1
|
Gu M, He T, Yuan Y, Duan S, Li X, Shen C. Single-Cell RNA Sequencing Reveals Multiple Pathways and the Tumor Microenvironment Could Lead to Chemotherapy Resistance in Cervical Cancer. Front Oncol 2021; 11:753386. [PMID: 34900703 PMCID: PMC8662819 DOI: 10.3389/fonc.2021.753386] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 10/27/2021] [Indexed: 12/28/2022] Open
Abstract
Background Cervical cancer is one of the most common gynecological cancers worldwide. The tumor microenvironment significantly influences the therapeutic response and clinical outcome. However, the complex tumor microenvironment of cervical cancer and the molecular mechanisms underlying chemotherapy resistance are not well studied. This study aimed to comprehensively analyze cells from pretreated and chemoresistant cervical cancer tissues to generate a molecular census of cell populations. Methods Biopsy tissues collected from patients with cervical squamous cell carcinoma, cervical adenocarcinoma, and chronic cervicitis were subjected to single-cell RNA sequencing using the 10× Genomics platform. Unsupervised clustering analysis of cells was performed to identify the main cell types, and important cell clusters were reclustered into subpopulations. Gene expression profiles and functional enrichment analysis were used to explore gene expression and functional differences between cell subpopulations in cervicitis and cervical cancer samples and between chemoresistant and chemosensitive samples. Results A total of 24,371 cells were clustered into nine separate cell types, including immune and non-immune cells. Differentially expressed genes between chemoresistant and chemosensitive patients enriched in the phosphoinositide 3-kinase (PI3K)/AKT pathway were involved in tumor development, progression, and apoptosis, which might lead to chemotherapy resistance. Conclusions Our study provides a comprehensive overview of the cancer microenvironment landscape and characterizes its gene expression and functional difference in chemotherapy resistance. Consequently, our study deepens the insights into cervical cancer biology through the identification of gene markers for diagnosis, prognosis, and therapy.
Collapse
Affiliation(s)
- Meijia Gu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
| | - Ti He
- Department of Scientific Research & Industrial Application, Beijing Microread Genetics Co., Ltd., Beijing, China
| | - Yuncong Yuan
- College of Life Sciences, Wuhan University, Wuhan, China.,China Center for Type Culture Collection, Wuhan University, Wuhan, China
| | - Suling Duan
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
| | - Xin Li
- Department of Gynecology 2, Renmin Hospital of Wuhan University, Wuhan, China
| | - Chao Shen
- College of Life Sciences, Wuhan University, Wuhan, China.,China Center for Type Culture Collection, Wuhan University, Wuhan, China
| |
Collapse
|
2
|
Gao Y, Gan K, Liu K, Xu B, Chen M. SP1 Expression and the Clinicopathological Features of Tumors: A Meta-Analysis and Bioinformatics Analysis. Pathol Oncol Res 2021; 27:581998. [PMID: 34257529 PMCID: PMC8262197 DOI: 10.3389/pore.2021.581998] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 01/05/2021] [Indexed: 11/13/2022]
Abstract
Objective: Specificity protein 1 (SP1) plays a vital role to promote carcinogenesis in a variety of tumors, and its up-regulated expression is reported to be a hinter of poor prognosis of patients. We conducted this meta-analysis to elucidate the clinical significance and prognostic value of SP1 in malignant tumors. Methods: PubMed and Cochrane Library were searched for studies published between January 1, 2000 and June 1, 2020. The combined odds ratios (ORs) and hazard ratios (HRs) with 95% confidence intervals (95% CIs) were used to investigate the correlation of SP1 with clinical behaviors and prognosis in patients with solid tumors. UALCAN was used to conduct bioinformatics analysis. Results: A total of 24 documents involving 2,739 patients were enrolled in our review. The random-effect model was used to perform this analysis due to the high level of heterogeneity. SP1 low expression was not conducive to lymph node metastasis (OR = 0.42; 95% CI: 0.28-0.64; p < 0.05), progression of TNM stage (OR = 0.34; 95% CI: 0.20-0.57; p < 0.05) and tumor infiltration (OR = 0.33; 95% CI: 0.18-0.60; p < 0.05). Elevated SP1 expression was connected with shorter survival time of patients with hepatocellular carcinoma, pancreatic cancer, gastric cancer and esophageal cancer (HR = 1.95; 95% CI: 1.16-3.28; p < 0.05). According to UALCAN database, breast cancer, ovarian cancer, colon cancer and lung adenocarcinoma display an elevated SP1 expression in comparison with normal tissues. Kaplan-Meier survival plots indicate SP1 mRNA level has negative effects on prognosis of liver hepatocellular carcinoma and brain lower grade glioma. Conclusion: SP1 was associated with lymph node metastasis, TNM stage and depth of invasion, and indicated poor clinical outcome, which brought new insights on the potential candidacy of SP1 in clinical usage.
Collapse
Affiliation(s)
- Yue Gao
- Surgical Research Center, Institute of Urology, Medical School of Southeast University Nanjing, Jiangsu, China
| | - Kai Gan
- Surgical Research Center, Institute of Urology, Medical School of Southeast University Nanjing, Jiangsu, China
| | - Kuangzheng Liu
- Surgical Research Center, Institute of Urology, Medical School of Southeast University Nanjing, Jiangsu, China
| | - Bin Xu
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing, Jiangsu, China
| | - Ming Chen
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing, Jiangsu, China
| |
Collapse
|
3
|
Peng JL, Wu JZ, Li GJ, Wu JL, Xi YM, Li XQ, Wang L. Identification of potential biomarkers of peripheral blood mononuclear cell in hepatocellular carcinoma using bioinformatic analysis: A protocol for systematic review and meta-analysis. Medicine (Baltimore) 2021; 100:e24172. [PMID: 33466191 PMCID: PMC7808450 DOI: 10.1097/md.0000000000024172] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 12/11/2020] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is the cause of an overwhelming number of cancer-related deaths across the world. Developing precise and noninvasive biomarkers is critical for diagnosing HCC. Our research was designed to explore potentially useful biomarkers of host peripheral blood mononuclear cell (PBMC) in HCC by integrating comprehensive bioinformatic analysis. METHODS Gene expression data of PBMC in both healthy individuals and patients with HCC were extracted from the Gene Expression Omnibus (GEO) to identify differentially expressed genes (DEGs). The gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis were applied to annotate the function of DEGs. Protein-protein interaction analysis was performed to screen the hub genes from DEGs. cBioportal database analysis was performed to assess the prognostic significance of hub genes. The Cancer Cell Line Encyclopedia (CCLE) and The Human Protein Atlas (HPA) database analyses were performed to confirm the expression levels of the hub genes in HCC cells and tissue. RESULTS A total of 95 DEGs were screened. Results of the GO analysis revealed that DEGs were primarily involved in platelet degranulation, cytoplasm, and protein binding. Results of the KEGG analysis indicated that DEGs were primarily enriched in focal adhesion. Five genes, namely, myosin light chain kinase (MYLK), interleukin 1 beta (IL1B), phospholipase D1 (PLD1), cortactin (CTTN), and moesin (MSN), were identified as hub genes. A search in the CCLE and HPA database showed that the expression levels of these hub genes were remarkably increased in the HCC samples. Survival analysis revealed that the overexpression of MYLK, IL1B, and PLD1 may have a significant effect on HCC survival. The aberrant high expression levels of MYLK, IL1B, and PLD1 strongly indicated worse prognosis in patients with HCC. CONCLUSIONS The identified hub genes may be closely linked with HCC tumorigenicity and may act as potentially useful biomarkers for the prognostic prediction of HCC in PBMC samples.
Collapse
Affiliation(s)
- Jin-lin Peng
- Department of Infectious Disease, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, Nanning, Guangxi
| | - Ji-zhou Wu
- Department of Infectious Disease, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, Nanning, Guangxi
| | - Guo-jian Li
- Department of Infectious Disease, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, Nanning, Guangxi
| | - Jian-lin Wu
- Department of Infectious Disease, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, Nanning, Guangxi
| | - Yu-mei Xi
- Department of Infectious Disease, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, Nanning, Guangxi
| | - Xiao-qing Li
- Department of Infectious Disease, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, Nanning, Guangxi
| | - Lei Wang
- College of Health and Rehabilitation, Chengdu University of Chinese Medicine, Chengdu, Sichuan, PR China
| |
Collapse
|
4
|
Wang Y, Dong F, Wan W, Zhang Z, Wang J, Wang H, Ke X. Blockade of PLD1 potentiates the antitumor effects of bortezomib in multiple myeloma cells by inhibiting the mTOR/NF-κB signal pathway. ACTA ACUST UNITED AC 2020; 25:424-432. [PMID: 33191863 DOI: 10.1080/16078454.2020.1845501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
OBJECTIVE Phospholipase D1 (PLD1) is an enzyme of the phospholipase D (PLD) superfamily. It is involved in the occurrence of various tumors. However, its role in multiple myeloma (MM) remained undefined. This study aimed to investigate the mechanism of PLD1 in the therapy of myeloma disease. MATERIAL AND METHODS Cell lines U266 and H929 were treated with PLD1 specific inhibitor VU0359595 combined bortezomib, a proteasome inhibitor. Their effects on MM cell proliferation, apoptosis, and relevant signal pathways of apoptosis were determined by cell counting kit-8 (CCK-8), real-time polymerase reaction chain (RT-PCR), ATP assay, and western blot. RESULTS PLD1 was highly expressed in U266 and H929 cells. VU0359595 didn't affect the proliferation and apoptosis of MM cells. However, VU0359595 could enhance growth inhibition, decreasing mitochondrial membrane potentials (MMPs) and ATP levels of bortezomib treated MM cells. VU0359595 also strengthened bortezomib-induced apoptosis via activating caspase-8, caspase-9, caspase-3; and down-regulating the expressions of anti-apoptosis proteins BCL-2. In addition, the bortezomib-induced cytotoxicity on MM cells was significantly augmented by VU0359595 through efficient suppression of the mTOR/NF-κB signal pathway. CONCLUSION PLD1 inhibition can remarkably exert antitumor effects with bortezomib on MM, which is a novel potentially targeting therapeutic agent, especially for drug-resistant MM patients.
Collapse
Affiliation(s)
- Yanfang Wang
- Department of Hematology, Lymphoma Research Center, Peking University Third Hospital, Beijing, People's Republic of China
| | - Fei Dong
- Department of Hematology, Lymphoma Research Center, Peking University Third Hospital, Beijing, People's Republic of China
| | - Wei Wan
- Department of Hematology, Lymphoma Research Center, Peking University Third Hospital, Beijing, People's Republic of China
| | - Zhenhao Zhang
- Department of Hematology, Lymphoma Research Center, Peking University Third Hospital, Beijing, People's Republic of China
| | - Jing Wang
- Department of Hematology, Lymphoma Research Center, Peking University Third Hospital, Beijing, People's Republic of China
| | - Hua Wang
- Department of Hematology, Lymphoma Research Center, Peking University Third Hospital, Beijing, People's Republic of China
| | - Xiaoyan Ke
- Department of Hematology, Lymphoma Research Center, Peking University Third Hospital, Beijing, People's Republic of China
| |
Collapse
|
5
|
Ding Q, Mo F, Cai X, Zhang W, Wang J, Yang S, Liu X. LncRNA CRNDE is activated by SP1 and promotes osteosarcoma proliferation, invasion, and epithelial-mesenchymal transition via Wnt/β-catenin signaling pathway. J Cell Biochem 2020; 121:3358-3371. [PMID: 31898343 DOI: 10.1002/jcb.29607] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 12/09/2019] [Indexed: 12/12/2022]
Abstract
Long noncoding RNAs (lncRNAs) were identified as a vital part in the development and progression of cancer in recent years. Colorectal neoplasia differentially expressed (CRNDE), a lncRNA, functions as an oncogene in some malignant neoplasias, but its role in the progression of osteosarcoma (OS) is still poorly understood. To dissect the difference in the expression of CRNDE, quantitative real-time polymerase chain reaction was utilized to evaluate it in OS tissues and cell lines (U2OS, MG63, and MNNG/HOS) compared with that in the adjacent normal tissues/osteoblast cells (hFOB1.19). The role of CRNDE in OS lines was assessed using Cell Counting Kit-8, colony formation, 5-ethynyl-2'-deoxyuridine staining, terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling staining, flow cytometry, Transwell assays, and Western blot, respectively. The results demonstrated that the expression of CRNDE was high in OS tissues and cell lines, and partly induced by SP1. CRNDE knockdown attenuated OS cell proliferation and invasion and induced apoptosis and G0/G1 arrest. Moreover, the expression of mesenchymal markers N-cadherin, Vimentin and Snail were downregulated, while the expression of epithelial markers E-cadherin and ZO-1 were conversely upregulated due to CRNDE knockdown. The mechanistic investigations showed that CRNDE promoted glycogen synthase kinase-3β phosphorylation to activate the Wnt/β-catenin pathway. The results suggested that lncRNA CRNDE indeed contributed to OS proliferation, invasion, and epithelial-mesenchymal transition, working as an oncogene, demonstrating that lncRNA CRNDE may be a valid therapeutic target for the OS.
Collapse
Affiliation(s)
- Qiuyue Ding
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fengbo Mo
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Xianyi Cai
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenda Zhang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Orthopaedics, The People's Hospital of China Three Gorges University, The First People's Hospital of YiChang, Yichang, China
| | - Jinglong Wang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuhua Yang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xianzhe Liu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
6
|
Shi Y, Liu M, Huang Y, Zhang J, Yin L. Promotion of cell autophagy and apoptosis in cervical cancer by inhibition of long noncoding RNA LINC00511 via transcription factor RXRA-regulated PLD1. J Cell Physiol 2020; 235:6592-6604. [PMID: 32067228 DOI: 10.1002/jcp.29529] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Accepted: 01/09/2020] [Indexed: 12/13/2022]
Abstract
An increasing number of studies have explored the relationship of long noncoding RNAs (lncRNAs) with cervical cancer, yet the role of LINC00511 in cervical cancer still remains elusive. The current dissertation was intended to explore the effect of LINC00511 on cervical cancer development by regulating phospholipase D1 (PLD1) expression through transcription factor retinoic X receptor alpha (RXRA). Differentially expressed lncRNA and messenger RNA related to cervical cancer were screened by microarray-based expression profiling. Cervical cancer and paracancerous tissues were harvested to determine the LINC00511 expression using reverse transcription-quantitative polymerase chain reaction and western blot analysis. The relationship among LINC00511, PLD1 promoter activity, and RXRA were determined via RNA immunoprecipitation, chromatin immunoprecipitation, and dual-luciferase reporter assays. Proliferation, autophagy, and apoptosis of cervical cancer cells were detected with a series of experiments. Tumor xenograft in nude mice was employed to determine the influence of LINC00511 and PLD1 on tumor formation and growth of cervical cancer in vivo. LINC00511 might influence the occurrence of cervical cancer by upregulating PLD1 expression via recruiting transcription factor RXRA. LINC00511 and PLD1 expressions were remarkably high in cervical cancer tissues and cells. LINC00511 combined with RXRA, and overexpression of LINC00511 in cervical cancer cells elevated PLD1 expression. Si-LINC00511, si-RXRA or si-PLD1 triggered repression of proliferation and promotion of autophagy and apoptosis of cervical cancer cells. In vivo experiment, si-LINC00511, or si-PLD1 inhibited the tumorigenic ability of nude mice. Collectively, this study suggests that LINC00511 acts as an oncogenic lncRNA in cervical cancer via the promotion of transcription factor RXRA-regulated PLD1.
Collapse
Affiliation(s)
- Yangyang Shi
- Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing, China
| | - Mengran Liu
- Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing, China
| | - Yan Huang
- Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing, China
| | - Jing Zhang
- Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing, China
| | - Ling Yin
- Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing, China
| |
Collapse
|
7
|
Abstract
Functions for phospholipase D1 and D2 (PLD1 and PLD2), the canonical isoforms of the PLD superfamily in mammals, have been explored using cell biological and animal disease models for two decades. PLD1 and PLD2, which are activated as a consequence of extracellular signaling events and generate the second messenger signaling lipid phosphatidic acid (PA), have been reported to play roles in settings ranging from platelet activation to the response to cardiac ischemia, viral infection, neurodegenerative disease, and cancer. Of these, the most tractable as therapeutic targets may be thrombotic disease and cancer, as will be discussed here in the context of ongoing efforts to develop small molecule PLD inhibitors.
Collapse
Affiliation(s)
- Christian Salazar
- Center for Developmental Genetics and the Department of Pharmacological Sciences, Stony Brook University School of Medicine, Stony Brook, NY, USA
| | - Michael A Frohman
- Center for Developmental Genetics and the Department of Pharmacological Sciences, Stony Brook University School of Medicine, Stony Brook, NY, USA.
| |
Collapse
|
8
|
McDermott MI, Wang Y, Wakelam MJO, Bankaitis VA. Mammalian phospholipase D: Function, and therapeutics. Prog Lipid Res 2019; 78:101018. [PMID: 31830503 DOI: 10.1016/j.plipres.2019.101018] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 10/08/2019] [Accepted: 10/14/2019] [Indexed: 01/23/2023]
Abstract
Despite being discovered over 60 years ago, the precise role of phospholipase D (PLD) is still being elucidated. PLD enzymes catalyze the hydrolysis of the phosphodiester bond of glycerophospholipids producing phosphatidic acid and the free headgroup. PLD family members are found in organisms ranging from viruses, and bacteria to plants, and mammals. They display a range of substrate specificities, are regulated by a diverse range of molecules, and have been implicated in a broad range of cellular processes including receptor signaling, cytoskeletal regulation and membrane trafficking. Recent technological advances including: the development of PLD knockout mice, isoform-specific antibodies, and specific inhibitors are finally permitting a thorough analysis of the in vivo role of mammalian PLDs. These studies are facilitating increased recognition of PLD's role in disease states including cancers and Alzheimer's disease, offering potential as a target for therapeutic intervention.
Collapse
Affiliation(s)
- M I McDermott
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, TX 77843-1114, United States of America.
| | - Y Wang
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, TX 77843-1114, United States of America; Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843-2128, United States of America
| | - M J O Wakelam
- Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, United Kingdom
| | - V A Bankaitis
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, TX 77843-1114, United States of America; Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843-2128, United States of America; Department of Chemistry, Texas A&M University, College Station, Texas 77840, United States of America
| |
Collapse
|
9
|
Ling J, Sun Y, Pan J, Wang H, Ma Z, Yin J, Bao Z, Yang H, Liu L. Feedback modulation of endothelial cells promotes epithelial‐mesenchymal transition and metastasis of osteosarcoma cells by Von Willebrand Factor release. J Cell Biochem 2019; 120:15971-15979. [PMID: 31099074 DOI: 10.1002/jcb.28875] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 02/22/2019] [Accepted: 02/28/2019] [Indexed: 12/19/2022]
Affiliation(s)
- Jing Ling
- Department of Hematology and Oncology Children's Hospital of Soochow University Suzhou China
| | - Yu Sun
- Department of Hematology Second Affiliated Hospital of Soochow University Suzhou China
| | - Jun Pan
- Department of Orthopedics, Clinical Medical Research Center of Jiangsu Province The First Affiliated Hospital of Soochow University Suzhou China
| | - Huan Wang
- Department of Orthopedics, Clinical Medical Research Center of Jiangsu Province The First Affiliated Hospital of Soochow University Suzhou China
| | - Zhenni Ma
- Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Jiangsu Institute of Hematology The First Affiliated Hospital of Soochow University Suzhou China
- Collaborative Innovation Center of Hematology Soochow University Suzhou China
| | - Jie Yin
- Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Jiangsu Institute of Hematology The First Affiliated Hospital of Soochow University Suzhou China
- Collaborative Innovation Center of Hematology Soochow University Suzhou China
| | - Zhaohua Bao
- Department of Orthopedics, Clinical Medical Research Center of Jiangsu Province The First Affiliated Hospital of Soochow University Suzhou China
| | - Huilin Yang
- Department of Orthopedics, Clinical Medical Research Center of Jiangsu Province The First Affiliated Hospital of Soochow University Suzhou China
| | - Ling Liu
- Department of Orthopedics, Clinical Medical Research Center of Jiangsu Province The First Affiliated Hospital of Soochow University Suzhou China
| |
Collapse
|
10
|
Chen Y, Chen Q, Zou J, Zhang Y, Bi Z. Construction and analysis of a ceRNA‑ceRNA network reveals two potential prognostic modules regulated by hsa‑miR‑335‑5p in osteosarcoma. Int J Mol Med 2018; 42:1237-1246. [PMID: 29845268 PMCID: PMC6089708 DOI: 10.3892/ijmm.2018.3709] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 05/14/2018] [Indexed: 12/24/2022] Open
Abstract
Osteosarcoma is an aggressive cancer of the skeletal system, which is associated with a poor prognosis due to the high recurrence rate. Although previous studies have revealed that competitive endogenous RNAs (ceRNAs) are involved in various biological processes in the physiology and development of osteosarcoma, the roles of ceRNAs in osteosarcoma recurrence remain largely unexplored. The present study constructed a ceRNA-ceRNA network for osteosarcoma by systematically integrating matched expression profiles for microRNAs (miRNAs/miRs) and mRNAs, and identified two ceRNA-mediated modules that were associated with recurrence in patients with osteosarcoma. A multivariate Cox regression analysis demonstrated that the recurrence-free prognosis associated with the expression of the two modules was independent of other clinical factors. In addition, hsa-miR-335-3p was identified as an upstream regulating factor for both modules. In conclusion, the results of the present study suggested that ceRNAs may act as potential therapeutic biomarkers for predicting the recurrence of osteosarcoma, and may help to identify patients with osteosarcoma at a high risk of recurrence, who may benefit from adjuvant therapy.
Collapse
Affiliation(s)
- Yuxi Chen
- Department of Orthopedic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Qinghe Chen
- Department of Orthopedics, The PLA 211 Hospital, Harbin, Heilongjiang 150080, P.R. China
| | - Jilong Zou
- Department of Orthopedic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Yan Zhang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Zhenggang Bi
- Department of Orthopedic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| |
Collapse
|