1
|
Sharma V, Fernando V, Zheng X, Sweef O, Choi ES, Thomas V, Furuta S. Immunogenic shift of arginine metabolism triggers systemic metabolic and immunological reprogramming to prevent HER2+ breast cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.23.619827. [PMID: 39484369 PMCID: PMC11527010 DOI: 10.1101/2024.10.23.619827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Arginine metabolism in tumors is often shunted into the pathway producing pro-tumor and immune suppressive polyamines (PAs), while downmodulating the alternative nitric oxide (NO) synthesis pathway. Aiming to correct arginine metabolism in tumors, arginine deprivation therapy and inhibitors of PA synthesis have been developed. Despite some therapeutic advantages, these approaches have often yielded severe side effects, making it necessary to explore an alternative strategy. We previously reported that supplementing SEP, the endogenous precursor of BH4 (the essential NO synthase cofactor), could correct arginine metabolism in tumor cells and tumor-associated macrophages (TAMs) and induce their metabolic and phenotypic reprogramming. We saw that oral SEP treatment effectively suppressed the growth of HER2-positive mammary tumors in animals. SEP also has no reported dose-dependent toxicity in clinical trials for metabolic disorders. In the present study, we report that a long-term use of SEP in animals susceptible to HER2-positive mammary tumors effectively prevented tumor occurrence. These SEP-treated animals had undergone reprogramming of the systemic metabolism and immunity, elevating total T cell counts in the circulation and bone marrow. Given that bone marrow-resident T cells are mostly memory T cells, it is plausible that chronic SEP treatment promoted memory T cell formation, leading to a potent tumor prevention. These findings suggest the possible roles of the SEP/BH4/NO axis in promoting memory T cell formation and its potential therapeutic utility for preventing HER2-positive breast cancer.
Collapse
Affiliation(s)
- Vandana Sharma
- Department of Cell & Cancer Biology, College of Medicine and Life Sciences, University of Toledo Health Science Campus, 3000 Arlington Ave. Toledo, OH 43614, USA
- Department of Zoology and Physiology, University of Wyoming, 1000 E. University Ave, Biological Science Building, Room 319F, Laramie, WY 82071
| | - Veani Fernando
- Department of Cell & Cancer Biology, College of Medicine and Life Sciences, University of Toledo Health Science Campus, 3000 Arlington Ave. Toledo, OH 43614, USA
- Division of Rheumatology, University of Colorado, Anschutz Medical Campus Barbara Davis Center, Mail Stop B115, 1775 Aurora Court, Aurora, Colorado 80045
| | - Xunzhen Zheng
- Department of Cell & Cancer Biology, College of Medicine and Life Sciences, University of Toledo Health Science Campus, 3000 Arlington Ave. Toledo, OH 43614, USA
| | - Osama Sweef
- MetroHealth Medical Center, Case Western Reserve University School of Medicine, Case Comprehensive Cancer Center, 2500 MetroHealth Drive, Cleveland, OH 44109
- Department of Zoology, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Eun-Seok Choi
- MetroHealth Medical Center, Case Western Reserve University School of Medicine, Case Comprehensive Cancer Center, 2500 MetroHealth Drive, Cleveland, OH 44109
| | - Venetia Thomas
- MetroHealth Medical Center, Case Western Reserve University School of Medicine, Case Comprehensive Cancer Center, 2500 MetroHealth Drive, Cleveland, OH 44109
| | - Saori Furuta
- Department of Cell & Cancer Biology, College of Medicine and Life Sciences, University of Toledo Health Science Campus, 3000 Arlington Ave. Toledo, OH 43614, USA
- MetroHealth Medical Center, Case Western Reserve University School of Medicine, Case Comprehensive Cancer Center, 2500 MetroHealth Drive, Cleveland, OH 44109
| |
Collapse
|
2
|
Liu TA, Stewart TM, Casero RA. The Synergistic Benefit of Combination Strategies Targeting Tumor Cell Polyamine Homeostasis. Int J Mol Sci 2024; 25:8173. [PMID: 39125742 PMCID: PMC11311409 DOI: 10.3390/ijms25158173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/19/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024] Open
Abstract
Mammalian polyamines, including putrescine, spermidine, and spermine, are positively charged amines that are essential for all living cells including neoplastic cells. An increasing understanding of polyamine metabolism, its molecular functions, and its role in cancer has led to the interest in targeting polyamine metabolism as an anticancer strategy, as the metabolism of polyamines is frequently dysregulated in neoplastic disease. In addition, due to compensatory mechanisms, combination therapies are clinically more promising, as agents can work synergistically to achieve an effect beyond that of each strategy as a single agent. In this article, the nature of polyamines, their association with carcinogenesis, and the potential use of targeting polyamine metabolism in treating and preventing cancer as well as combination therapies are described. The goal is to review the latest strategies for targeting polyamine metabolism, highlighting new avenues for exploiting aberrant polyamine homeostasis for anticancer therapy and the mechanisms behind them.
Collapse
Affiliation(s)
- Ting-Ann Liu
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA;
| | - Tracy Murray Stewart
- The Sidney Kimmel Comprehensive Cancer Center, School of Medicine, Johns Hopkins University, Baltimore, MD 21287, USA;
| | - Robert A. Casero
- The Sidney Kimmel Comprehensive Cancer Center, School of Medicine, Johns Hopkins University, Baltimore, MD 21287, USA;
| |
Collapse
|
3
|
Uher O, Hadrava Vanova K, Taïeb D, Calsina B, Robledo M, Clifton-Bligh R, Pacak K. The Immune Landscape of Pheochromocytoma and Paraganglioma: Current Advances and Perspectives. Endocr Rev 2024; 45:521-552. [PMID: 38377172 PMCID: PMC11244254 DOI: 10.1210/endrev/bnae005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/19/2023] [Accepted: 02/02/2024] [Indexed: 02/22/2024]
Abstract
Pheochromocytomas and paragangliomas (PPGLs) are rare neuroendocrine tumors derived from neural crest cells from adrenal medullary chromaffin tissues and extra-adrenal paraganglia, respectively. Although the current treatment for PPGLs is surgery, optimal treatment options for advanced and metastatic cases have been limited. Hence, understanding the role of the immune system in PPGL tumorigenesis can provide essential knowledge for the development of better therapeutic and tumor management strategies, especially for those with advanced and metastatic PPGLs. The first part of this review outlines the fundamental principles of the immune system and tumor microenvironment, and their role in cancer immunoediting, particularly emphasizing PPGLs. We focus on how the unique pathophysiology of PPGLs, such as their high molecular, biochemical, and imaging heterogeneity and production of several oncometabolites, creates a tumor-specific microenvironment and immunologically "cold" tumors. Thereafter, we discuss recently published studies related to the reclustering of PPGLs based on their immune signature. The second part of this review discusses future perspectives in PPGL management, including immunodiagnostic and promising immunotherapeutic approaches for converting "cold" tumors into immunologically active or "hot" tumors known for their better immunotherapy response and patient outcomes. Special emphasis is placed on potent immune-related imaging strategies and immune signatures that could be used for the reclassification, prognostication, and management of these tumors to improve patient care and prognosis. Furthermore, we introduce currently available immunotherapies and their possible combinations with other available therapies as an emerging treatment for PPGLs that targets hostile tumor environments.
Collapse
Affiliation(s)
- Ondrej Uher
- Section of Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-1109, USA
| | - Katerina Hadrava Vanova
- Section of Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-1109, USA
| | - David Taïeb
- Department of Nuclear Medicine, CHU de La Timone, Marseille 13005, France
| | - Bruna Calsina
- Hereditary Endocrine Cancer Group, Human Cancer Genetics Program, Spanish National Cancer Research Centre (CNIO), Madrid 28029, Spain
- Familiar Cancer Clinical Unit, Human Cancer Genetics Program, Spanish National Cancer Research Centre (CNIO), Madrid 28029, Spain
| | - Mercedes Robledo
- Hereditary Endocrine Cancer Group, Human Cancer Genetics Program, Spanish National Cancer Research Centre (CNIO), Madrid 28029, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Institute of Health Carlos III (ISCIII), Madrid 28029, Spain
| | - Roderick Clifton-Bligh
- Department of Endocrinology, Royal North Shore Hospital, Sydney 2065, NSW, Australia
- Cancer Genetics Laboratory, Kolling Institute, University of Sydney, Sydney 2065, NSW, Australia
| | - Karel Pacak
- Section of Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-1109, USA
| |
Collapse
|
4
|
Zhou M, Yin X, Chen B, Hu S, Zhou W. A PET probe targeting polyamine transport system for precise tumor diagnosis and therapy. Asian J Pharm Sci 2024; 19:100924. [PMID: 38903130 PMCID: PMC11186966 DOI: 10.1016/j.ajps.2024.100924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 02/02/2024] [Accepted: 03/04/2024] [Indexed: 06/22/2024] Open
Abstract
Polyamine metabolism dysregulation is a hallmark of many cancers, offering a promising avenue for early tumor theranostics. This study presents the development of a nuclear probe derived from spermidine (SPM) for dual-purpose tumor PET imaging and internal radiation therapy. The probe, radiolabeled with either [68Ga]Ga for diagnostic applications or [177Lu]Lu for therapeutic use, was synthesized with exceptional purity, stability, and specific activity. Extensive testing involving 12 different tumor cell lines revealed remarkable specificity towards B16 melanoma cells, showcasing outstanding tumor localization and target-to-non-target ratio. Mechanistic investigations employing polyamines, non-labeled precursor, and polyamine transport system (PTS) inhibitor, consistently affirmed the probe's targetability through recognition of the PTS. Notably, while previous reports indicated PTS upregulation in various tumor types for targeted therapy, this study observed no positive signals, highlighting a concentration-dependent discrepancy between targeting for therapy and diagnosis. Furthermore, when labeled with [177Lu], the probe demonstrated its therapeutic potential by effectively controlling tumor growth and extending mouse survival. Investigations into biodistribution, excretion, and biosafety in healthy humans laid a robust foundation for clinical translation. This study introduces a versatile SPM-based nuclear probe with applications in precise tumor theranostics, offering promising prospects for clinical implementation.
Collapse
Affiliation(s)
- Ming Zhou
- Department of Nuclear Medicine, Xiangya Hospital, Central South University, Changsha 410008, China
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
| | - Xiaoqin Yin
- Department of Nuclear Medicine, Xiangya Hospital, Central South University, Changsha 410008, China
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
| | - Bei Chen
- Department of Nuclear Medicine, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Shuo Hu
- Department of Nuclear Medicine, Xiangya Hospital, Central South University, Changsha 410008, China
- Key Laboratory of Biological Nanotechnology of National Health Commission, Changsha 410008, China
- National Clinical Research Center for Geriatric Disorders (Xiangya), Changsha 410008, China
| | - Wenhu Zhou
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
- National Clinical Research Center for Geriatric Disorders (Xiangya), Changsha 410008, China
| |
Collapse
|
5
|
Holbert CE, Casero RA, Stewart TM. Polyamines: the pivotal amines in influencing the tumor microenvironment. Discov Oncol 2024; 15:173. [PMID: 38761252 PMCID: PMC11102423 DOI: 10.1007/s12672-024-01034-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 05/11/2024] [Indexed: 05/20/2024] Open
Abstract
Cellular proliferation, function and survival is reliant upon maintaining appropriate intracellular polyamine levels. Due to increased metabolic needs, cancer cells elevate their polyamine pools through coordinated metabolism and uptake. High levels of polyamines have been linked to more immunosuppressive tumor microenvironments (TME) as polyamines support the growth and function of many immunosuppressive cell types such as MDSCs, macrophages and regulatory T-cells. As cancer cells and other pro-tumorigenic cell types are highly dependent on polyamines for survival, pharmacological modulation of polyamine metabolism is a promising cancer therapeutic strategy. This review covers the roles of polyamines in various cell types of the TME including both immune and stromal cells, as well as how competition for nutrients, namely polyamine precursors, influences the cellular landscape of the TME. It also details the use of polyamines as biomarkers and the ways in which polyamine depletion can increase the immunogenicity of the TME and reprogram tumors to become more responsive to immunotherapy.
Collapse
Affiliation(s)
- Cassandra E Holbert
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Robert A Casero
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Tracy Murray Stewart
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
6
|
Dussold C, Zilinger K, Turunen J, Heimberger AB, Miska J. Modulation of macrophage metabolism as an emerging immunotherapy strategy for cancer. J Clin Invest 2024; 134:e175445. [PMID: 38226622 PMCID: PMC10786697 DOI: 10.1172/jci175445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2024] Open
Abstract
Immunometabolism is a burgeoning field of research that investigates how immune cells harness nutrients to drive their growth and functions. Myeloid cells play a pivotal role in tumor biology, yet their metabolic influence on tumor growth and antitumor immune responses remains inadequately understood. This Review explores the metabolic landscape of tumor-associated macrophages, including the immunoregulatory roles of glucose, fatty acids, glutamine, and arginine, alongside the tools used to perturb their metabolism to promote antitumor immunity. The confounding role of metabolic inhibitors on our interpretation of myeloid metabolic phenotypes will also be discussed. A binary metabolic schema is currently used to describe macrophage immunological phenotypes, characterizing inflammatory M1 phenotypes, as supported by glycolysis, and immunosuppressive M2 phenotypes, as supported by oxidative phosphorylation. However, this classification likely underestimates the variety of states in vivo. Understanding these nuances will be critical when developing interventional metabolic strategies. Future research should focus on refining drug specificity and targeted delivery methods to maximize therapeutic efficacy.
Collapse
|
7
|
Liu Q, Yan X, Li R, Yuan Y, Wang J, Zhao Y, Fu J, Su J. Polyamine Signal through HCC Microenvironment: A Key Regulator of Mitochondrial Preservation and Turnover in TAMs. Int J Mol Sci 2024; 25:996. [PMID: 38256070 PMCID: PMC10816144 DOI: 10.3390/ijms25020996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/06/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common primary liver cancer, and, with increasing research on the tumor immune microenvironment (TIME), the immunosuppressive micro-environment of HCC hampers further application of immunotherapy, even though immunotherapy can provide survival benefits to patients with advanced liver cancer. Current studies suggest that polyamine metabolism is not only a key metabolic pathway for the formation of immunosuppressive phenotypes in tumor-associated macrophages (TAMs), but it is also profoundly involved in mitochondrial quality control signaling and the energy metabolism regulation process, so it is particularly important to further investigate the role of polyamine metabolism in the tumor microenvironment (TME). In this review, by summarizing the current research progress of key enzymes and substrates of the polyamine metabolic pathway in regulating TAMs and T cells, we propose that polyamine biosynthesis can intervene in the process of mitochondrial energy metabolism by affecting mitochondrial autophagy, which, in turn, regulates macrophage polarization and T cell differentiation. Polyamine metabolism may be a key target for the interactive dialog between HCC cells and immune cells such as TAMs, so interfering with polyamine metabolism may become an important entry point to break intercellular communication, providing new research space for developing polyamine metabolism-based therapy for HCC.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jing Su
- Key Laboratory of Pathobiology, Department of Pathophysiology, Ministry of Education, College of Basical Medical Sciences, Jilin University, 126 Xinmin Street, Changchun 130012, China; (Q.L.); (X.Y.); (R.L.); (Y.Y.); (J.W.); (Y.Z.); (J.F.)
| |
Collapse
|
8
|
Liu J, Tian R, Sun C, Guo Y, Dong L, Li Y, Song X. Microbial metabolites are involved in tumorigenesis and development by regulating immune responses. Front Immunol 2023; 14:1290414. [PMID: 38169949 PMCID: PMC10758836 DOI: 10.3389/fimmu.2023.1290414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 12/04/2023] [Indexed: 01/05/2024] Open
Abstract
The human microbiota is symbiotic with the host and can create a variety of metabolites. Under normal conditions, microbial metabolites can regulate host immune function and eliminate abnormal cells in a timely manner. However, when metabolite production is abnormal, the host immune system might be unable to identify and get rid of tumor cells at the early stage of carcinogenesis, which results in tumor development. The mechanisms by which intestinal microbial metabolites, including short-chain fatty acids (SCFAs), microbial tryptophan catabolites (MTCs), polyamines (PAs), hydrogen sulfide, and secondary bile acids, are involved in tumorigenesis and development by regulating immune responses are summarized in this review. SCFAs and MTCs can prevent cancer by altering the expression of enzymes and epigenetic modifications in both immune cells and intestinal epithelial cells. MTCs can also stimulate immune cell receptors to inhibit the growth and metastasis of the host cancer. SCFAs, MTCs, bacterial hydrogen sulfide and secondary bile acids can control mucosal immunity to influence the occurrence and growth of tumors. Additionally, SCFAs, MTCs, PAs and bacterial hydrogen sulfide can also affect the anti-tumor immune response in tumor therapy by regulating the function of immune cells. Microbial metabolites have a good application prospect in the clinical diagnosis and treatment of tumors, and our review provides a good basis for related research.
Collapse
Affiliation(s)
- Jiahui Liu
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
| | - Ruxian Tian
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
| | - Caiyu Sun
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
| | - Ying Guo
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
| | - Lei Dong
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
| | - Yumei Li
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
| | - Xicheng Song
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
| |
Collapse
|
9
|
Xuan M, Gu X, Li J, Huang D, Xue C, He Y. Polyamines: their significance for maintaining health and contributing to diseases. Cell Commun Signal 2023; 21:348. [PMID: 38049863 PMCID: PMC10694995 DOI: 10.1186/s12964-023-01373-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 10/29/2023] [Indexed: 12/06/2023] Open
Abstract
Polyamines are essential for the growth and proliferation of mammalian cells and are intimately involved in biological mechanisms such as DNA replication, RNA transcription, protein synthesis, and post-translational modification. These mechanisms regulate cellular proliferation, differentiation, programmed cell death, and the formation of tumors. Several studies have confirmed the positive effect of polyamines on the maintenance of health, while others have demonstrated that their activity may promote the occurrence and progression of diseases. This review examines a variety of topics, such as polyamine source and metabolism, including metabolism, transport, and the potential impact of polyamines on health and disease. In addition, a brief summary of the effects of oncogenes and signaling pathways on tumor polyamine metabolism is provided. Video Abstract.
Collapse
Affiliation(s)
- Mengjuan Xuan
- Department of Infectious Disease, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450052, Henan, China
| | - Xinyu Gu
- Department of Oncology, College of Clinical Medicine, The First Affiliated Hospital, Henan University of Science and Technology, Luoyang, 471000, Henan, China
| | - Juan Li
- Department of Infectious Disease, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450052, Henan, China
| | - Di Huang
- Department of Child Health Care, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Chen Xue
- Department of Infectious Disease, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450052, Henan, China.
| | - Yuting He
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
| |
Collapse
|
10
|
Alexander ET, Fahey E, Phanstiel O, Gilmour SK. Loss of Anti-Tumor Efficacy by Polyamine Blocking Therapy in GCN2 Null Mice. Biomedicines 2023; 11:2703. [PMID: 37893077 PMCID: PMC10604246 DOI: 10.3390/biomedicines11102703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/14/2023] [Accepted: 09/25/2023] [Indexed: 10/29/2023] Open
Abstract
GCN2 is one of the main sensors of amino acid starvation stress, and its activation in the stressful tumor microenvironment plays a crucial role in tumor survival and progression. We hypothesized that elevated polyamine biosynthesis and subsequent depletion of precursor arginine activates GCN2, thus rewiring metabolism to support tumor cell survival and drive myeloid immunosuppressive function. We sought to determine if the anti-tumor efficacy of a polyamine blocking therapy (PBT) may be mediated by its effect on GCN2. Unlike wild-type mice, PBT treatment in GCN2 knockout mice bearing syngeneic B16.F10 or EG7 tumors resulted in no tumor growth inhibition and no changes in the profile of infiltrating tumor immune cells. Studies with murine bone marrow cell cultures showed that increased polyamine metabolism and subsequent arginine depletion and GCN2 activation played an essential role in the generation and cytoprotective autophagy of myeloid derived suppressor cells (MDSCs) as well as the M2 polarization and survival of macrophages, all of which were inhibited by PBT. In all, our data suggest that polyamine-dependent GCN2 signaling in stromal cells promotes tumor growth and the development of the immunosuppressive tumor microenvironment, and that the PBT anti-tumor effect is mediated, at least in part, by targeting GCN2.
Collapse
Affiliation(s)
- Eric T. Alexander
- Lankenau Institute for Medical Research, 100 Lancaster Avenue, Wynnewood, PA 19096, USA; (E.T.A.)
| | - Erin Fahey
- Lankenau Institute for Medical Research, 100 Lancaster Avenue, Wynnewood, PA 19096, USA; (E.T.A.)
| | - Otto Phanstiel
- Department of Medical Education, College of Medicine, University of Central Florida, Biomolecular Research Annex, 12722 Research Parkway, Orlando, FL 32826, USA;
| | - Susan K. Gilmour
- Lankenau Institute for Medical Research, 100 Lancaster Avenue, Wynnewood, PA 19096, USA; (E.T.A.)
| |
Collapse
|
11
|
Elmarsafawi AG, Hesterberg RS, Fernandez MR, Yang C, Darville LN, Liu M, Koomen JM, Phanstiel O, Atkins R, Mullinax JE, Pilon-Thomas SA, Locke FL, Epling-Burnette PK, Cleveland JL. Modulating the polyamine/hypusine axis controls generation of CD8+ tissue-resident memory T cells. JCI Insight 2023; 8:e169308. [PMID: 37581943 PMCID: PMC10561731 DOI: 10.1172/jci.insight.169308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 08/08/2023] [Indexed: 08/17/2023] Open
Abstract
Glutaminolysis is a hallmark of the activation and metabolic reprogramming of T cells. Isotopic tracer analyses of antigen-activated effector CD8+ T cells revealed that glutamine is the principal carbon source for the biosynthesis of polyamines putrescine, spermidine, and spermine. These metabolites play critical roles in activation-induced T cell proliferation, as well as for the production of hypusine, which is derived from spermidine and is covalently linked to the translation elongation factor eukaryotic translation initiation factor 5A (eIF5A). Here, we demonstrated that the glutamine/polyamine/hypusine axis controlled the expression of CD69, an important regulator of tissue-resident memory T cells (Trm). Inhibition of this circuit augmented the development of Trm cells ex vivo and in vivo in the BM, a well-established niche for Trm cells. Furthermore, blocking the polyamine/hypusine axis augmented CD69 expression as well as IFN-γ and TNF-α production in (a) human CD8+ T cells from peripheral blood and sarcoma tumor infiltrating lymphocytes and (b) human CD8+ CAR-T cells. Collectively, these findings support the notion that the polyamine-hypusine circuit can be exploited to modulate Trm cells for therapeutic benefit.
Collapse
Affiliation(s)
- Aya G. Elmarsafawi
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
- Department of Tumor Biology and
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida, USA
| | - Rebecca S. Hesterberg
- Department of Tumor Biology and
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida, USA
- Cancer Biology PhD Program, University of South Florida, Tampa, Florida, USA
| | | | | | - Lancia N.F. Darville
- Proteomics and Metabolomics Core, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida, USA
| | - Min Liu
- Proteomics and Metabolomics Core, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida, USA
| | - John M. Koomen
- Proteomics and Metabolomics Core, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida, USA
| | - Otto Phanstiel
- Department of Medical Education, University of Central Florida College of Medicine, Orlando, Florida, USA
| | | | | | - Shari A. Pilon-Thomas
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida, USA
| | - Frederick L. Locke
- Department of Blood and Marrow Transplant and Cellular Immunotherapy, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida, USA
| | | | | |
Collapse
|
12
|
Zeng J, Ye Z, Shi S, Liang Y, Meng Q, Zhang Q, Le AD. Targeted inhibition of eIF5A hpu suppresses tumor growth and polarization of M2-like tumor-associated macrophages in oral cancer. Cell Death Dis 2023; 14:579. [PMID: 37653021 PMCID: PMC10471704 DOI: 10.1038/s41419-023-06109-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 08/17/2023] [Accepted: 08/22/2023] [Indexed: 09/02/2023]
Abstract
Eukaryotic initiation factor 5A2 (eIF5A2) is overexpressed in many types of cancer, and spermidine-mediated eIF5A hypusination (eIF5Ahpu) appears to be essential to most of eIF5A's biological functions, including its important role in regulating cancer cell proliferation, epithelial-mesenchymal transition (EMT), and cancer stem cell (CSC) properties as well as immune cell functions. Here we investigated the role of eIF5Ahpu in the growth of oral squamous cell carcinoma cells (OSCCs) and OSCC-induced polarization of M2-like tumor-associated macrophages (TAMs). TCGA dataset analysis revealed an overall upregulation in the mRNA expression of eIF5A2 and several key enzymes involved in polyamine (PA) metabolism in HNSCC, which was confirmed by Western blot and IHC studies. Blocking eIF5Ahpu by GC-7 but not the upstream key enzyme activities of PA metabolism, remarkably inhibited cell proliferation and the expression of EMT- and CSC-related genes in OSCC cells. In addition, blocking eIF5Ahpu robustly inhibited OSCC-induced M2-like TAM polarization in vitro. More Importantly, blocking eIF5Ahpu dramatically retarded tumor growth and infiltration/polarization of M2-like TAM in a syngeneic orthotopic murine tongue SCC model. Thus, eIF5Ahpu plays dual functions in regulating tumor cell growth and polarization of M2-TAMs in OSCC.
Collapse
Affiliation(s)
- Jincheng Zeng
- Department of Oral and Maxillofacial Surgery and Pharmacology, University of Pennsylvania School of Dental Medicine, Philadelphia, PA, USA
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, 523808, Dongguan, China
| | - Ziyu Ye
- Department of Oral and Maxillofacial Surgery and Pharmacology, University of Pennsylvania School of Dental Medicine, Philadelphia, PA, USA
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, 523808, Dongguan, China
| | - Shihong Shi
- Department of Oral and Maxillofacial Surgery and Pharmacology, University of Pennsylvania School of Dental Medicine, Philadelphia, PA, USA
| | - Yanfang Liang
- Department of Pathology, Dongguan Hospital Affiliated to Jinan University, Bin-haiwan Central Hospital of Dongguan, 523905, Dongguan, China
| | - Qingyu Meng
- Department of Oral and Maxillofacial Surgery and Pharmacology, University of Pennsylvania School of Dental Medicine, Philadelphia, PA, USA
| | - Qunzhou Zhang
- Department of Oral and Maxillofacial Surgery and Pharmacology, University of Pennsylvania School of Dental Medicine, Philadelphia, PA, USA.
| | - Anh D Le
- Department of Oral and Maxillofacial Surgery and Pharmacology, University of Pennsylvania School of Dental Medicine, Philadelphia, PA, USA.
- Department of Oral & Maxillofacial Surgery, Penn Medicine Hospital of the University of Pennsylvania, Perelman Center for Advanced Medicine, Philadelphia, PA, USA.
| |
Collapse
|
13
|
Lee MS, Dennis C, Naqvi I, Dailey L, Lorzadeh A, Ye G, Zaytouni T, Adler A, Hitchcock DS, Lin L, Hoffman MT, Bhuiyan AM, Barth JL, Machacek ME, Mino-Kenudson M, Dougan SK, Jadhav U, Clish CB, Kalaany NY. Ornithine aminotransferase supports polyamine synthesis in pancreatic cancer. Nature 2023; 616:339-347. [PMID: 36991126 PMCID: PMC10929664 DOI: 10.1038/s41586-023-05891-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 02/24/2023] [Indexed: 03/30/2023]
Abstract
There is a need to develop effective therapies for pancreatic ductal adenocarcinoma (PDA), a highly lethal malignancy with increasing incidence1 and poor prognosis2. Although targeting tumour metabolism has been the focus of intense investigation for more than a decade, tumour metabolic plasticity and high risk of toxicity have limited this anticancer strategy3,4. Here we use genetic and pharmacological approaches in human and mouse in vitro and in vivo models to show that PDA has a distinct dependence on de novo ornithine synthesis from glutamine. We find that this process, which is mediated through ornithine aminotransferase (OAT), supports polyamine synthesis and is required for tumour growth. This directional OAT activity is usually largely restricted to infancy and contrasts with the reliance of most adult normal tissues and other cancer types on arginine-derived ornithine for polyamine synthesis5,6. This dependency associates with arginine depletion in the PDA tumour microenvironment and is driven by mutant KRAS. Activated KRAS induces the expression of OAT and polyamine synthesis enzymes, leading to alterations in the transcriptome and open chromatin landscape in PDA tumour cells. The distinct dependence of PDA, but not normal tissue, on OAT-mediated de novo ornithine synthesis provides an attractive therapeutic window for treating patients with pancreatic cancer with minimal toxicity.
Collapse
Affiliation(s)
- Min-Sik Lee
- Division of Endocrinology, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Courtney Dennis
- Metabolomics Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Insia Naqvi
- Division of Endocrinology, Boston Children's Hospital, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Lucas Dailey
- Metabolomics Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Alireza Lorzadeh
- Department of Stem Cell Biology and Regenerative Medicine, Broad-CIRM Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - George Ye
- Department of Stem Cell Biology and Regenerative Medicine, Broad-CIRM Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Tamara Zaytouni
- Division of Endocrinology, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Ashley Adler
- Division of Endocrinology, Boston Children's Hospital, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Daniel S Hitchcock
- Metabolomics Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Lin Lin
- Division of Endocrinology, Boston Children's Hospital, Boston, MA, USA
| | - Megan T Hoffman
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Immunology, Harvard Medical School, Boston, MA, USA
| | - Aladdin M Bhuiyan
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Immunology, Harvard Medical School, Boston, MA, USA
- Division of Gastroenterology, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Jaimie L Barth
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
| | - Miranda E Machacek
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
- Department of Pathology, Harvard Medical School, Boston, MA, USA
| | - Mari Mino-Kenudson
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
- Department of Pathology, Harvard Medical School, Boston, MA, USA
| | - Stephanie K Dougan
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Immunology, Harvard Medical School, Boston, MA, USA
| | - Unmesh Jadhav
- Department of Stem Cell Biology and Regenerative Medicine, Broad-CIRM Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
| | - Clary B Clish
- Metabolomics Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Nada Y Kalaany
- Division of Endocrinology, Boston Children's Hospital, Boston, MA, USA.
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
14
|
Niekamp P, Kim CH. Microbial Metabolite Dysbiosis and Colorectal Cancer. Gut Liver 2023; 17:190-203. [PMID: 36632785 PMCID: PMC10018301 DOI: 10.5009/gnl220260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 08/09/2022] [Accepted: 08/18/2022] [Indexed: 01/13/2023] Open
Abstract
The global burden of colorectal cancer (CRC) is expected to continuously increase. Through research performed in the past decades, the effects of various environmental factors on CRC development have been well identified. Diet, the gut microbiota and their metabolites are key environmental factors that profoundly affect CRC development. Major microbial metabolites with a relevance for CRC prevention and pathogenesis include dietary fiber-derived short-chain fatty acids, bile acid derivatives, indole metabolites, polyamines, trimethylamine-N-oxide, formate, and hydrogen sulfide. These metabolites regulate various cell types in the intestine, leading to an altered intestinal barrier, immunity, chronic inflammation, and tumorigenesis. The physical, chemical, and metabolic properties of these metabolites along with their distinct functions to trigger host receptors appear to largely determine their effects in regulating CRC development. In this review, we will discuss the current advances in our understanding of the major CRC-regulating microbial metabolites, focusing on their production and interactive effects on immune responses and tumorigenesis in the colon.
Collapse
Affiliation(s)
- Patrick Niekamp
- Department of Pathology and Mary H. Weiser Food Allergy Center, Rogel Cancer Center, University of Michigan School of Medicine, Ann Arbor, MI, USA
| | - Chang H. Kim
- Department of Pathology and Mary H. Weiser Food Allergy Center, Rogel Cancer Center, University of Michigan School of Medicine, Ann Arbor, MI, USA
| |
Collapse
|
15
|
Azfar M, van Veen S, Houdou M, Hamouda NN, Eggermont J, Vangheluwe P. P5B-ATPases in the mammalian polyamine transport system and their role in disease. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2022; 1869:119354. [PMID: 36064065 DOI: 10.1016/j.bbamcr.2022.119354] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/26/2022] [Accepted: 08/27/2022] [Indexed: 06/15/2023]
Abstract
Polyamines (PAs) are physiologically relevant molecules that are ubiquitous in all organisms. The vitality of PAs to the healthy functioning of a cell is due to their polycationic nature causing them to interact with a vast plethora of cellular players and partake in numerous cellular pathways. Naturally, the homeostasis of such essential molecules is tightly regulated in a strictly controlled interplay between intracellular synthesis and degradation, uptake from and secretion to the extracellular compartment, as well as intracellular trafficking. Not surprisingly, dysregulated PA homeostasis and signaling are implicated in multiple disorders, ranging from cancer to neurodegeneration; leading many to propose rectifying the PA balance as a potential therapeutic strategy. Despite being well characterized in bacteria, fungi and plants, the molecular identity and properties of the PA transporters in animals are poorly understood. This review brings together the current knowledge of the cellular function of the mammalian PA transport system (PTS). We will focus on the role of P5B-ATPases ATP13A2-5 which are PA transporters in the endosomal system that have emerged as key players in cellular PA uptake and organelle homeostasis. We will discuss recent breakthroughs on their biochemical and structural properties as well as their implications for disease and therapy.
Collapse
Affiliation(s)
- Mujahid Azfar
- Laboratory of Cellular Transport Systems, Department of Cellular and Molecular Medicine, KU Leuven, B-3000 Leuven, Belgium; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, KU Leuven, B-3000 Leuven, Belgium
| | - Sarah van Veen
- Laboratory of Cellular Transport Systems, Department of Cellular and Molecular Medicine, KU Leuven, B-3000 Leuven, Belgium; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, KU Leuven, B-3000 Leuven, Belgium
| | - Marine Houdou
- Laboratory of Cellular Transport Systems, Department of Cellular and Molecular Medicine, KU Leuven, B-3000 Leuven, Belgium; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, KU Leuven, B-3000 Leuven, Belgium
| | - Norin Nabil Hamouda
- Laboratory of Cellular Transport Systems, Department of Cellular and Molecular Medicine, KU Leuven, B-3000 Leuven, Belgium
| | - Jan Eggermont
- Laboratory of Cellular Transport Systems, Department of Cellular and Molecular Medicine, KU Leuven, B-3000 Leuven, Belgium
| | - Peter Vangheluwe
- Laboratory of Cellular Transport Systems, Department of Cellular and Molecular Medicine, KU Leuven, B-3000 Leuven, Belgium; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, KU Leuven, B-3000 Leuven, Belgium.
| |
Collapse
|
16
|
Hofer SJ, Simon AK, Bergmann M, Eisenberg T, Kroemer G, Madeo F. Mechanisms of spermidine-induced autophagy and geroprotection. NATURE AGING 2022; 2:1112-1129. [PMID: 37118547 DOI: 10.1038/s43587-022-00322-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 10/28/2022] [Indexed: 04/30/2023]
Abstract
Aging involves the systemic deterioration of all known cell types in most eukaryotes. Several recently discovered compounds that extend the healthspan and lifespan of model organisms decelerate pathways that govern the aging process. Among these geroprotectors, spermidine, a natural polyamine ubiquitously found in organisms from all kingdoms, prolongs the lifespan of fungi, nematodes, insects and rodents. In mice, it also postpones the manifestation of various age-associated disorders such as cardiovascular disease and neurodegeneration. The specific features of spermidine, including its presence in common food items, make it an interesting candidate for translational aging research. Here, we review novel insights into the geroprotective mode of action of spermidine at the molecular level, as we discuss strategies for elucidating its clinical potential.
Collapse
Affiliation(s)
- Sebastian J Hofer
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
- Field of Excellence BioHealth, University of Graz, Graz, Austria
- BioTechMed Graz, Graz, Austria
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
| | - Anna Katharina Simon
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
- Max Delbrück Center, Berlin, Germany
| | - Martina Bergmann
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
| | - Tobias Eisenberg
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
- Field of Excellence BioHealth, University of Graz, Graz, Austria
- BioTechMed Graz, Graz, Austria
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France.
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France.
- Institut du Cancer Paris CARPEM, Department of Biology, Hôpital Européen Georges Pompidou, AP-HP, Paris, France.
| | - Frank Madeo
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria.
- Field of Excellence BioHealth, University of Graz, Graz, Austria.
- BioTechMed Graz, Graz, Austria.
| |
Collapse
|
17
|
Dobrovolskaite A, Moots H, Tantak MP, Shah K, Thomas J, Dinara S, Massaro C, Hershberger PM, Maloney PR, Peddibhotla S, Sugarman E, Litherland S, Arnoletti JP, Jha RK, Levens D, Phanstiel O. Discovery of Anthranilic Acid Derivatives as Difluoromethylornithine Adjunct Agents That Inhibit Far Upstream Element Binding Protein 1 (FUBP1) Function. J Med Chem 2022; 65:15391-15415. [PMID: 36382923 PMCID: PMC10512781 DOI: 10.1021/acs.jmedchem.2c01350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Polyamine biosynthesis is regulated by ornithine decarboxylase (ODC), which is transcriptionally activated by c-Myc. A large library was screened to find molecules that potentiate the ODC inhibitor, difluoromethylornithine (DFMO). Anthranilic acid derivatives were identified as DFMO adjunct agents. Further studies identified the far upstream binding protein 1 (FUBP1) as the target of lead compound 9. FUBP1 is a single-stranded DNA/RNA binding protein and a master controller of specific genes including c-Myc and p21. We showed that 9 does not inhibit 3H-spermidine uptake yet works synergistically with DFMO to limit cell growth in the presence of exogenous spermidine. Compound 9 was also shown to inhibit the KH4 FUBP1-FUSE interaction in a gel shift assay, bind to FUBP1 in a ChIP assay, reduce both c-Myc mRNA and protein expression, increase p21 mRNA and protein expression, and deplete intracellular polyamines. This promising hit opens the door to new FUBP1 inhibitors with increased potency.
Collapse
Affiliation(s)
- Aiste Dobrovolskaite
- University of Central Florida, Biomolecular Research Annex, 12722 Research Parkway, Orlando, Florida 32826, United States
| | - Holly Moots
- University of Central Florida, Biomolecular Research Annex, 12722 Research Parkway, Orlando, Florida 32826, United States
| | - Mukund P Tantak
- University of Central Florida, Biomolecular Research Annex, 12722 Research Parkway, Orlando, Florida 32826, United States
| | - Kunal Shah
- University of Central Florida, Biomolecular Research Annex, 12722 Research Parkway, Orlando, Florida 32826, United States
| | - Jenna Thomas
- University of Central Florida, Biomolecular Research Annex, 12722 Research Parkway, Orlando, Florida 32826, United States
| | - Sharifa Dinara
- University of Central Florida, Biomolecular Research Annex, 12722 Research Parkway, Orlando, Florida 32826, United States
| | - Chelsea Massaro
- University of Central Florida, Biomolecular Research Annex, 12722 Research Parkway, Orlando, Florida 32826, United States
| | - Paul M Hershberger
- Sanford Burnham Medical Research Institute, 6400 Sanger Road, Orlando, Florida 32827, United States
| | - Patrick R Maloney
- Sanford Burnham Medical Research Institute, 6400 Sanger Road, Orlando, Florida 32827, United States
| | | | - Eliot Sugarman
- Sanford Burnham Medical Research Institute, 6400 Sanger Road, Orlando, Florida 32827, United States
| | - Sally Litherland
- Advent Health Cancer Institute, 2520 North Orange Ave, Suite 104, Orlando, Florida 32804, United States
| | - Juan Pablo Arnoletti
- Advent Health Cancer Institute, 2520 North Orange Ave, Suite 104, Orlando, Florida 32804, United States
| | - Rajiv Kumar Jha
- Laboratory of Pathology, Center for Cancer Research, 10 Center Drive, Building 10, Room 2N106, Bethesda, Maryland 20892-1500, United States
| | - David Levens
- Laboratory of Pathology, Center for Cancer Research, 10 Center Drive, Building 10, Room 2N106, Bethesda, Maryland 20892-1500, United States
| | - Otto Phanstiel
- University of Central Florida, Biomolecular Research Annex, 12722 Research Parkway, Orlando, Florida 32826, United States
| |
Collapse
|
18
|
Fahrmann JF, Saini NY, Chia-Chi C, Irajizad E, Strati P, Nair R, Fayad LE, Ahmed S, Lee HJ, Iyer S, Steiner R, Vykoukal J, Wu R, Dennison JB, Nastoupil L, Jain P, Wang M, Green M, Westin J, Blumenberg V, Davila M, Champlin R, Shpall EJ, Kebriaei P, Flowers CR, Jain M, Jenq R, Stein-Thoeringer CK, Subklewe M, Neelapu SS, Hanash S. A polyamine-centric, blood-based metabolite panel predictive of poor response to CAR-T cell therapy in large B cell lymphoma. Cell Rep Med 2022; 3:100720. [PMID: 36384092 PMCID: PMC9729795 DOI: 10.1016/j.xcrm.2022.100720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 06/06/2022] [Accepted: 07/20/2022] [Indexed: 11/17/2022]
Abstract
Anti-CD19 chimeric antigen receptor (CAR) T cell therapy for relapsed or refractory (r/r) large B cell lymphoma (LBCL) results in durable response in only a subset of patients. MYC overexpression in LBCL tumors is associated with poor response to treatment. We tested whether an MYC-driven polyamine signature, as a liquid biopsy, is predictive of response to anti-CD19 CAR-T therapy in patients with r/r LBCL. Elevated plasma acetylated polyamines were associated with non-durable response. Concordantly, increased expression of spermidine synthase, a key enzyme that regulates levels of acetylated spermidine, was prognostic for survival in r/r LBCL. A broad metabolite screen identified additional markers that resulted in a 6-marker panel (6MetP) consisting of acetylspermidine, diacetylspermidine, and lysophospholipids, which was validated in an independent set from another institution as predictive of non-durable response to CAR-T therapy. A polyamine centric metabolomics liquid biopsy panel has predictive value for response to CAR-T therapy in r/r LBCL.
Collapse
Affiliation(s)
- Johannes F Fahrmann
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, 6767 Bertner Avenue, Houston, TX 77030, USA
| | - Neeraj Y Saini
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA; Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Chang Chia-Chi
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Ehsan Irajizad
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, 6767 Bertner Avenue, Houston, TX 77030, USA; Department of Biostatistics, The University of Texas MD Anderson Cancer Center, 6767 Bertner Avenue, Houston, TX 77030, USA
| | - Paolo Strati
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Ranjit Nair
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Luis E Fayad
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Sairah Ahmed
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Hun Ju Lee
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Swaminathan Iyer
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Raphael Steiner
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Jody Vykoukal
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, 6767 Bertner Avenue, Houston, TX 77030, USA
| | - Ranran Wu
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, 6767 Bertner Avenue, Houston, TX 77030, USA
| | - Jennifer B Dennison
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, 6767 Bertner Avenue, Houston, TX 77030, USA
| | - Loretta Nastoupil
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Preetesh Jain
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Michael Wang
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Michael Green
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Jason Westin
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Viktoria Blumenberg
- Department of Medicine III, University Hospital, LMU Munich, 81377 Munich, Germany; National Center for Tumor Diseases (NCT), Neuenheimer Feld 460, 69120 Heidelberg, Germany
| | - Marco Davila
- Department of Blood and Marrow Transplant and Cellular Therapy, Moffitt Cancer Center, 12902 USF Magnolia Drive, Tampa, FL 33612, USA
| | - Richard Champlin
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Elizabeth J Shpall
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Partow Kebriaei
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Christopher R Flowers
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Michael Jain
- Department of Blood and Marrow Transplant and Cellular Therapy, Moffitt Cancer Center, 12902 USF Magnolia Drive, Tampa, FL 33612, USA
| | - Robert Jenq
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Christoph K Stein-Thoeringer
- National Center for Tumor Diseases (NCT), Neuenheimer Feld 460, 69120 Heidelberg, Germany; German Cancer Research Center (Deutsches Krebsforschungszentrum, DKFZ), Heidelberg, Germany
| | - Marion Subklewe
- Department of Medicine III, University Hospital, LMU Munich, 81377 Munich, Germany; German Cancer Research Center (Deutsches Krebsforschungszentrum, DKFZ), Heidelberg, Germany; Laboratory for Translational Cancer Immunology, Gene Center of the LMU Munich, Munich, Germany.
| | - Sattva S Neelapu
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA.
| | - Sam Hanash
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, 6767 Bertner Avenue, Houston, TX 77030, USA.
| |
Collapse
|
19
|
Lian J, Liang Y, Zhang H, Lan M, Ye Z, Lin B, Qiu X, Zeng J. The role of polyamine metabolism in remodeling immune responses and blocking therapy within the tumor immune microenvironment. Front Immunol 2022; 13:912279. [PMID: 36119047 PMCID: PMC9479087 DOI: 10.3389/fimmu.2022.912279] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 08/15/2022] [Indexed: 11/13/2022] Open
Abstract
The study of metabolism provides important information for understanding the biological basis of cancer cells and the defects of cancer treatment. Disorders of polyamine metabolism is a common metabolic change in cancer. With the deepening of understanding of polyamine metabolism, including molecular functions and changes in cancer, polyamine metabolism as a new anti-cancer strategy has become the focus of attention. There are many kinds of polyamine biosynthesis inhibitors and transport inhibitors, but not many drugs have been put into clinical application. Recent evidence shows that polyamine metabolism plays essential roles in remodeling the tumor immune microenvironment (TIME), particularly treatment of DFMO, an inhibitor of ODC, alters the immune cell population in the tumor microenvironment. Tumor immunosuppression is a major problem in cancer treatment. More and more studies have shown that the immunosuppressive effect of polyamines can help cancer cells to evade immune surveillance and promote tumor development and progression. Therefore, targeting polyamine metabolic pathways is expected to become a new avenue for immunotherapy for cancer.
Collapse
Affiliation(s)
- Jiachun Lian
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, China
| | - Yanfang Liang
- Department of Pathology, Dongguan Hospital Affiliated to Jinan University, Binhaiwan Central Hospital of Dongguan, Dongguan, China
| | - Hailiang Zhang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, China
| | - Minsheng Lan
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
| | - Ziyu Ye
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
- Department of Pathology, Dongguan Hospital Affiliated to Jinan University, Binhaiwan Central Hospital of Dongguan, Dongguan, China
- Dongguan Metabolite Analysis Engineering Technology Center of Cells for Medical Use, Guangdong Xinghai Institute of Cell, Dongguan, China
| | - Bihua Lin
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
- Key Laboratory of Medical Bioactive Molecular Research for Department of Education of Guangdong Province, Collaborative Innovation Center for Antitumor Active Substance Research and Development, Zhanjiang, China
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Guangdong Medical University, Zhanjiang, China
| | - Xianxiu Qiu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
- Key Laboratory of Medical Bioactive Molecular Research for Department of Education of Guangdong Province, Collaborative Innovation Center for Antitumor Active Substance Research and Development, Zhanjiang, China
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Guangdong Medical University, Zhanjiang, China
| | - Jincheng Zeng
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
- Dongguan Metabolite Analysis Engineering Technology Center of Cells for Medical Use, Guangdong Xinghai Institute of Cell, Dongguan, China
- Key Laboratory of Medical Bioactive Molecular Research for Department of Education of Guangdong Province, Collaborative Innovation Center for Antitumor Active Substance Research and Development, Zhanjiang, China
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
20
|
Holbert CE, Cullen MT, Casero RA, Stewart TM. Polyamines in cancer: integrating organismal metabolism and antitumour immunity. Nat Rev Cancer 2022; 22:467-480. [PMID: 35477776 PMCID: PMC9339478 DOI: 10.1038/s41568-022-00473-2] [Citation(s) in RCA: 114] [Impact Index Per Article: 57.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/21/2022] [Indexed: 12/20/2022]
Abstract
The natural mammalian polyamines putrescine, spermidine and spermine are essential for both normal and neoplastic cell function and replication. Dysregulation of metabolism of polyamines and their requirements is common in many cancers. Both clinical and experimental depletion of polyamines have demonstrated their metabolism to be a rational target for therapy; however, the mechanisms through which polyamines can establish a tumour-permissive microenvironment are only now emerging. Recent data indicate that polyamines can play a major role in regulating the antitumour immune response, thus likely contributing to the existence of immunologically 'cold' tumours that do not respond to immune checkpoint blockade. Additionally, the interplay between the microbiota and associated tissues creates a tumour microenvironment in which polyamine metabolism, content and function can all be dramatically altered on the basis of microbiota composition, dietary polyamine availability and tissue response to its surrounding microenvironment. The goal of this Perspective is to introduce the reader to the many ways in which polyamines, polyamine metabolism, the microbiota and the diet interconnect to establish a tumour microenvironment that facilitates the initiation and progression of cancer. It also details ways in which polyamine metabolism and function can be successfully targeted for therapeutic benefit, including specifically enhancing the antitumour immune response.
Collapse
Affiliation(s)
- Cassandra E Holbert
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | | | - Robert A Casero
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA.
| | - Tracy Murray Stewart
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
21
|
Helping the helpers: polyamines help maintain helper T-cell lineage fidelity. IMMUNOMETABOLISM 2022; 4:e00002. [PMID: 35966633 PMCID: PMC9359067 DOI: 10.1097/in9.0000000000000002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 06/23/2022] [Indexed: 12/05/2022]
Abstract
The awareness that polyamines play a critical role in immune system regulation and function is coming into focus as the biological systems and analytical tools necessary to evaluate their roles have become available. Puleston et al have recently demonstrated that polyamine metabolism plays a central role in helper T-cell lineage determination through the production of the translational cofactor hypusinated eIF5A and faithful epigenetic regulation through proper histone acetylation. Their findings add to the rapidly growing body of data implicating properly controlled polyamine metabolism as essential for a normally functioning immune system.
Collapse
|
22
|
Chin A, Bieberich CJ, Stewart TM, Casero RA. Polyamine Depletion Strategies in Cancer: Remodeling the Tumor Immune Microenvironment to Enhance Anti-Tumor Responses. Med Sci (Basel) 2022; 10:medsci10020031. [PMID: 35736351 PMCID: PMC9228337 DOI: 10.3390/medsci10020031] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 05/31/2022] [Accepted: 06/07/2022] [Indexed: 01/13/2023] Open
Abstract
Polyamine biosynthesis is frequently dysregulated in cancers, and enhanced flux increases intracellular polyamines necessary for promoting cell growth, proliferation, and function. Polyamine depletion strategies demonstrate efficacy in reducing tumor growth and increasing survival in animal models of cancer; however, mechanistically, the cell-intrinsic and cell-extrinsic alterations within the tumor microenvironment underlying positive treatment outcomes are not well understood. Recently, investigators have demonstrated that co-targeting polyamine biosynthesis and transport alters the immune landscape. Although the polyamine synthesis-targeting drug 2-difluoromethylornithine (DFMO) is well tolerated in humans and is FDA-approved for African trypanosomiasis, its clinical benefit in treating established cancers has not yet been fully realized; however, combination therapies targeting compensatory mechanisms have shown tolerability and efficacy in animal models and are currently being tested in clinical trials. As demonstrated in pre-clinical models, polyamine blocking therapy (PBT) reduces immunosuppression in the tumor microenvironment and enhances the therapeutic efficacy of immune checkpoint blockade (ICB). Thus, DFMO may sensitize tumors to other therapeutics, including immunotherapies and chemotherapies.
Collapse
Affiliation(s)
- Alexander Chin
- Department of Biological Sciences, University of Maryland, Baltimore County, Baltimore, MD 21250, USA; (A.C.); (C.J.B.)
| | - Charles J. Bieberich
- Department of Biological Sciences, University of Maryland, Baltimore County, Baltimore, MD 21250, USA; (A.C.); (C.J.B.)
- University of Maryland Marlene and Stewart Greenebaum Cancer Center, Baltimore, MD 21201, USA
| | - Tracy Murray Stewart
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA;
| | - Robert A. Casero
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA;
- Correspondence:
| |
Collapse
|
23
|
Yu A, Tang S, Ding L, Foley J, Tang W, Jia H, Panja S, Holbert CE, Hang Y, Stewart TM, Smith LM, Sil D, Casero RA, Oupický D. Hyaluronate-coated perfluoroalkyl polyamine prodrugs as bioactive siRNA delivery systems for the treatment of peritoneal cancers. BIOMATERIALS ADVANCES 2022; 136:212755. [PMID: 35813988 PMCID: PMC9268001 DOI: 10.1016/j.bioadv.2022.212755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/03/2022] [Accepted: 03/07/2022] [Indexed: 11/17/2022]
Abstract
RNA interference (RNAi) is an emerging therapeutic modality for cancer, which remains in critical need of effective delivery vectors due to the unfavorable biopharmaceutical properties of small RNAs. Polyamines are essential for functioning of mammalian cells. Dysregulated polyamine metabolism is found in many cancers and has been an attractive therapeutic target in combination therapies. Combination therapies based on drugs that affect polyamine metabolism and nucleic acids promise to enhance anticancer activity due to a cooperative effect on multiple oncogenic pathways. Here, we report bioactive polycationic prodrug (F-PaP) based on an anticancer polyamine analog bisethylnorspermine (BENSpm) modified with perfluoroalkyl moieties. Following encapsulation of siRNA, F-PaP/siRNA nanoparticles were coated with hyaluronic acid (HA) to form ternary nanoparticles HA@F-PaP/siRNA. The presence of perfluoroalkyl moieties and HA reduced cell membrane toxicity and improved stability of the particles with cooperatively enhanced siRNA delivery in pancreatic and colon cancer cell lines. We then tested a therapeutic hypothesis that combining BENSpm with siRNA silencing of polo-like kinase 1 (PLK1) would result in cooperative cancer cell killing. HA@F-PaP/siPLK1 induced polyamine catabolism and cell cycle arrest, leading to enhanced apoptosis in the tested cell lines. The HA-coated nanoparticles facilitated tumor accumulation and contributed to strong tumor inhibition and favorable modulation of the immune tumor microenvironment in orthotopic pancreatic cancer model. Combination anticancer therapy with polyamine prodrug-mediated delivery of siRNA. Hyaluronate coating of the siRNA nanoparticles facilitates selective accumulation in orthotopic pancreatic tumors. Perfluoroalkyl conjugation reduces toxicity and improves gene silencing effect. Nanoparticle treatment induces polyamine catabolism and cell cycle arrest leading to strong tumor inhibition and favorable modulation of immune tumor microenvironment.
Collapse
Affiliation(s)
- Ao Yu
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha NE, USA
| | - Siyuan Tang
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha NE, USA
| | - Ling Ding
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha NE, USA
| | - Jackson Foley
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Weimin Tang
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha NE, USA
| | - Huizhen Jia
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha NE, USA
| | - Sudipta Panja
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha NE, USA
| | - Cassandra E. Holbert
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Yu Hang
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha NE, USA
| | - Tracy Murray Stewart
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Lynette M. Smith
- Department of Biostatistics, College of Public Health, University of Nebraska Medical Center, Omaha NE, USA
| | - Diptesh Sil
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha NE, USA
| | - Robert A. Casero
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - David Oupický
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha NE, USA
| |
Collapse
|
24
|
Carter NS, Kawasaki Y, Nahata SS, Elikaee S, Rajab S, Salam L, Alabdulal MY, Broessel KK, Foroghi F, Abbas A, Poormohamadian R, Roberts SC. Polyamine Metabolism in Leishmania Parasites: A Promising Therapeutic Target. Med Sci (Basel) 2022; 10:24. [PMID: 35645240 PMCID: PMC9149861 DOI: 10.3390/medsci10020024] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/18/2022] [Accepted: 04/18/2022] [Indexed: 12/30/2022] Open
Abstract
Parasites of the genus Leishmania cause a variety of devastating and often fatal diseases in humans and domestic animals worldwide. The need for new therapeutic strategies is urgent because no vaccine is available, and treatment options are limited due to a lack of specificity and the emergence of drug resistance. Polyamines are metabolites that play a central role in rapidly proliferating cells, and recent studies have highlighted their critical nature in Leishmania. Numerous studies using a variety of inhibitors as well as gene deletion mutants have elucidated the pathway and routes of transport, revealing unique aspects of polyamine metabolism in Leishmania parasites. These studies have also shed light on the significance of polyamines for parasite proliferation, infectivity, and host-parasite interactions. This comprehensive review article focuses on the main polyamine biosynthetic enzymes: ornithine decarboxylase, S-adenosylmethionine decarboxylase, and spermidine synthase, and it emphasizes recent discoveries that advance these enzymes as potential therapeutic targets against Leishmania parasites.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Sigrid C. Roberts
- School of Pharmacy, Pacific University Oregon, Hillsboro, OR 97123, USA; (N.S.C.); (Y.K.); (S.S.N.); (S.E.); (S.R.); (L.S.); (M.Y.A.); (K.K.B.); (F.F.); (A.A.); (R.P.)
| |
Collapse
|
25
|
Polyamine Immunometabolism: Central Regulators of Inflammation, Cancer and Autoimmunity. Cells 2022; 11:cells11050896. [PMID: 35269518 PMCID: PMC8909056 DOI: 10.3390/cells11050896] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/01/2022] [Accepted: 03/03/2022] [Indexed: 02/06/2023] Open
Abstract
Polyamines are ubiquitous, amine-rich molecules with diverse processes in biology. Recent work has highlighted that polyamines exert profound roles on the mammalian immune system, particularly inflammation and cancer. The mechanisms by which they control immunity are still being described. In the context of inflammation and autoimmunity, polyamine levels inversely correlate to autoimmune phenotypes, with lower polyamine levels associated with higher inflammatory responses. Conversely, in the context of cancer, polyamines and polyamine biosynthetic genes positively correlate with the severity of malignancy. Blockade of polyamine metabolism in cancer results in reduced tumor growth, and the effects appear to be mediated by an increase in T-cell infiltration and a pro-inflammatory phenotype of macrophages. These studies suggest that polyamine depletion leads to inflammation and that polyamine enrichment potentiates myeloid cell immune suppression. Indeed, combinatorial treatment with polyamine blockade and immunotherapy has shown efficacy in pre-clinical models of cancer. Considering the efficacy of immunotherapies is linked to autoimmune sequelae in humans, termed immune-adverse related events (iAREs), this suggests that polyamine levels may govern the inflammatory response to immunotherapies. This review proposes that polyamine metabolism acts to balance autoimmune inflammation and anti-tumor immunity and that polyamine levels can be used to monitor immune responses and responsiveness to immunotherapy.
Collapse
|
26
|
Differential Expression of Polyamine Pathways in Human Pancreatic Tumor Progression and Effects of Polyamine Blockade on Tumor Microenvironment. Cancers (Basel) 2021; 13:cancers13246391. [PMID: 34945011 PMCID: PMC8699198 DOI: 10.3390/cancers13246391] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/12/2021] [Accepted: 12/14/2021] [Indexed: 12/18/2022] Open
Abstract
Simple Summary Pancreatic cancer has a five-year survival rate of less than 8% and is the fourth leading cause of cancer death in the United States. Existing therapeutics have failed to improve pancreatic ductal adenocarcinoma (PDAC) patient outcomes. There has been success with other tumor types in targeting aberrant polyamine upregulation as a therapeutic strategy. The present study identified dysregulation of polyamine pathways to be evident in human PDAC progression. Additionally, reduced survival of pancreatic cancer patients was associated with increased expression of specific polyamine-related genes. Polyamine blockade therapy significantly increased overall survival of pancreatic tumor-bearing mice, along with macrophage presence (F4/80) and significantly increased T-cell co-stimulatory marker (CD86) in the tumor microenvironment. Based on these findings, we hypothesized that a polyamine blockade therapy could potentially prime the tumor microenvironment to be more susceptible to existing therapeutics. Future studies which test polyamine blockade therapy with existing therapeutics could increase the molecular tools available to treat PDAC. Abstract Pancreatic cancer is the fourth leading cause of cancer death. Existing therapies only moderately improve pancreatic ductal adenocarcinoma (PDAC) patient prognosis. The present study investigates the importance of the polyamine metabolism in the pancreatic tumor microenvironment. Relative mRNA expression analysis identified differential expression of polyamine biosynthesis, homeostasis, and transport mediators in both pancreatic epithelial and stromal cells from low-grade pancreatic intraepithelial neoplasia (PanIN-1) or primary PDAC patient samples. We found dysregulated mRNA levels that encode for proteins associated with the polyamine pathway of PDAC tumors compared to early lesions. Next, bioinformatic databases were used to assess expression of select genes involved in polyamine metabolism and their impact on patient survival. Higher expression of pro-polyamine genes was associated with poor patient prognosis, supporting the use of a polyamine blockade therapy (PBT) strategy for inhibiting pancreatic tumor progression. Moreover, PBT treatment of syngeneic mice injected intra-pancreatic with PAN 02 tumor cells resulted in increased survival and decreased tumor weights of PDAC-bearing mice. Histological assessment of PBT-treated tumors revealed macrophage presence and significantly increased expression of CD86, a T cell co-stimulatory marker. Collectively, therapies which target polyamine metabolism can be used to disrupt tumor progression, modulate tumor microenvironment, and extend overall survival.
Collapse
|
27
|
Hayden E, Holliday H, Lehmann R, Khan A, Tsoli M, Rayner BS, Ziegler DS. Therapeutic Targets in Diffuse Midline Gliomas-An Emerging Landscape. Cancers (Basel) 2021; 13:cancers13246251. [PMID: 34944870 PMCID: PMC8699135 DOI: 10.3390/cancers13246251] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/07/2021] [Accepted: 12/08/2021] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Diffuse midline gliomas (DMGs) remain one of the most devastating childhood brain tumour types, for which there is currently no known cure. In this review we provide a summary of the existing knowledge of the molecular mechanisms underlying the pathogenesis of this disease, highlighting current analyses and novel treatment propositions. Together, the accumulation of these data will aid in the understanding and development of more effective therapeutic options for the treatment of DMGs. Abstract Diffuse midline gliomas (DMGs) are invariably fatal pediatric brain tumours that are inherently resistant to conventional therapy. In recent years our understanding of the underlying molecular mechanisms of DMG tumorigenicity has resulted in the identification of novel targets and the development of a range of potential therapies, with multiple agents now being progressed to clinical translation to test their therapeutic efficacy. Here, we provide an overview of the current therapies aimed at epigenetic and mutational drivers, cellular pathway aberrations and tumor microenvironment mechanisms in DMGs in order to aid therapy development and facilitate a holistic approach to patient treatment.
Collapse
Affiliation(s)
- Elisha Hayden
- Children’s Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington 2052, Australia; (E.H.); (H.H.); (R.L.); (A.K.); (M.T.); (B.S.R.)
| | - Holly Holliday
- Children’s Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington 2052, Australia; (E.H.); (H.H.); (R.L.); (A.K.); (M.T.); (B.S.R.)
- School of Women’s and Children’s Health, Faculty of Medicine, University of New South Wales, Kensington 2052, Australia
| | - Rebecca Lehmann
- Children’s Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington 2052, Australia; (E.H.); (H.H.); (R.L.); (A.K.); (M.T.); (B.S.R.)
- School of Women’s and Children’s Health, Faculty of Medicine, University of New South Wales, Kensington 2052, Australia
| | - Aaminah Khan
- Children’s Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington 2052, Australia; (E.H.); (H.H.); (R.L.); (A.K.); (M.T.); (B.S.R.)
| | - Maria Tsoli
- Children’s Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington 2052, Australia; (E.H.); (H.H.); (R.L.); (A.K.); (M.T.); (B.S.R.)
- School of Women’s and Children’s Health, Faculty of Medicine, University of New South Wales, Kensington 2052, Australia
| | - Benjamin S. Rayner
- Children’s Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington 2052, Australia; (E.H.); (H.H.); (R.L.); (A.K.); (M.T.); (B.S.R.)
- School of Women’s and Children’s Health, Faculty of Medicine, University of New South Wales, Kensington 2052, Australia
| | - David S. Ziegler
- Children’s Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington 2052, Australia; (E.H.); (H.H.); (R.L.); (A.K.); (M.T.); (B.S.R.)
- School of Women’s and Children’s Health, Faculty of Medicine, University of New South Wales, Kensington 2052, Australia
- Kids Cancer Centre, Sydney Children’s Hospital, Randwick 2031, Australia
- Correspondence: ; Tel.: +61-2-9382-1730; Fax: +61-2-9382-1789
| |
Collapse
|
28
|
DFMO Improves Survival and Increases Immune Cell Infiltration in Association with MYC Downregulation in the Pancreatic Tumor Microenvironment. Int J Mol Sci 2021; 22:ijms222413175. [PMID: 34947972 PMCID: PMC8706739 DOI: 10.3390/ijms222413175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 11/25/2021] [Accepted: 12/02/2021] [Indexed: 12/16/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) has an extremely poor five-year survival rate of less than 10%. Immune suppression along with chemoresistance are obstacles for PDAC therapeutic treatment. Innate immune cells, such as tumor-associated macrophages, are recruited to the inflammatory environment of PDAC and adversely suppress cytotoxic T lymphocytes. KRAS and MYC are important oncogenes associated with immune suppression and pose a challenge to successful therapies. Here, we targeted KRAS, through inhibition of downstream c-RAF with GW5074, and MYC expression via difluoromethylornithine (DFMO). DFMO alone and with GW5074 reduced in vitro PDAC cell viability. Both DFMO and GW5074 showed efficacy in reducing in vivo PDAC growth in an immunocompromised model. Results in immunocompetent syngeneic tumor-bearing mice showed that DFMO and combination treatment markedly decreased tumor size, but only DFMO increased survival in mice. To further investigate, immunohistochemical staining showed DFMO diminished MYC expression and increased tumor infiltration of macrophages, CD86+ cells, CD4+ and CD8+ T lymphocytes. GW5074 was not as effective in modulating the tumor infiltration of total CD3+ lymphocytes or tumor progression and maintained MYC expression. Collectively, this study highlights that in contrast to GW5074, the inhibition of MYC through DFMO may be an effective treatment modality to modulate PDAC immunosuppression.
Collapse
|
29
|
Zhang W, An Y, Qin X, Wu X, Wang X, Hou H, Song X, Liu T, Wang B, Huang X, Cao H. Gut Microbiota-Derived Metabolites in Colorectal Cancer: The Bad and the Challenges. Front Oncol 2021; 11:739648. [PMID: 34733783 PMCID: PMC8558397 DOI: 10.3389/fonc.2021.739648] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 09/29/2021] [Indexed: 12/12/2022] Open
Abstract
Accumulating evidence from studies in humans and animal models has elucidated that gut microbiota, acting as a complex ecosystem, contributes critically to colorectal cancer (CRC). The potential mechanisms often reported emphasize the vital role of carcinogenic activities of specific pathogens, but in fact, a series of metabolites produced from exogenous dietary substrates or endogenous host compounds occupy a decisive position similarly. Detrimental gut microbiota-derived metabolites such as trimethylamine-N-oxide, secondary bile acids, hydrogen sulfide and N-nitroso compounds could reconstruct the ecological composition and metabolic activity of intestinal microorganisms and formulate a microenvironment that opens susceptibility to carcinogenic stimuli. They are implicated in the occurrence, progression and metastasis of CRC through different mechanisms, including inducing inflammation and DNA damage, activating tumorigenic signaling pathways and regulating tumor immunity. In this review, we mainly summarized the intimate relationship between detrimental gut microbiota-derived metabolites and CRC, and updated the current knowledge about detrimental metabolites in CRC pathogenesis. Then, multiple interventions targeting these metabolites for CRC management were critically reviewed, including diet modulation, probiotics/prebiotics, fecal microbiota transplantation, as well as more precise measures such as engineered bacteria, phage therapy and chemopreventive drugs. A better understanding of the interplay between detrimental microbial metabolites and CRC would hold great promise against CRC.
Collapse
Affiliation(s)
- Wanru Zhang
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Yaping An
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Xiali Qin
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Xuemei Wu
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Xinyu Wang
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Huiqin Hou
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Xueli Song
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Tianyu Liu
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Bangmao Wang
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Xuan Huang
- Department of Gastroenterology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Hailong Cao
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| |
Collapse
|
30
|
Westdorp H, Sweep MWD, Gorris MAJ, Hoentjen F, Boers-Sonderen MJ, van der Post RS, van den Heuvel MM, Piet B, Boleij A, Bloemendal HJ, de Vries IJM. Mechanisms of Immune Checkpoint Inhibitor-Mediated Colitis. Front Immunol 2021; 12:768957. [PMID: 34777387 PMCID: PMC8586074 DOI: 10.3389/fimmu.2021.768957] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 10/11/2021] [Indexed: 12/12/2022] Open
Abstract
Immune checkpoint inhibitors (ICIs) have provided tremendous clinical benefit in several cancer types. However, systemic activation of the immune system also leads to several immune-related adverse events. Of these, ICI-mediated colitis (IMC) occurs frequently and is the one with the highest absolute fatality. To improve current treatment strategies, it is important to understand the cellular mechanisms that induce this form of colitis. In this review, we discuss important pathways that are altered in IMC in mouse models and in human colon biopsy samples. This reveals a complex interplay between several types of immune cells and the gut microbiome. In addition to a mechanistic understanding, patients at risk should be identifiable before ICI therapy. Here we propose to focus on T-cell subsets that interact with bacteria after inducing epithelial damage. Especially, intestinal resident immune cells are of interest. This may lead to a better understanding of IMC and provides opportunities for prevention and management.
Collapse
Affiliation(s)
- Harm Westdorp
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, Netherlands
- Department of Medical Oncology, Radboud University Medical Centre, Nijmegen, Netherlands
| | - Mark W. D. Sweep
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, Netherlands
- Department of Medical Oncology, Radboud University Medical Centre, Nijmegen, Netherlands
| | - Mark A. J. Gorris
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, Netherlands
- Oncode Institute, Nijmegen, Netherlands
| | - Frank Hoentjen
- Department of Gastroenterology, Radboud University Medical Centre, Nijmegen, Netherlands
- Division of Gastroenterology, University of Alberta, Edmonton, AB, Canada
| | | | - Rachel S. van der Post
- Department of Pathology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, Netherlands
| | | | - Berber Piet
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, Netherlands
- Department of Pulmonary Diseases, Radboud University Medical Centre, Nijmegen, Netherlands
| | - Annemarie Boleij
- Department of Pathology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, Netherlands
| | - Haiko J. Bloemendal
- Department of Medical Oncology, Radboud University Medical Centre, Nijmegen, Netherlands
| | - I. Jolanda M. de Vries
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, Netherlands
| |
Collapse
|
31
|
Hofer F, Di Sario G, Musiu C, Sartoris S, De Sanctis F, Ugel S. A Complex Metabolic Network Confers Immunosuppressive Functions to Myeloid-Derived Suppressor Cells (MDSCs) within the Tumour Microenvironment. Cells 2021; 10:cells10102700. [PMID: 34685679 PMCID: PMC8534848 DOI: 10.3390/cells10102700] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/01/2021] [Accepted: 10/04/2021] [Indexed: 12/19/2022] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) constitute a plastic and heterogeneous cell population among immune cells within the tumour microenvironment (TME) that support cancer progression and resistance to therapy. During tumour progression, cancer cells modify their metabolism to sustain an increased energy demand to cope with uncontrolled cell proliferation and differentiation. This metabolic reprogramming of cancer establishes competition for nutrients between tumour cells and leukocytes and most importantly, among tumour-infiltrating immune cells. Thus, MDSCs that have emerged as one of the most decisive immune regulators of TME exhibit an increase in glycolysis and fatty acid metabolism and also an upregulation of enzymes that catabolise essential metabolites. This complex metabolic network is not only crucial for MDSC survival and accumulation in the TME but also for enhancing immunosuppressive functions toward immune effectors. In this review, we discuss recent progress in the field of MDSC-associated metabolic pathways that could facilitate therapeutic targeting of these cells during cancer progression.
Collapse
Affiliation(s)
| | | | | | | | | | - Stefano Ugel
- Correspondence: ; Tel.: +39-045-8126451; Fax: +39-045-8126455
| |
Collapse
|
32
|
Dryja P, Fisher C, Woster PM, Bartee E. Inhibition of Polyamine Biosynthesis Using Difluoromethylornithine Acts as a Potent Immune Modulator and Displays Therapeutic Synergy With PD-1-blockade. J Immunother 2021; 44:283-291. [PMID: 34133404 PMCID: PMC8416699 DOI: 10.1097/cji.0000000000000379] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 05/18/2021] [Indexed: 12/28/2022]
Abstract
Polyamines are known to play a significant role in cancer progression and treatment using difluoromethylornithine (DFMO), an inhibitor of polyamine biosynthesis, has shown some clinical promise. It is interesting to note that, while DFMO is directly cytostatic in vitro, recent work has suggested that it achieves its antitumor efficacy in vivo by enhancing adaptive antitumor immune responses. On the basis of these data, we hypothesized that DFMO might act as an immune sensitizer to increase tumor responsiveness to checkpoint blockade. To test this hypothesis, we treated tumors with DFMO, in either the presence or absence of additional PD-1 blockade, and subsequently analyzed their immunological and therapeutic responses. Our data demonstrates that treatment with DFMO significantly enhances both the viability and activation status of intratumoral CD8+ T cells, most likely through an indirect mechanism. When combined with PD-1 blockade, this increased viability resulted in unique proinflammatory cytokine profiles and transcriptomes within the tumor microenvironment and improved therapeutic outcomes. Taken together, these data suggest that DFMO might represent a potential immunomodulatory agent that can enhance current PD-1-based checkpoint therapies.
Collapse
Affiliation(s)
- Parker Dryja
- Program in Molecular and Cellular Biology and Pathobiology, Medical University of South Carolina
| | - Carrie Fisher
- Department of Microbiology and Immunology, Medical University of South Carolina
| | - Patrick M Woster
- Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina
| | - Eric Bartee
- Department of Internal Medicine, University of New Mexico Health Sciences Center
| |
Collapse
|
33
|
Dobrovolskaite A, Madan M, Pandey V, Altomare DA, Phanstiel O. The discovery of indolone GW5074 during a comprehensive search for non-polyamine-based polyamine transport inhibitors. Int J Biochem Cell Biol 2021; 138:106038. [PMID: 34252566 DOI: 10.1016/j.biocel.2021.106038] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/28/2021] [Accepted: 07/05/2021] [Indexed: 01/15/2023]
Abstract
The native polyamines putrescine, spermidine, and spermine are essential for cell development and proliferation. Polyamine levels are often increased in cancer tissues and polyamine depletion is a validated anticancer strategy. Cancer cell growth can be inhibited by the polyamine biosynthesis inhibitor difluoromethylornithine (DFMO), which inhibits ornithine decarboxylase (ODC), the rate-limiting enzyme in the polyamine biosynthesis pathway. Unfortunately, cells treated with DFMO often replenish their polyamine pools by importing polyamines from their environment. Several polyamine-based molecules have been developed to work as polyamine transport inhibitors (PTIs) and have been successfully used in combination with DFMO in several cancer models. Here, we present the first comprehensive search for potential non-polyamine based PTIs that work in human pancreatic cancer cells in vitro. After identifying and testing five different categories of compounds, we have identified the c-RAF inhibitor, GW5074, as a novel non-polyamine based PTI. GW5074 inhibited the uptake of all three native polyamines and a fluorescent-polyamine probe into human pancreatic cancer cells. GW5074 significantly reduced pancreatic cancer cell growth in vitro when treated in combination with DFMO and a rescuing dose of spermidine. Moreover, GW5074 alone reduced tumor growth when tested in a murine pancreatic cancer mouse model in vivo. In summary, GW5074 is a novel non-polyamine-based PTI that potentiates the anticancer activity of DFMO in pancreatic cancers.
Collapse
Affiliation(s)
- Aiste Dobrovolskaite
- Department of Medical Education, College of Medicine, University of Central Florida, Orlando, 32827, United States
| | - Meenu Madan
- Department of Medical Education, College of Medicine, University of Central Florida, Orlando, 32827, United States
| | - Veethika Pandey
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, 32827, United States
| | - Deborah A Altomare
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, 32827, United States
| | - Otto Phanstiel
- Department of Medical Education, College of Medicine, University of Central Florida, Orlando, 32827, United States.
| |
Collapse
|
34
|
Lesnova EI, Masalova OV, Permyakova KY, Kozlov VV, Nikolaeva TN, Pronin AV, Valuev-Elliston VT, Ivanov AV, Kushch AA. Difluoromethylornithine (DFMO), an Inhibitor of Polyamine Biosynthesis, and Antioxidant N-Acetylcysteine Potentiate Immune Response in Mice to the Recombinant Hepatitis C Virus NS5B Protein. Int J Mol Sci 2021; 22:ijms22136892. [PMID: 34206987 PMCID: PMC8268280 DOI: 10.3390/ijms22136892] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/05/2021] [Accepted: 06/22/2021] [Indexed: 02/08/2023] Open
Abstract
Hepatitis C virus (HCV) is one of the main triggers of chronic liver disease. Despite tremendous progress in the HCV field, there is still no vaccine against this virus. Potential vaccines can be based on its recombinant proteins. To increase the humoral and, especially, cellular immune response to them, more effective adjuvants are needed. Here, we evaluated a panel of compounds as potential adjuvants using the HCV NS5B protein as an immunogen. These compounds included inhibitors of polyamine biosynthesis and urea cycle, the mTOR pathway, antioxidants, and cellular receptors. A pronounced stimulation of cell proliferation and interferon-γ (IFN-γ) secretion in response to concanavalin A was shown for antioxidant N-acetylcysteine (NAC), polyamine biosynthesis inhibitor 2-difluoromethylornithine (DFMO), and TLR9 agonist CpG ODN 1826 (CpG). Their usage during the immunization of mice with the recombinant NS5B protein significantly increased antibody titers, enhanced lymphocyte proliferation and IFN-γ production. NAC and CpG decreased relative Treg numbers; CpG increased the number of myeloid-derived suppressor cells (MDSCs), whereas neither NAC nor DFMO affected MDSC counts. NAC and DFMO suppressed NO and interleukin 10 (IL-10) production by splenocytes, while DFMO increased the levels of IL-12. This is the first evidence of immunomodulatory activity of NAC and DFMO during prophylactic immunization against infectious diseases.
Collapse
Affiliation(s)
- Ekaterina I. Lesnova
- Gamaleya National Research Center of Epidemiology and Microbiology, Ministry of Health of the Russian Federation, 123098 Moscow, Russia; (E.I.L.); (K.Y.P.); (V.V.K.); (T.N.N.); (A.V.P.); (A.A.K.)
| | - Olga V. Masalova
- Gamaleya National Research Center of Epidemiology and Microbiology, Ministry of Health of the Russian Federation, 123098 Moscow, Russia; (E.I.L.); (K.Y.P.); (V.V.K.); (T.N.N.); (A.V.P.); (A.A.K.)
- Correspondence: (O.V.M.); (A.V.I.); Tel.: +7-499-190-30-49 (O.V.M.); +7-199-135-60-65 (A.V.I.)
| | - Kristina Yu. Permyakova
- Gamaleya National Research Center of Epidemiology and Microbiology, Ministry of Health of the Russian Federation, 123098 Moscow, Russia; (E.I.L.); (K.Y.P.); (V.V.K.); (T.N.N.); (A.V.P.); (A.A.K.)
- Federal State Budgetary Educational Institution of Higher Education “Moscow State Academy of Veterinary Medicine and Biotechnology—MVA by K.I. Skryabin”, 109472 Moscow, Russia
| | - Vyacheslav V. Kozlov
- Gamaleya National Research Center of Epidemiology and Microbiology, Ministry of Health of the Russian Federation, 123098 Moscow, Russia; (E.I.L.); (K.Y.P.); (V.V.K.); (T.N.N.); (A.V.P.); (A.A.K.)
| | - Tatyana N. Nikolaeva
- Gamaleya National Research Center of Epidemiology and Microbiology, Ministry of Health of the Russian Federation, 123098 Moscow, Russia; (E.I.L.); (K.Y.P.); (V.V.K.); (T.N.N.); (A.V.P.); (A.A.K.)
| | - Alexander V. Pronin
- Gamaleya National Research Center of Epidemiology and Microbiology, Ministry of Health of the Russian Federation, 123098 Moscow, Russia; (E.I.L.); (K.Y.P.); (V.V.K.); (T.N.N.); (A.V.P.); (A.A.K.)
| | - Vladimir T. Valuev-Elliston
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia;
| | - Alexander V. Ivanov
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia;
- Correspondence: (O.V.M.); (A.V.I.); Tel.: +7-499-190-30-49 (O.V.M.); +7-199-135-60-65 (A.V.I.)
| | - Alla A. Kushch
- Gamaleya National Research Center of Epidemiology and Microbiology, Ministry of Health of the Russian Federation, 123098 Moscow, Russia; (E.I.L.); (K.Y.P.); (V.V.K.); (T.N.N.); (A.V.P.); (A.A.K.)
| |
Collapse
|
35
|
Peng Q, Wong CYP, Cheuk IWY, Teoh JYC, Chiu PKF, Ng CF. The Emerging Clinical Role of Spermine in Prostate Cancer. Int J Mol Sci 2021; 22:ijms22094382. [PMID: 33922247 PMCID: PMC8122740 DOI: 10.3390/ijms22094382] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 04/19/2021] [Accepted: 04/19/2021] [Indexed: 01/31/2023] Open
Abstract
Spermine, a member of polyamines, exists in all organisms and is essential for normal cell growth and function. It is highly expressed in the prostate compared with other organs and is detectable in urine, tissue, expressed prostatic secretions, and erythrocyte. A significant reduction of spermine level was observed in prostate cancer (PCa) tissue compared with benign prostate tissue, and the level of urinary spermine was also significantly lower in men with PCa. Decreased spermine level may be used as an indicator of malignant phenotype transformation from normal to malignant tissue in prostate. Studies targeting polyamines and key rate-limiting enzymes associated with spermine metabolism as a tool for PCa therapy and chemoprevention have been conducted with various polyamine biosynthesis inhibitors and polyamine analogues. The mechanism between spermine and PCa development are possibly related to the regulation of polyamine metabolism, cancer-driving pathways, oxidative stress, anticancer immunosurveillance, and apoptosis regulation. Although the specific mechanism of spermine in PCa development is still unclear, ongoing research in spermine metabolism and its association with PCa pathophysiology opens up new opportunities in the diagnostic and therapeutic roles of spermine in PCa management.
Collapse
Affiliation(s)
| | | | | | | | | | - Chi-Fai Ng
- Correspondence: (P.K.-F.C.); (C.-F.N.); Tel.: +85-235-052-625 (C.-F.N.)
| |
Collapse
|
36
|
Hanus M, Parada-Venegas D, Landskron G, Wielandt AM, Hurtado C, Alvarez K, Hermoso MA, López-Köstner F, De la Fuente M. Immune System, Microbiota, and Microbial Metabolites: The Unresolved Triad in Colorectal Cancer Microenvironment. Front Immunol 2021; 12:612826. [PMID: 33841394 PMCID: PMC8033001 DOI: 10.3389/fimmu.2021.612826] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 03/02/2021] [Indexed: 12/16/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most common cancers worldwide. As with other cancers, CRC is a multifactorial disease due to the combined effect of genetic and environmental factors. Most cases are sporadic, but a small proportion is hereditary, estimated at around 5-10%. In both, the tumor interacts with heterogeneous cell populations, such as endothelial, stromal, and immune cells, secreting different signals (cytokines, chemokines or growth factors) to generate a favorable tumor microenvironment for cancer cell invasion and metastasis. There is ample evidence that inflammatory processes have a role in carcinogenesis and tumor progression in CCR. Different profiles of cell activation of the tumor microenvironment can promote pro or anti-tumor pathways; hence they are studied as a key target for the control of cancer progression. Additionally, the intestinal mucosa is in close contact with a microorganism community, including bacteria, bacteriophages, viruses, archaea, and fungi composing the gut microbiota. Aberrant composition of this microbiota, together with alteration in the diet-derived microbial metabolites content (such as butyrate and polyamines) and environmental compounds has been related to CRC. Some bacteria, such as pks+ Escherichia coli or Fusobacterium nucleatum, are involved in colorectal carcinogenesis through different pathomechanisms including the induction of genetic mutations in epithelial cells and modulation of tumor microenvironment. Epithelial and immune cells from intestinal mucosa have Pattern-recognition receptors and G-protein coupled receptors (receptor of butyrate), suggesting that their activation can be regulated by intestinal microbiota and metabolites. In this review, we discuss how dynamics in the gut microbiota, their metabolites, and tumor microenvironment interplays in sporadic and hereditary CRC, modulating tumor progression.
Collapse
Affiliation(s)
- Michelle Hanus
- Laboratory of Innate Immunity, Program of Immunology, Faculty of Medicine, Institute of Biomedical Sciences, Universidad de Chile, Santiago, Chile
| | - Daniela Parada-Venegas
- Laboratory of Innate Immunity, Program of Immunology, Faculty of Medicine, Institute of Biomedical Sciences, Universidad de Chile, Santiago, Chile
| | - Glauben Landskron
- Laboratory of Innate Immunity, Program of Immunology, Faculty of Medicine, Institute of Biomedical Sciences, Universidad de Chile, Santiago, Chile
| | | | - Claudia Hurtado
- Research Core, Academic Department, Clínica Las Condes, Santiago, Chile
| | - Karin Alvarez
- Cancer Center, Clínica Universidad de los Andes, Santiago, Chile
| | - Marcela A. Hermoso
- Laboratory of Innate Immunity, Program of Immunology, Faculty of Medicine, Institute of Biomedical Sciences, Universidad de Chile, Santiago, Chile
| | | | | |
Collapse
|
37
|
Alexander ET, El Naggar O, Fahey E, Mariner K, Donnelly J, Wolfgang K, Phanstiel O, Gilmour SK. Harnessing the polyamine transport system to treat BRAF inhibitor-resistant melanoma. Cancer Biol Ther 2021; 22:225-237. [PMID: 33602034 DOI: 10.1080/15384047.2021.1883185] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
BRAF mutations are present in over half of all melanoma tumors. Although BRAF inhibitors significantly improve survival of patients with metastatic melanoma, recurrences occur within several months. We previously reported that BRAF mutant melanoma cells are more sensitive to a novel arylmethyl-polyamine (AP) compound that exploits their increased polyamine uptake compared to that of BRAF wildtype cells. Using an animal model of BRAF inhibitor-resistant melanoma, we show that co-treatment with the BRAF inhibitor, PLX4720, and AP significantly delays the recurrence of PLX4720-resistant melanoma tumors and decreases tumor-promoting macrophages. Development of BRAF inhibitor-resistance enriches for metastatic cancer stem cells (CSC) and increases tumor-promoting macrophages. In vitro studies demonstrated that CD304+, CXCR4+ spheroid cultures of BRAF mutant melanoma cells are resistant to PLX4720 but are more sensitive to AP compared to monolayer cultures of the same cells. AP significantly inhibited YUMM1.7 melanoma cell invasiveness across a Matrigel-coated filter using the CXCR4 ligand, SDF-1α, as the chemoattractant. AP also blocked the chemotactic effect of SDF-1α on CXCR4+ macrophages and inhibited M2 polarization of macrophages. In melanoma-macrophage co-cultures, AP prevented the PLX4720-induced release of pro-tumorigenic growth factors, such as VEGF, from macrophages and prevented the macrophage rescue of BRAF mutant melanoma cells treated with PLX4720. Our study offers a novel therapy (AP) to treat chemo-resistant melanoma. AP is unique because it targets the polyamine transport system in BRAF inhibitor-resistant CSCs and also blocks CXCR4 signaling in invasive melanoma cells and pro-tumorigenic macrophages.
Collapse
Affiliation(s)
| | | | - Erin Fahey
- Lankenau Institute for Medical Research, Wynnewood, PA, USA
| | - Kelsey Mariner
- Lankenau Institute for Medical Research, Wynnewood, PA, USA
| | - Julia Donnelly
- Lankenau Institute for Medical Research, Wynnewood, PA, USA
| | | | - Otto Phanstiel
- Department of Medical Education, College of Medicine, University of Central Florida, Biomolecular Research Annex, Orlando, FL, USA
| | - Susan K Gilmour
- Lankenau Institute for Medical Research, Wynnewood, PA, USA.,At Lankenau Institute for Medical Research, Wynnewood, PA, USA
| |
Collapse
|
38
|
Miska J, Rashidi A, Lee-Chang C, Gao P, Lopez-Rosas A, Zhang P, Burga R, Castro B, Xiao T, Han Y, Hou D, Sampat S, Cordero A, Stoolman JS, Horbinski CM, Burns M, Reshetnyak YK, Chandel NS, Lesniak MS. Polyamines drive myeloid cell survival by buffering intracellular pH to promote immunosuppression in glioblastoma. SCIENCE ADVANCES 2021; 7:eabc8929. [PMID: 33597238 PMCID: PMC7888943 DOI: 10.1126/sciadv.abc8929] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 12/23/2020] [Indexed: 06/12/2023]
Abstract
Glioblastoma is characterized by the robust infiltration of immunosuppressive tumor-associated myeloid cells (TAMCs). It is not fully understood how TAMCs survive in the acidic tumor microenvironment to cause immunosuppression in glioblastoma. Metabolic and RNA-seq analysis of TAMCs revealed that the arginine-ornithine-polyamine axis is up-regulated in glioblastoma TAMCs but not in tumor-infiltrating CD8+ T cells. Active de novo synthesis of highly basic polyamines within TAMCs efficiently buffered low intracellular pH to support the survival of these immunosuppressive cells in the harsh acidic environment of solid tumors. Administration of difluoromethylornithine (DFMO), a clinically approved inhibitor of polyamine generation, enhanced animal survival in immunocompetent mice by causing a tumor-specific reduction of polyamines and decreased intracellular pH in TAMCs. DFMO combination with immunotherapy or radiotherapy further enhanced animal survival. These findings indicate that polyamines are used by glioblastoma TAMCs to maintain normal intracellular pH and cell survival and thus promote immunosuppression during tumor evolution.
Collapse
Affiliation(s)
- Jason Miska
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, 676 North St. Clair Street, Suite 2210, Chicago, IL 60611, USA.
| | - Aida Rashidi
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, 676 North St. Clair Street, Suite 2210, Chicago, IL 60611, USA
| | - Catalina Lee-Chang
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, 676 North St. Clair Street, Suite 2210, Chicago, IL 60611, USA
| | - Peng Gao
- Metabolomics Core Facility, Feinberg School of Medicine, Northwestern University, 710 N Fairbanks Court, Chicago, IL 60611, USA
| | - Aurora Lopez-Rosas
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, 676 North St. Clair Street, Suite 2210, Chicago, IL 60611, USA
| | - Peng Zhang
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, 676 North St. Clair Street, Suite 2210, Chicago, IL 60611, USA
| | - Rachel Burga
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, 676 North St. Clair Street, Suite 2210, Chicago, IL 60611, USA
| | - Brandyn Castro
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, 676 North St. Clair Street, Suite 2210, Chicago, IL 60611, USA
| | - Ting Xiao
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, 676 North St. Clair Street, Suite 2210, Chicago, IL 60611, USA
| | - Yu Han
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, 676 North St. Clair Street, Suite 2210, Chicago, IL 60611, USA
| | - David Hou
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, 676 North St. Clair Street, Suite 2210, Chicago, IL 60611, USA
| | - Samay Sampat
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, 676 North St. Clair Street, Suite 2210, Chicago, IL 60611, USA
| | - Alex Cordero
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, 676 North St. Clair Street, Suite 2210, Chicago, IL 60611, USA
| | - Joshua S Stoolman
- Department of Medicine, Feinberg School of Medicine, Northwestern University, 676 North St. Clair Street, Suite 2330, Chicago, IL 60611, USA
| | - Craig M Horbinski
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, 676 North St. Clair Street, Suite 2210, Chicago, IL 60611, USA
| | - Mark Burns
- Aminex Therapeutics Inc., Epsom, NH 03234, USA
| | - Yana K Reshetnyak
- Physics Department, University of Rhode Island, Kingston, RI 02881, USA
| | - Navdeep S Chandel
- Department of Medicine, Feinberg School of Medicine, Northwestern University, 676 North St. Clair Street, Suite 2330, Chicago, IL 60611, USA
| | - Maciej S Lesniak
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, 676 North St. Clair Street, Suite 2210, Chicago, IL 60611, USA
| |
Collapse
|
39
|
Li J, Meng Y, Wu X, Sun Y. Polyamines and related signaling pathways in cancer. Cancer Cell Int 2020; 20:539. [PMID: 33292222 PMCID: PMC7643453 DOI: 10.1186/s12935-020-01545-9] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 09/08/2020] [Indexed: 02/06/2023] Open
Abstract
Polyamines are aliphatic compounds with more than two amino groups that play various important roles in human cells. In cancer, polyamine metabolism dysfunction often occurs, and regulatory mechanisms of polyamine. This review summarizes the existing research on the metabolism and transport of polyamines to study the association of oncogenes and related signaling pathways with polyamines in tumor cells. Drugs that regulate enzymes have been developed for cancer treatment, and in the future, more attention should be paid to treatment strategies that simultaneously modulate polyamine metabolism and carcinogenic signaling pathways. In addition, the polyamine pathway is a potential target for cancer chemoprevention. As an irreversible suicide inhibitor of the ornithine decarboxylase (a vital enzyme of polyamine synthesis), Difluoro-methylornithine had been shown to have the chemoprevention effect on cancer. Therefore, we summarized and analyzed the chemoprophylaxis effect of the difluoromethylornithine in this systematic review.
Collapse
Affiliation(s)
- Jiajing Li
- Department of Otorhinolaryngology-Head and Neck Surgery, China-Japan Union Hospital, Jilin University, Changchun, Jilin Province, China.,Department of Pathophysiology, Prostate Diseases Prevention and Treatment Research Center, College of Basic Medical Science, Jilin University, Changchun, China
| | - Yan Meng
- Department of Pathophysiology, Prostate Diseases Prevention and Treatment Research Center, College of Basic Medical Science, Jilin University, Changchun, China
| | - Xiaolin Wu
- Department of Pathophysiology, Prostate Diseases Prevention and Treatment Research Center, College of Basic Medical Science, Jilin University, Changchun, China
| | - Yuxin Sun
- Department of Otorhinolaryngology-Head and Neck Surgery, China-Japan Union Hospital, Jilin University, Changchun, Jilin Province, China.
| |
Collapse
|
40
|
Proietti E, Rossini S, Grohmann U, Mondanelli G. Polyamines and Kynurenines at the Intersection of Immune Modulation. Trends Immunol 2020; 41:1037-1050. [PMID: 33055013 DOI: 10.1016/j.it.2020.09.007] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 09/11/2020] [Accepted: 09/14/2020] [Indexed: 12/15/2022]
Abstract
Polyamines (i.e., putrescine, spermidine, and spermine) are bioactive polycations capable of binding nucleic acids and proteins and modulating signaling pathways. Polyamine functions have been studied most extensively in tumors, where they can promote cell transformation and proliferation. Recently, spermidine was found to exert protective effects in an experimental model of multiple sclerosis (MS) and to confer immunoregulatory properties on dendritic cells (DCs), via the indoleamine 2,3-dioxygenase 1 (IDO1) enzyme. IDO1 converts l-tryptophan into metabolites, collectively known as kynurenines, endowed with several immunoregulatory effects via activation of the arylhydrocarbon receptor (AhR). Because AhR activation increases polyamine production, the emerging scenario has identified polyamines and kynurenines as actors of an immunoregulatory circuitry with potential implications for immunotherapy in autoimmune diseases and cancer.
Collapse
Affiliation(s)
- Elisa Proietti
- Department of Experimental Medicine, University of Perugia, 06132 Perugia, Italy
| | - Sofia Rossini
- Department of Experimental Medicine, University of Perugia, 06132 Perugia, Italy
| | - Ursula Grohmann
- Department of Experimental Medicine, University of Perugia, 06132 Perugia, Italy.
| | - Giada Mondanelli
- Department of Experimental Medicine, University of Perugia, 06132 Perugia, Italy.
| |
Collapse
|
41
|
Alexander ET, Mariner K, Donnelly J, Phanstiel O, Gilmour SK. Polyamine Blocking Therapy Decreases Survival of Tumor-Infiltrating Immunosuppressive Myeloid Cells and Enhances the Antitumor Efficacy of PD-1 Blockade. Mol Cancer Ther 2020; 19:2012-2022. [PMID: 32747421 DOI: 10.1158/1535-7163.mct-19-1116] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 05/12/2020] [Accepted: 07/16/2020] [Indexed: 12/21/2022]
Abstract
Despite unprecedented advances in the treatment of cancer through the use of immune checkpoint blockade (ICB), responses are not universal and alternative strategies are needed to enhance responses to ICB. We have shown previously that a novel polyamine blocking therapy (PBT), consisting of cotreatment with α-difluoromethylornithine (DFMO) to block polyamine biosynthesis and a Trimer polyamine transport inhibitor, decreases myeloid-derived suppressor cells (MDSC) and M2-like tumor-associated macrophages (TAM). Both MDSCs and TAMs promote tumor progression, inhibit antitumor immunity, and limit the efficacy of ICB. In this study, we investigated the use of PBT to heighten therapeutic responses to PD-1 blockade in mice bearing 4T1 mammary carcinoma and B16F10 melanoma tumors. Whereas PBT inhibited primary tumor growth in both tumor models, 4T1 lung metastases were also dramatically decreased in mice treated with PBT. Reductions in MDSC and TAM subpopulations in 4T1 tumors from PBT-treated mice were accompanied by reduced cytoprotective autophagy only in tumor-infiltrating MDSC and macrophage subpopulations but not in the lung or spleen. PBT treatment blunted M2-like alternative activation of bone marrow-derived macrophages and reduced STAT3 activation in MDSC cultures while increasing the differentiation of CD80+, CD11c+ macrophages. PBT significantly enhanced the antitumor efficacy of PD-1 blockade in both 4T1 and B16F10 tumors resistant to anti-PD-1 monotherapy, increasing tumor-specific cytotoxic T cells and survival of tumor-bearing animals beyond that with PBT or PD-1 blockade alone. Our results suggest that cotreatment with DFMO and the Trimer polyamine transport inhibitor may improve the therapeutic efficacy of immunotherapies in patients with cancer with resistant tumors.
Collapse
Affiliation(s)
- Eric T Alexander
- Lankenau Institute for Medical Research, Wynnewood, Pennsylvania
| | - Kelsey Mariner
- Lankenau Institute for Medical Research, Wynnewood, Pennsylvania
| | - Julia Donnelly
- Lankenau Institute for Medical Research, Wynnewood, Pennsylvania
| | - Otto Phanstiel
- University of Central Florida, Department of Medical Education, College of Medicine, Orlando, Florida
| | - Susan K Gilmour
- Lankenau Institute for Medical Research, Wynnewood, Pennsylvania.
| |
Collapse
|
42
|
Zheng X, Fernando V, Sharma V, Walia Y, Letson J, Furuta S. Correction of arginine metabolism with sepiapterin-the precursor of nitric oxide synthase cofactor BH 4-induces immunostimulatory-shift of breast cancer. Biochem Pharmacol 2020; 176:113887. [PMID: 32112882 PMCID: PMC7842273 DOI: 10.1016/j.bcp.2020.113887] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 02/24/2020] [Indexed: 02/07/2023]
Abstract
Immunotherapy is a first-line treatment for many tumor types. However, most breast tumors are immuno-suppressive and only modestly respond to immunotherapy. We hypothesized that correcting arginine metabolism might improve the immunogenicity of breast tumors. We tested whether supplementing sepiapterin, the precursor of tetrahydrobiopterin (BH4)-the nitric oxide synthase (NOS) cofactor-redirects arginine metabolism from the pathway synthesizing polyamines to that of synthesizing nitric oxide (NO) and make breast tumors more immunogenic. We showed that sepiapterin elevated NO but lowered polyamine levels in tumor cells, as well as in tumor-associated macrophages (TAMs). This not only suppressed tumor cell proliferation, but also induced the conversion of TAMs from the immuno-suppressive M2-type to immuno-stimulatory M1-type. Furthermore, sepiapterin abrogated the expression of a checkpoint ligand, PD-L1, in tumors in a STAT3-dependent manner. This is the first study which reveals that supplementing sepiapterin normalizes arginine metabolism, improves the immunogenicity and inhibits the growth of breast tumor cells.
Collapse
Affiliation(s)
- Xunzhen Zheng
- Department of Cancer Biology, College of Medicine and Life Sciences, University of Toledo Health Science Campus, 3000 Arlington Ave., Toledo, OH 43614, USA
| | - Veani Fernando
- Department of Cancer Biology, College of Medicine and Life Sciences, University of Toledo Health Science Campus, 3000 Arlington Ave., Toledo, OH 43614, USA
| | - Vandana Sharma
- Department of Cancer Biology, College of Medicine and Life Sciences, University of Toledo Health Science Campus, 3000 Arlington Ave., Toledo, OH 43614, USA
| | - Yashna Walia
- Department of Cancer Biology, College of Medicine and Life Sciences, University of Toledo Health Science Campus, 3000 Arlington Ave., Toledo, OH 43614, USA
| | - Joshua Letson
- Department of Cancer Biology, College of Medicine and Life Sciences, University of Toledo Health Science Campus, 3000 Arlington Ave., Toledo, OH 43614, USA
| | - Saori Furuta
- Department of Cancer Biology, College of Medicine and Life Sciences, University of Toledo Health Science Campus, 3000 Arlington Ave., Toledo, OH 43614, USA.
| |
Collapse
|
43
|
Fan J, Feng Z, Chen N. Spermidine as a target for cancer therapy. Pharmacol Res 2020; 159:104943. [PMID: 32461185 DOI: 10.1016/j.phrs.2020.104943] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 05/16/2020] [Accepted: 05/19/2020] [Indexed: 12/13/2022]
Abstract
Spermidine, as a natural component from polyamine members, is originally isolated from semen and also existed in many natural plants, and can be responsible for cell growth and development in eukaryotes. The supplementation of spermidine can extend health and lifespan across species. Although the elevated levels of polyamines and the regulation of rate-limiting enzymes for polyamine metabolism have been identified as the biomarkers in many cancers, recent epidemiological data support that an increased uptake of spermidine as a caloric restriction mimic can reduce overall mortality associated with cancers. The possible mechanisms between spermidine and cancer development may be related to the precise regulation of polyamine metabolism, anti-cancer immunosurveillance, autophagy, and apoptosis. Increased intake of polyamine seems to suppress tumorigenesis, but appears to accelerate the growth of established tumors. Based on these observations and the absolute requirement for polyamines in tumor growth, spermidine could be a rational target for chemoprevention and clinical therapeutics of cancers.
Collapse
Affiliation(s)
- Jingjing Fan
- Tianjiu Research and Development Center for Exercise Nutrition and Foods, Hubei Key Laboratory of Exercise Training and Monitoring, College of Health Science, Wuhan Sports University, Wuhan 430079, China
| | - Ziyuan Feng
- Graduate School, Wuhan Sports University, Wuhan 430079, China
| | - Ning Chen
- Tianjiu Research and Development Center for Exercise Nutrition and Foods, Hubei Key Laboratory of Exercise Training and Monitoring, College of Health Science, Wuhan Sports University, Wuhan 430079, China.
| |
Collapse
|
44
|
Grzywa TM, Sosnowska A, Matryba P, Rydzynska Z, Jasinski M, Nowis D, Golab J. Myeloid Cell-Derived Arginase in Cancer Immune Response. Front Immunol 2020; 11:938. [PMID: 32499785 PMCID: PMC7242730 DOI: 10.3389/fimmu.2020.00938] [Citation(s) in RCA: 243] [Impact Index Per Article: 60.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 04/22/2020] [Indexed: 12/13/2022] Open
Abstract
Amino acid metabolism is a critical regulator of the immune response, and its modulating becomes a promising approach in various forms of immunotherapy. Insufficient concentrations of essential amino acids restrict T-cells activation and proliferation. However, only arginases, that degrade L-arginine, as well as enzymes that hydrolyze L-tryptophan are substantially increased in cancer. Two arginase isoforms, ARG1 and ARG2, have been found to be present in tumors and their increased activity usually correlates with more advanced disease and worse clinical prognosis. Nearly all types of myeloid cells were reported to produce arginases and the increased numbers of various populations of myeloid-derived suppressor cells and macrophages correlate with inferior clinical outcomes of cancer patients. Here, we describe the role of arginases produced by myeloid cells in regulating various populations of immune cells, discuss molecular mechanisms of immunoregulatory processes involving L-arginine metabolism and outline therapeutic approaches to mitigate the negative effects of arginases on antitumor immune response. Development of potent arginase inhibitors, with improved pharmacokinetic properties, may lead to the elaboration of novel therapeutic strategies based on targeting immunoregulatory pathways controlled by L-arginine degradation.
Collapse
Affiliation(s)
- Tomasz M. Grzywa
- Department of Immunology, Medical University of Warsaw, Warsaw, Poland
| | - Anna Sosnowska
- Department of Immunology, Medical University of Warsaw, Warsaw, Poland
- Postgraduate School of Molecular Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Paweł Matryba
- Department of Immunology, Medical University of Warsaw, Warsaw, Poland
- Laboratory of Neurobiology BRAINCITY, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
- The Doctoral School of the Medical University of Warsaw, Medical University of Warsaw, Warsaw, Poland
| | - Zuzanna Rydzynska
- Department of Immunology, Medical University of Warsaw, Warsaw, Poland
| | - Marcin Jasinski
- Department of Immunology, Medical University of Warsaw, Warsaw, Poland
| | - Dominika Nowis
- Department of Immunology, Medical University of Warsaw, Warsaw, Poland
- Laboratory of Experimental Medicine, Center of New Technologies, University of Warsaw, Warsaw, Poland
- Genomic Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Jakub Golab
- Department of Immunology, Medical University of Warsaw, Warsaw, Poland
- Centre of Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
45
|
Regulating T-cell differentiation through the polyamine spermidine. J Allergy Clin Immunol 2020; 147:335-348.e11. [PMID: 32407834 DOI: 10.1016/j.jaci.2020.04.037] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 03/13/2020] [Accepted: 04/03/2020] [Indexed: 01/22/2023]
Abstract
BACKGROUND The cross-talk between the host and its microbiota plays a key role in the promotion of health. The production of metabolites such as polyamines by intestinal-resident bacteria is part of this symbiosis shaping host immunity. The polyamines putrescine, spermine, and spermidine are abundant within the gastrointestinal tract and might substantially contribute to gut immunity. OBJECTIVE We aimed to characterize the polyamine spermidine as a modulator of T-cell differentiation and function. METHODS Naive T cells were isolated from wild-type mice or cord blood from healthy donors and submitted to polarizing cytokines, with and without spermidine treatment, to evaluate CD4+ T-cell differentiation in vitro. Moreover, mice were subjected to oral supplementation of spermidine, or its precursor l-arginine, to assess the frequency and total numbers of regulatory T (Treg) cells in vivo. RESULTS Spermidine modulates CD4+ T-cell differentiation in vitro, preferentially committing naive T cells to a regulatory phenotype. After spermidine treatment, activated T cells lacking the autophagy gene Atg5 fail to upregulate Foxp3 to the same extent as wild-type cells. These results indicate that spermidine's polarizing effect requires an intact autophagic machinery. Furthermore, dietary supplementation with spermidine promotes homeostatic differentiation of Treg cells within the gut and reduces pathology in a model of T-cell transfer-induced colitis. CONCLUSION Altogether, our results highlight the beneficial effects of spermidine, or l-arginine, on gut immunity by promoting Treg cell development.
Collapse
|
46
|
Induction and Prevention of Gastric Cancer with Combined Helicobacter Pylori and Capsaicin Administration and DFMO Treatment, Respectively. Cancers (Basel) 2020; 12:cancers12040816. [PMID: 32231118 PMCID: PMC7226438 DOI: 10.3390/cancers12040816] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 03/24/2020] [Accepted: 03/26/2020] [Indexed: 12/21/2022] Open
Abstract
Gastric cancer risk evolves over time due to environmental, dietary, and lifestyle changes, including Helicobacter pylori (H. pylori) infection and consumption of hot peppers (i.e., capsaicin). H. pylori infection promotes gastric mucosal injury in the early phase of capsaicin exposure. This relationship suggests a need to investigate the mechanism of how both H. pylori infection and capsaicin contribute to gastric inflammation and lead to gastric cancer. C57-Balb/c mice were infected with the H. pylori (SS1) strain and then fed capsaicin (0.05% or 0.2 g/kg/day) or not. Consequently, tumor size and phenotype were analyzed to determine the molecular mechanism driving the shift from gastritis to stomach cancer. Moreover, we used 2-difluoromethylornithine (DFMO) in mice to prevent gastric tumorigenesis by reducing inflammation and promoting recovery of disease-free stasis. This study provides evidence showing that a combination of H. pylori infection and capsaicin consumption leads to gastric carcinogenesis mediated through interleukin-6 (IL-6) stimulation with an incidence rate of 50%. The anti-inflammatory role of DFMO highlights the injurious effect of inflammation in gastric cancer development and the need to reduce gastric inflammation for cancer prevention by inhibiting IL-6. Accordingly, preventive measures such as reduced capsaicin consumption, H. pylori clearance, and DFMO treatment may lessen gastric cancer incidence.
Collapse
|
47
|
Guo T, Li B, Gu C, Chen X, Han M, Liu X, Xu C. PGC-1α inhibits polyamine metabolism in Cyclin E1-driven ovarian cancer. Cancer Med 2019; 8:7754-7761. [PMID: 31657115 PMCID: PMC6912055 DOI: 10.1002/cam4.2637] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 10/03/2019] [Accepted: 10/10/2019] [Indexed: 12/16/2022] Open
Abstract
Aim Cyclin E1‐driven ovarian cancer (OvCa) is characterized with metabolic shift. In this study, we aim to pinpoint the metabolic pathway altered and assess its therapeutic potential. Methods In silico reproduction of TCGA ovarian cancer dataset and functional annotation using GSEA was performed. Candidate metabolic pathway was validated using in vitro and in vivo assays. Results From TCGA database, we found that polyamine metabolism was significantly enriched in Cyclin E1‐driven OvCa. Expressions of SMS, SRM, and ODC1 were positively correlated with that of CCNE1, respectively. ODC1 and SMS expressions were significantly correlated with decreased immune infiltrates. PGC‐1α silencing significantly decreased invasion and migration in both OvCa cell lines. Both spermidine and spermine levels were significantly increased when PGC‐1α was silenced. Targeting SRM significantly decreased spermine level in OVCAR3 cells, which was rescued when PGC‐1α was silenced. Silencing of PGC‐1α resulted in increased SRM in both OvCa cells. Dinaciclib significantly decreased invasion and migration of OVCAR3 cells. Expressions of PD‐L1 and PD‐L2 were predominantly in tumor‐infiltrating lymphocytes. Dinaciclib showed no notable effect of PD‐1 yet substantially induced the increased levels of PD‐L1 and PD‐L2. Conclusion Cyclin E1‐driven OvCa is characterized with activated polyamine synthesis, which is associated with decreased cancer immunity. Targeting polyamine and CDK2 may therefore sensitize this genotype to immune checkpoint blockade.
Collapse
Affiliation(s)
- Ting Guo
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, PR China
| | - Bin Li
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, PR China
| | - Chao Gu
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, PR China
| | - Xiuying Chen
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, PR China
| | - Mengxin Han
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, PR China
| | - Xiaocheng Liu
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, PR China
| | - Congjian Xu
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, PR China
| |
Collapse
|
48
|
Avtandilyan N, Javrushyan H, Mamikonyan A, Grigoryan A, Trchounian A. The potential therapeutic effect of N G-hydroxy-nor-L-arginine in 7,12-dimethylbenz(a)anthracene-induced breast cancer in rats. Exp Mol Pathol 2019; 111:104316. [PMID: 31629728 DOI: 10.1016/j.yexmp.2019.104316] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 06/10/2019] [Accepted: 10/01/2019] [Indexed: 11/19/2022]
Abstract
Advances in our understanding of the metabolism and molecular functions of arginine and their alterations in cancer have led to resurgence in the interest of targeting arginine catabolism as an anticancer strategy. Therefore, arginase inhibitors have been proposed as a way to treat cancer. In this study, the anti-tumor potential of the arginase inhibition by NG-hydroxy-nor-L-arginine (nor-NOHA) (3 mg/kg/day, i.p.), administered for 5 weeks (parallel tumors development, every 3th day) against 7,12-dimethylbenz(a)anthracene (DMBA)-induced mammary carcinogenesis in rats has been investigated. Treatment by nor-NOHA has obvious inhibition effects on development of carcinogenesis in rats was shown. That was seen in downregulation of rats' tumors size and number, mortality rate, in stopped alteration of tissue histopathology, in decrease of polyamines, NO and MDA (malondialdeide) concentrations (in blood). Results have shown arginase and NO-synthase can cooperate to restrain quantities of polyamines and NO for cancer progression. The results obtained can serve as a base to use this model for determination of productive, noncytotoxic antitumor and immune modulating concentration of anticancer agents. Perspectives of targeting arginase and NOS in cancer management can ground application in clinical medicine.
Collapse
Affiliation(s)
- Nikolay Avtandilyan
- Laboratory of Biochemistry, Research Institute of Biology, Faculty of Biology, Yerevan State University, Yerevan, Armenia; Department of Biochemistry, Microbiology and Biotechnology, Faculty of Biology, Yerevan State University, Yerevan, Armenia.
| | - Hayarpi Javrushyan
- Laboratory of Biochemistry, Research Institute of Biology, Faculty of Biology, Yerevan State University, Yerevan, Armenia.
| | - Anahit Mamikonyan
- Department of Biochemistry, Microbiology and Biotechnology, Faculty of Biology, Yerevan State University, Yerevan, Armenia.
| | - Anna Grigoryan
- Department of Zoology, Faculty of Biology, Yerevan State University, Yerevan, Armenia.
| | - Armen Trchounian
- Department of Biochemistry, Microbiology and Biotechnology, Faculty of Biology, Yerevan State University, Yerevan, Armenia.
| |
Collapse
|
49
|
Sánchez-Jiménez F, Medina MÁ, Villalobos-Rueda L, Urdiales JL. Polyamines in mammalian pathophysiology. Cell Mol Life Sci 2019; 76:3987-4008. [PMID: 31227845 PMCID: PMC11105599 DOI: 10.1007/s00018-019-03196-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 06/11/2019] [Accepted: 06/14/2019] [Indexed: 02/07/2023]
Abstract
Polyamines (PAs) are essential organic polycations for cell viability along the whole phylogenetic scale. In mammals, they are involved in the most important physiological processes: cell proliferation and viability, nutrition, fertility, as well as nervous and immune systems. Consequently, altered polyamine metabolism is involved in a series of pathologies. Due to their pathophysiological importance, PA metabolism has evolved to be a very robust metabolic module, interconnected with the other essential metabolic modules for gene expression and cell proliferation/differentiation. Two different PA sources exist for animals: PA coming from diet and endogenous synthesis. In the first section of this work, the molecular characteristics of PAs are presented as determinant of their roles in living organisms. In a second section, the metabolic specificities of mammalian PA metabolism are reviewed, as well as some obscure aspects on it. This second section includes information on mammalian cell/tissue-dependent PA-related gene expression and information on crosstalk with the other mammalian metabolic modules. The third section presents a synthesis of the physiological processes described as modulated by PAs in humans and/or experimental animal models, the molecular bases of these regulatory mechanisms known so far, as well as the most important gaps of information, which explain why knowledge around the specific roles of PAs in human physiology is still considered a "mysterious" subject. In spite of its robustness, PA metabolism can be altered under different exogenous and/or endogenous circumstances so leading to the loss of homeostasis and, therefore, to the promotion of a pathology. The available information will be summarized in the fourth section of this review. The different sections of this review also point out the lesser-known aspects of the topic. Finally, future prospects to advance on these still obscure gaps of knowledge on the roles on PAs on human physiopathology are discussed.
Collapse
Affiliation(s)
- Francisca Sánchez-Jiménez
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, Andalucía Tech, and IBIMA (Biomedical Research Institute of Málaga), Málaga, Spain
- UNIT 741, CIBER de Enfermedades Raras (CIBERER), 29071, Málaga, Spain
| | - Miguel Ángel Medina
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, Andalucía Tech, and IBIMA (Biomedical Research Institute of Málaga), Málaga, Spain
- UNIT 741, CIBER de Enfermedades Raras (CIBERER), 29071, Málaga, Spain
| | - Lorena Villalobos-Rueda
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, Andalucía Tech, and IBIMA (Biomedical Research Institute of Málaga), Málaga, Spain
| | - José Luis Urdiales
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, Andalucía Tech, and IBIMA (Biomedical Research Institute of Málaga), Málaga, Spain.
- UNIT 741, CIBER de Enfermedades Raras (CIBERER), 29071, Málaga, Spain.
| |
Collapse
|
50
|
Ward NP, DeNicola GM. Sulfur metabolism and its contribution to malignancy. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2019; 347:39-103. [PMID: 31451216 DOI: 10.1016/bs.ircmb.2019.05.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Metabolic dysregulation is an appreciated hallmark of cancer and a target for therapeutic intervention. Cellular metabolism involves a series of oxidation/reduction (redox) reactions that yield the energy and biomass required for tumor growth. Cells require diverse molecular species with constituent sulfur atoms to facilitate these processes. For humans, this sulfur is derived from the dietary consumption of the proteinogenic amino acids cysteine and methionine, as only lower organisms (e.g., bacteria, fungi, and plants) can synthesize them de novo. In addition to providing the sulfur required to sustain redox chemistry, the metabolism of these sulfur-containing amino acids yield intermediate metabolites that constitute the cellular antioxidant system, mediate inter- and intracellular signaling, and facilitate the epigenetic regulation of gene expression, all of which contribute to tumorigenesis.
Collapse
Affiliation(s)
- Nathan P Ward
- Department of Cancer Physiology, Moffitt Cancer Center and Research Institute, Tampa, FL, United States
| | - Gina M DeNicola
- Department of Cancer Physiology, Moffitt Cancer Center and Research Institute, Tampa, FL, United States.
| |
Collapse
|