many types of cancer, including breast, colon, lung, hepatocellular, pancreatic, prostate, and thyroid cancer. The aim of this review is to analyze and discuss the newest findings regarding the role of H3K18Ac and acetylation of other histones in carcinogenesis. We summarize the level of H3K18Ac in different cancer cell lines and analyze its association with patients’ outcomes, including overall survival (OS), progression-free survival (PFS), and disease-free survival (DFS). Finally, we describe future perspectives of cancer therapeutic strategies based on H3K18 modifications.
Collapse
|
20
|
Carafa V, Altucci L, Nebbioso A. Dual Tumor Suppressor and Tumor Promoter Action of Sirtuins in Determining Malignant Phenotype. Front Pharmacol 2019; 10:38. [PMID: 30761005 PMCID: PMC6363704 DOI: 10.3389/fphar.2019.00038] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 01/14/2019] [Indexed: 12/13/2022] Open
Abstract
Sirtuins (SIRTs), class III histone deacetylases, are differentially expressed in several human cancers, where they display both oncogenic and tumor-suppressive properties depending on cellular context and experimental conditions. SIRTs are involved in many important biological processes and play a critical role in cancer initiation, promotion, and progression. A growing body of evidence indicates the involvement of SIRTs in regulating three important tumor processes: epithelial-to-mesenchymal transition (EMT), invasion, and metastasis. Many SIRTs are responsible for cellular metabolic reprogramming and drug resistance by inactivating cell death pathways and promoting uncontrolled proliferation. In this review, we summarize current knowledge on the role of SIRTs in cancer and discuss their puzzling dual function as tumor suppressors and tumor promoters, important for the future development of novel tailored SIRT-based cancer therapies.
Collapse
Affiliation(s)
- Vincenzo Carafa
- Dipartimento di Medicina di Precisione, Università degli Studi della Campania Luigi Vanvitelli, Naples, Italy
| | - Lucia Altucci
- Dipartimento di Medicina di Precisione, Università degli Studi della Campania Luigi Vanvitelli, Naples, Italy
| | - Angela Nebbioso
- Dipartimento di Medicina di Precisione, Università degli Studi della Campania Luigi Vanvitelli, Naples, Italy
| |
Collapse
|
21
|
Fang P, Xue Y, Zhang Y, Fan N, Ou L, Leng L, Pan J, Wang X. SIRT7 regulates the TGF-β1-induced proliferation and migration of mouse airway smooth muscle cells by modulating the expression of TGF-β receptor I. Biomed Pharmacother 2018; 104:781-787. [PMID: 29843083 DOI: 10.1016/j.biopha.2018.05.060] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 05/10/2018] [Accepted: 05/14/2018] [Indexed: 01/01/2023] Open
Abstract
Accumulating evidence shows that sirtuin 7 (SIRT7), a key mediator of many cellular activities, plays an important role in the pathogenesis of various diseases; however, little is known about the role of SIRT7 in asthma, which is characterized by airway remodeling. This study investigated the potential role of SIRT7 in regulating the proliferation and migration of airway smooth muscle (ASM) cells, which are critical events during airway remodeling in asthmatic conditions. The results demonstrated that SIRT7 expression was significantly upregulated in ASM cells treated with transforming growth factor-beta 1 (TGF-β1). Knockdown of SIRT7 inhibited the proliferation, promoted the apoptosis, and suppressed the migration of TGF-β1-treated ASM cells, while overexpression of SIRT7 had the opposite effect. Moreover, knockdown of SIRT7 inhibited protein expression of the TGF-β receptor I (TβRI), whilst overexpression of SIRT7 promoted the expression of TβRI. Importantly, knockdown of TβRI partially reversed the stimulatory effect of SIRT7 overexpression on the TGF-β1-induced proliferation and migration of ASM cells. Taken together, these results demonstrate that SIRT7 is involved in regulating TGF-β1-induced ASM cell proliferation and migration by regulating the expression of TβRI, thus indicating an important role of SIRT7 during airway remodeling in asthma.
Collapse
Affiliation(s)
- Ping Fang
- Division of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital, Xi'an Jiaotong University, School of Medicine, Xi'an, 710004, Shaanxi, PR China.
| | - Yu Xue
- Division of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital, Xi'an Jiaotong University, School of Medicine, Xi'an, 710004, Shaanxi, PR China; Internal Medicine Department, Section Four, Xi'an Chest Hospital, Xi'an, 710100, Shaanxi, PR China
| | - Yonghong Zhang
- Division of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital, Xi'an Jiaotong University, School of Medicine, Xi'an, 710004, Shaanxi, PR China
| | - Na Fan
- Division of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital, Xi'an Jiaotong University, School of Medicine, Xi'an, 710004, Shaanxi, PR China
| | - Ling Ou
- Division of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital, Xi'an Jiaotong University, School of Medicine, Xi'an, 710004, Shaanxi, PR China; Respiratory Department, Xi'an Children's Hospital, Xi'an, 7l0003, Shaanxi, PR China
| | - Lingjuan Leng
- Division of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital, Xi'an Jiaotong University, School of Medicine, Xi'an, 710004, Shaanxi, PR China; Internal Medicine, Hospital of Xidian University, Xi'an, 710126, Shaanxi, PR China
| | - Jianli Pan
- Division of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital, Xi'an Jiaotong University, School of Medicine, Xi'an, 710004, Shaanxi, PR China; Respiratory Department, Xi'an Children's Hospital, Xi'an, 7l0003, Shaanxi, PR China
| | - Xugeng Wang
- Division of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital, Xi'an Jiaotong University, School of Medicine, Xi'an, 710004, Shaanxi, PR China
| |
Collapse
|
22
|
Wu D, Li Y, Zhu KS, Wang H, Zhu WG. Advances in Cellular Characterization of the Sirtuin Isoform, SIRT7. Front Endocrinol (Lausanne) 2018; 9:652. [PMID: 30510540 PMCID: PMC6253933 DOI: 10.3389/fendo.2018.00652] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 10/17/2018] [Indexed: 12/15/2022] Open
Abstract
SIRT7 is one of seven mammalian sirtuins that functions as an NAD+-dependent histone/protein deacetylase. SIRT7 is the least well-known member of the sirtuin family, but recent efforts have identified its involvement in various cellular processes, such as ribosome biogenesis, gene expression, cellular metabolism and cancer. Here we provide an update on the functions and mechanisms of SIRT7 in cellular regulation and disease.
Collapse
Affiliation(s)
- Di Wu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Peking University Health Science Center, School of Basic Medical Sciences, Beijing, China
- School of Basic Medical Sciences, Institute of Systems Biomedicine, Peking University Health Science Center, Beijing, China
| | - Yinglu Li
- Department of Biochemistry and Molecular Biology, Shenzhen University Health Science Center, Shenzhen, China
| | - Kathy S. Zhu
- Peking University Health Science Center, School of Public Health, Beijing, China
| | - Haiying Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Peking University Health Science Center, School of Basic Medical Sciences, Beijing, China
- Department of Biochemistry and Molecular Biology, Peking University Health Science Center, School of Basic Medical Sciences, Beijing, China
- *Correspondence: Wei-Guo Zhu ;
| | - Wei-Guo Zhu
- Department of Biochemistry and Molecular Biology, Shenzhen University Health Science Center, Shenzhen, China
- Haiying Wang
| |
Collapse
|