1
|
Tran HH, Yamaguchi A, Manning HC. Radiotheranostic landscape: A review of clinical and preclinical development. Eur J Nucl Med Mol Imaging 2025:10.1007/s00259-025-07103-7. [PMID: 39891713 DOI: 10.1007/s00259-025-07103-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/04/2024] [Accepted: 01/20/2025] [Indexed: 02/03/2025]
Abstract
BACKGROUND Radiotheranostics combines diagnostic imaging with targeted radionuclide therapy, representing a transformative approach in precision oncology. Landmark approvals of Lutathera® and Pluvicto® have catalyzed significant advancements in this field, driving research into novel radionuclides, targeting strategies, and clinical applications. This review evaluates the evolving clinical and preclinical landscape of radiotheranostics, highlighting advancements, emerging trends, and persistent challenges in radionuclide therapy. METHODS A comprehensive analysis was performed, encompassing active clinical trials as of December 2024, sourced from ClinicalTrials.gov and TheranosticTrials.org. Preclinical developments were evaluated through a review of recent literature, focusing on innovations in radionuclide production, targeting molecules, and radiochemistry. RESULTS In reviewing the clinical landscape, agents targeting somatostatin receptors (SSTR) and prostate-specific membrane antigen (PSMA) still dominate the field, but new targets such as fibroblast activation protein (FAP), integrins, and gastrin-releasing peptide receptors (GRPR) are gaining traction in both clinical and preclinical development. While small molecules and peptides remain the most common radionuclide carriers, antibody-based carriers including bispecific antibodies, immunoglobin-derived antigen-binding fragments, and antibody-mimetic proteins are on the rise due to their specificity and adaptability. Innovations in radioligand design are driving a shift from agonists to antagonists, accompanied by the development of modified peptides with enhanced pharmacokinetics and tumor-targeting properties. Next-generation therapeutic radionuclides, such as the beta-emitter terbium-161 and alpha-emitters actinium-225 and lead-212, are under investigation to complement or replace lutetium-177, addressing the need for improved efficacy and reduced toxicity. Paired isotopic radionuclides are gaining popularity for their ability to optimize imaging and therapeutic dosimetry as they offer near-identical specificity, biodistribution, and metabolism. Additionally, radiohybrid systems represent an innovative approach to chelating chemically distinct radionuclide pairs within a single molecule, further enhancing flexibility in radiotheranostic design. CONCLUSION Radiotheranostics has transformed cancer care through its precision and adaptability, but challenges in radionuclide production, regulatory frameworks, and workforce training hinder broader adoption. Advances in isotopic pairing, next-generation radionuclides, and radiohybrid systems in preclinical and clinical settings hold promise to overcome these barriers. Collaborative efforts among academia, industry, and regulatory bodies are critical to accelerating innovation and optimizing clinical outcomes.
Collapse
Affiliation(s)
- Ha H Tran
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Aiko Yamaguchi
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - H Charles Manning
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Cyclotron Radiochemistry Facility, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
2
|
Carsuzaa F, Chabrillac E, Marcy PY, Mehanna H, Thariat J. Advances and residual knowledge gaps in the neck management of head and neck squamous cell carcinoma patients with advanced nodal disease undergoing definitive (chemo)radiotherapy for their primary. Strahlenther Onkol 2024; 200:553-567. [PMID: 38600366 DOI: 10.1007/s00066-024-02228-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/29/2023] [Accepted: 03/03/2024] [Indexed: 04/12/2024]
Abstract
PURPOSE Substantial changes have been made in the neck management of patients with head and neck squamous cell carcinomas (HNSCC) in the past century. These have been fostered by changes in cancer epidemiology and technological progress in imaging, surgery, or radiotherapy, as well as disruptive concepts in oncology. We aimed to review changes in nodal management, with a focus on HNSCC patients with nodal involvement (cN+) undergoing (chemo)radiotherapy. METHODS A narrative review was conducted to review current advances and address knowledge gaps in the multidisciplinary management of the cN+ neck in the context of (chemo)radiotherapy. RESULTS Metastatic neck nodes are associated with poorer prognosis and poorer response to radiotherapy, and have therefore been systematically treated by surgery. Radical neck dissection (ND) has gradually evolved toward more personalized and less morbid approaches, i.e., from functional to selective ND. Omission of ND has been made feasible by use of positron-emission tomography/computed tomography to monitor the radiation response in cN+ patients. Human papillomavirus-driven oropharyngeal cancers and their cystic nodes have shown dramatically better prognosis than tobacco-related cancers, justifying a specific prognostic classification (AJCC) creation. Finally, considering the role of lymph nodes in anti-tumor immunity, de-escalation of ND and prophylactic nodal irradiation in combination are intense areas of investigation. However, the management of bulky cN3 disease remains an issue, as aggressive multidisciplinary strategies or innovative combined treatments have not yet significantly improved their prognosis. CONCLUSION Personalized neck management is an increasingly important aspect of the overall therapeutic strategies in cN+ HNSCC.
Collapse
Affiliation(s)
- Florent Carsuzaa
- Department of Oto-Rhino-Laryngology & Head and Neck Surgery, Poitiers University Hospital, Poitiers, France
| | - Emilien Chabrillac
- Department of Surgery, University Cancer Institute of Toulouse-Oncopole, Toulouse, France
| | - Pierre Yves Marcy
- Department of Radiology, Clinique du Cap d'Or, La Seyne-sur-mer, France
| | - Hisham Mehanna
- Institute for Head and Neck Studies and Education (InHANSE), University of Birmingham, Birmingham, UK
| | - Juliette Thariat
- Department of radiotherapy, Centre François Baclesse, Caen, France.
- Laboratoire de physique Corpusculaire, IN2P3/ENSICAEN/CNRS, UMR 6534, Normandie Université, Caen, France.
| |
Collapse
|
3
|
Steybe D, Voss PJ, Metzger MC, Schmelzeisen R, Poxleitner P. Virtual tumor mapping and margin control with 3-D planning and navigation. Innov Surg Sci 2024; 9:17-24. [PMID: 38826628 PMCID: PMC11138405 DOI: 10.1515/iss-2021-0009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/17/2021] [Accepted: 03/20/2024] [Indexed: 06/04/2024] Open
Abstract
Computer technology-based treatment approaches like intraoperative navigation and intensity-modulated radiation therapy have become important components of state of the art head and neck cancer treatment. Multidirectional exchange of virtual three-dimensional patient data via an interdisciplinary platform allows all medical specialists involved in the patients treatment to take full advantage of these technologies. This review article gives an overview of current technologies and future directions regarding treatment approaches that are based on a virtual, three-dimensional patient specific dataset: storage and exchange of spatial information acquired via intraoperative navigation allow for a highly precise frozen section procedure. In the postoperative setting, virtual reconstruction of the tumor resection surface provides the basis for improved radiation therapy planning and virtual reconstruction of the tumor with integration of molecular findings creates a valuable tool for postoperative treatment and follow-up. These refinements of established treatment components and novel approaches have the potential to make a major contribution to improving the outcome in head and neck cancer patients.
Collapse
Affiliation(s)
- David Steybe
- Department of Oral and Maxillofacial Surgery, Faculty of Medicine, Medical Center – University of Freiburg, Freiburg, Germany
| | - Pit J. Voss
- Department of Oral and Maxillofacial Surgery, Faculty of Medicine, Medical Center – University of Freiburg, Freiburg, Germany
| | - Marc C. Metzger
- Department of Oral and Maxillofacial Surgery, Faculty of Medicine, Medical Center – University of Freiburg, Freiburg, Germany
| | - Rainer Schmelzeisen
- Department of Oral and Maxillofacial Surgery, Faculty of Medicine, Medical Center – University of Freiburg, Freiburg, Germany
| | - Philipp Poxleitner
- Department of Oral and Maxillofacial Surgery, Faculty of Medicine, Medical Center – University of Freiburg, Freiburg, Germany
- Berta-Ottenstein-Programme for Clinician Scientists, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
4
|
Li D, Li X, Zhao J, Tan F. Advances in nuclear medicine-based molecular imaging in head and neck squamous cell carcinoma. J Transl Med 2022; 20:358. [PMID: 35962347 PMCID: PMC9373390 DOI: 10.1186/s12967-022-03559-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/13/2022] [Accepted: 07/25/2022] [Indexed: 12/24/2022] Open
Abstract
Head and neck squamous cell carcinomas (HNSCCs) are often aggressive, making advanced disease very difficult to treat using contemporary modalities, such as surgery, radiation therapy, and chemotherapy. However, targeted therapy, e.g., cetuximab, an epidermal growth factor receptor inhibitor, has demonstrated survival benefit in HNSCC patients with locoregional failure or distant metastasis. Molecular imaging aims at various biomarkers used in targeted therapy, and nuclear medicine-based molecular imaging is a real-time and non-invasive modality with the potential to identify tumor in an earlier and more treatable stage, before anatomic-based imaging reveals diseases. The objective of this comprehensive review is to summarize recent advances in nuclear medicine-based molecular imaging for HNSCC focusing on several commonly radiolabeled biomarkers. The preclinical and clinical applications of these candidate imaging strategies are divided into three categories: those targeting tumor cells, tumor microenvironment, and tumor angiogenesis. This review endeavors to expand the knowledge of molecular biology of HNSCC and help realizing diagnostic potential of molecular imaging in clinical nuclear medicine.
Collapse
Affiliation(s)
- Danni Li
- Shanghai Fourth People's Hospital, and School of Medicine, Tongji University, Shanghai, China
| | - Xuran Li
- Shanghai Fourth People's Hospital, and School of Medicine, Tongji University, Shanghai, China
| | - Jun Zhao
- Department of Nuclear Medicine, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Fei Tan
- Shanghai Fourth People's Hospital, and School of Medicine, Tongji University, Shanghai, China. .,The Royal College of Surgeons in Ireland, Dublin, Ireland. .,The Royal College of Surgeons of England, London, UK.
| |
Collapse
|
5
|
Risør LM, Clausen MM, Ujmajuridze Z, Farhadi M, Andersen KF, Loft A, Friborg J, Kjaer A. Prognostic Value of Urokinase-Type Plasminogen Activator Receptor PET/CT in Head and Neck Squamous Cell Carcinomas and Comparison with 18F-FDG PET/CT: A Single-Center Prospective Study. J Nucl Med 2022; 63:1169-1176. [PMID: 34857658 PMCID: PMC9364350 DOI: 10.2967/jnumed.121.262866] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/09/2021] [Accepted: 11/16/2021] [Indexed: 02/03/2023] Open
Abstract
The aim of this phase II clinical trial (NCT02965001) was to evaluate the prognostic value of urokinase-type plasminogen activator receptor (uPAR) PET/CT with the novel ligand 68Ga-NOTA-AE105 in head and neck cancer and compare it with 18F-FDG. Methods: Patients with head and neck squamous cell carcinoma referred for curatively intended radiotherapy were eligible and prospectively included in this study. 68Ga-uPAR and 18F-FDG PET/CT were performed before initiation of curatively intended radiotherapy, and the SUVmax of the primary tumor was measured on both PET/CT studies by 2 independent readers. Relapse-free survival (RFS) and overall survival (OS) were calculated, and optimal cutoffs were established for 68Ga-uPAR and 18F-FDG PET independently and compared using log rank and Kaplan-Meier statistics, as well as univariate and multivariate analysis in a Cox proportional-hazards model. Results: In total, 57 patients were included and followed for a median of 33.8 mo (range, 2.30-47.2, mo). The median SUVmax of the primary tumors was 2.98 (range, 1.94-5.24) for 68Ga-uPAR and 15.7 (range, 4.24-45.5) for 18F-FDG. The optimal cutoffs for 68Ga-NOTA-AE105 SUVmax in the primary tumor were 2.63 for RFS and 2.66 for OS. A high uptake of 68Ga-NOTA-AE105 (SUVmax above cutoff) was significantly associated with poor RFS and OS (log-rank P = 0.012 and P = 0.022). 68Ga-NOTA-AE105 uptake in the primary tumor was significantly associated with poor RFS in univariate analysis (hazard ratio [HR], 8.53 [95% CI, 1.12-64.7]; P = 0.038), and borderline-associated with OS (HR, 7.44 [95% CI, 0.98-56.4]; P = 0.052). For 18F-FDG PET, the optimal cutoffs were 22.7 for RFS and 22.9 for OS. An 18F-FDG SUVmax above the cutoff was significantly associated with reduced RFS (log-rank P = 0.012) and OS (log-rank P = 0.000). 18F-FDG uptake was significantly associated with reduced RFS (HR, 3.27 [95% CI, 1.237-8.66]; P = 0.017) and OS (HR, 7.10 [95% CI, 2.60-19.4]; P < 0.001) in univariate analysis. In a multivariate analysis including 68Ga-uPAR SUVmax, 18F-FDG SUVmax, TNM stage, and p16 status, only 68Ga-uPAR SUVmax remained significant (HR, 8.51 [95% CI, 1.08-66.9]; P = 0.042) for RFS. For OS, only TNM stage and 18F-FDG remained significant. Conclusion: The current trial showed promising results for the use of 68Ga-uPAR PET SUVmax in the primary tumor to predict RFS in head and neck squamous cell carcinoma patients referred for curatively intended radiotherapy when compared with 18F-FDG PET, TNM stage, and p16 status. 68Ga-uPAR PET could potentially become valuable for identification of patients suited for deescalation of treatment and risk-stratified follow-up schemes.
Collapse
Affiliation(s)
- Louise M. Risør
- Department of Clinical Physiology, Nuclear Medicine, and PET and Cluster for Molecular Imaging, Copenhagen University Hospital–Rigshospitalet, and Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Malene M. Clausen
- Department of Clinical Oncology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark; and
| | | | | | - Kim F. Andersen
- Department of Clinical Physiology, Nuclear Medicine, and PET and Cluster for Molecular Imaging, Copenhagen University Hospital–Rigshospitalet, and Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Annika Loft
- Department of Clinical Physiology, Nuclear Medicine, and PET and Cluster for Molecular Imaging, Copenhagen University Hospital–Rigshospitalet, and Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jeppe Friborg
- Department of Clinical Oncology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark; and
| | - Andreas Kjaer
- Department of Clinical Physiology, Nuclear Medicine, and PET and Cluster for Molecular Imaging, Copenhagen University Hospital–Rigshospitalet, and Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
6
|
Manafi-Farid R, Ataeinia B, Ranjbar S, Jamshidi Araghi Z, Moradi MM, Pirich C, Beheshti M. ImmunoPET: Antibody-Based PET Imaging in Solid Tumors. Front Med (Lausanne) 2022; 9:916693. [PMID: 35836956 PMCID: PMC9273828 DOI: 10.3389/fmed.2022.916693] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/09/2022] [Accepted: 05/24/2022] [Indexed: 12/13/2022] Open
Abstract
Immuno-positron emission tomography (immunoPET) is a molecular imaging modality combining the high sensitivity of PET with the specific targeting ability of monoclonal antibodies. Various radioimmunotracers have been successfully developed to target a broad spectrum of molecules expressed by malignant cells or tumor microenvironments. Only a few are translated into clinical studies and barely into clinical practices. Some drawbacks include slow radioimmunotracer kinetics, high physiologic uptake in lymphoid organs, and heterogeneous activity in tumoral lesions. Measures are taken to overcome the disadvantages, and new tracers are being developed. In this review, we aim to mention the fundamental components of immunoPET imaging, explore the groundbreaking success achieved using this new technique, and review different radioimmunotracers employed in various solid tumors to elaborate on this relatively new imaging modality.
Collapse
Affiliation(s)
- Reyhaneh Manafi-Farid
- Research Center for Nuclear Medicine, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Bahar Ataeinia
- Department of Radiology, Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Shaghayegh Ranjbar
- Division of Molecular Imaging and Theranostics, Department of Nuclear Medicine, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Zahra Jamshidi Araghi
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Mobin Moradi
- Research Center for Nuclear Medicine, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Christian Pirich
- Division of Molecular Imaging and Theranostics, Department of Nuclear Medicine, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Mohsen Beheshti
- Division of Molecular Imaging and Theranostics, Department of Nuclear Medicine, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria
| |
Collapse
|
7
|
Hihara F, Matsumoto H, Yoshimoto M, Masuko T, Endo Y, Igarashi C, Tachibana T, Shinada M, Zhang MR, Kurosawa G, Sugyo A, Tsuji AB, Higashi T, Kurihara H, Ueno M, Yoshii Y. In Vitro Tumor Cell-Binding Assay to Select High-Binding Antibody and Predict Therapy Response for Personalized 64Cu-Intraperitoneal Radioimmunotherapy against Peritoneal Dissemination of Pancreatic Cancer: A Feasibility Study. Int J Mol Sci 2022; 23:5807. [PMID: 35628616 PMCID: PMC9146758 DOI: 10.3390/ijms23105807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/20/2022] [Revised: 05/12/2022] [Accepted: 05/19/2022] [Indexed: 02/01/2023] Open
Abstract
Peritoneal dissemination of pancreatic cancer has a poor prognosis. We have reported that intraperitoneal radioimmunotherapy using a 64Cu-labeled antibody (64Cu-ipRIT) is a promising adjuvant therapy option to prevent this complication. To achieve personalized 64Cu-ipRIT, we developed a new in vitro tumor cell-binding assay (64Cu-TuBA) system with a panel containing nine candidate 64Cu-labeled antibodies targeting seven antigens (EGFR, HER2, HER3, TfR, EpCAM, LAT1, and CD98), which are reportedly overexpressed in patients with pancreatic cancer. We investigated the feasibility of 64Cu-TuBA to select the highest-binding antibody for individual cancer cell lines and predict the treatment response in vivo for 64Cu-ipRIT. 64Cu-TuBA was performed using six human pancreatic cancer cell lines. For three cell lines, an in vivo treatment study was performed with 64Cu-ipRIT using high-, middle-, or low-binding antibodies in each peritoneal dissemination mouse model. The high-binding antibodies significantly prolonged survival in each mouse model, while low-and middle-binding antibodies were ineffective. There was a correlation between in vitro cell binding and in vivo therapeutic efficacy. Our findings suggest that 64Cu-TuBA can be used for patient selection to enable personalized 64Cu-ipRIT. Tumor cells isolated from surgically resected tumor tissues would be suitable for analysis with the 64Cu-TuBA system in future clinical studies.
Collapse
Affiliation(s)
- Fukiko Hihara
- Department of Molecular Imaging and Theranostics, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan;
(F.H.); (H.M.); (C.I.); (T.T.); (M.S.); (M.-R.Z.); (A.S.); (A.B.T.); (T.H.)
| | - Hiroki Matsumoto
- Department of Molecular Imaging and Theranostics, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan;
(F.H.); (H.M.); (C.I.); (T.T.); (M.S.); (M.-R.Z.); (A.S.); (A.B.T.); (T.H.)
- Department of Diagnostic Radiology, Kanagawa Cancer Center, Kanagawa 241-8515, Japan;
| | - Mitsuyoshi Yoshimoto
- Division of Functional Imaging, National Cancer Center Hospital East, Chiba 277-8577, Japan;
| | - Takashi Masuko
- School of Pharmacy, Kindai University, Osaka 577-8502, Japan; (T.M.); (Y.E.)
| | - Yuichi Endo
- School of Pharmacy, Kindai University, Osaka 577-8502, Japan; (T.M.); (Y.E.)
| | - Chika Igarashi
- Department of Molecular Imaging and Theranostics, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan;
(F.H.); (H.M.); (C.I.); (T.T.); (M.S.); (M.-R.Z.); (A.S.); (A.B.T.); (T.H.)
| | - Tomoko Tachibana
- Department of Molecular Imaging and Theranostics, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan;
(F.H.); (H.M.); (C.I.); (T.T.); (M.S.); (M.-R.Z.); (A.S.); (A.B.T.); (T.H.)
| | - Mitsuhiro Shinada
- Department of Molecular Imaging and Theranostics, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan;
(F.H.); (H.M.); (C.I.); (T.T.); (M.S.); (M.-R.Z.); (A.S.); (A.B.T.); (T.H.)
- Faculty of Science, Toho University, Chiba 274-8510, Japan
| | - Ming-Rong Zhang
- Department of Molecular Imaging and Theranostics, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan;
(F.H.); (H.M.); (C.I.); (T.T.); (M.S.); (M.-R.Z.); (A.S.); (A.B.T.); (T.H.)
| | - Gene Kurosawa
- International Center for Cell and Gene Therapy, Fujita Health University, Aichi 470-1192, Japan;
| | - Aya Sugyo
- Department of Molecular Imaging and Theranostics, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan;
(F.H.); (H.M.); (C.I.); (T.T.); (M.S.); (M.-R.Z.); (A.S.); (A.B.T.); (T.H.)
| | - Atsushi B. Tsuji
- Department of Molecular Imaging and Theranostics, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan;
(F.H.); (H.M.); (C.I.); (T.T.); (M.S.); (M.-R.Z.); (A.S.); (A.B.T.); (T.H.)
| | - Tatsuya Higashi
- Department of Molecular Imaging and Theranostics, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan;
(F.H.); (H.M.); (C.I.); (T.T.); (M.S.); (M.-R.Z.); (A.S.); (A.B.T.); (T.H.)
| | - Hiroaki Kurihara
- Department of Diagnostic Radiology, Kanagawa Cancer Center, Kanagawa 241-8515, Japan;
| | - Makoto Ueno
- Department of Gastroenterology, Kanagawa Cancer Center, Kanagawa 241-8515, Japan;
| | - Yukie Yoshii
- Department of Molecular Imaging and Theranostics, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan;
(F.H.); (H.M.); (C.I.); (T.T.); (M.S.); (M.-R.Z.); (A.S.); (A.B.T.); (T.H.)
- Department of Diagnostic Radiology, Kanagawa Cancer Center, Kanagawa 241-8515, Japan;
| |
Collapse
|
8
|
Characterization and Stabilization of a New 64Cu-Labeled Anti-EGFR Antibody NCAB001 for the Early Detection of Pancreatic Cancer with Positron Emission Tomography. Pharmaceutics 2021; 14:pharmaceutics14010067. [PMID: 35056963 PMCID: PMC8779674 DOI: 10.3390/pharmaceutics14010067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/07/2021] [Revised: 12/24/2021] [Accepted: 12/25/2021] [Indexed: 12/20/2022] Open
Abstract
Early diagnosis of pancreatic cancer using current imaging modalities remains challenging. We have developed a new approach to identify tumor lesions ≥ 3 mm in the pancreas by positron emission tomography (PET) with a new intraperitoneally administered 64Cu-labeled anti-epidermal growth factor receptor (EGFR) antibody (encoded as NCAB001), called 64Cu-NCAB001 ipPET. Generally, in clinical research, a radiometal-antibody complex must be prepared immediately before use at the imaging site. To make 64Cu-NCAB001 ipPET available to daily clinical practices in a sustainable way, the NCAB001-chelator conjugate and 64Cu-NCAB001 must be characterized and stabilized. NCAB001 was manufactured under cGMP conditions. NCAB001 was conjugated with a bifunctional chelator (p-SCN-Bn-PCTA), and the antibody-chelator conjugate (PCTA-NCAB001) was characterized by LC/MS and ELISA. Thereafter, to effectively manufacture 64Cu-NCAB001, we developed a new formulation to stabilize PCTA-NCAB001 and 64Cu-NCAB001. An average of three PCTA chelators were conjugated per molecule of NCAB001. The relative binding potency of PCTA-NCAB001 was comparable to cetuximab. The formulation consisting of acetate buffer, glycine, and polysorbate-80 stabilized PCTA-NCAB001 for a year-long storage. Additionally, this formulation enabled the stabilization of 64Cu-NCAB001 for up to 24 h after radiolabeling with a sufficient radioactivity concentration for clinical use. These results may accelerate the future use of 64Cu-NCAB001 ipPET in clinical settings for the early diagnosis and treatment of pancreatic cancer.
Collapse
|
9
|
Raana GE, Shah SQ. Synthesis of 111In-p-SCN-Bn-DTPA-nimotuzumab and its preclinical evaluation in EGFR positive NSCLC animal model. RADIOCHIM ACTA 2021. [DOI: 10.1515/ract-2021-1054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/15/2022]
Abstract
Abstract
The aim of this study was to investigate labeling of nimotuzumab (h-R3) with 111In using p-SCN-Bn-DTPA as bifunctional chelate, evaluate its targeting potential against SK-LU-1, H226, H650, H661, and HCC4006 non-small cell lung carcinoma (NSCLC) cell lines and correlate epidermal growth factor receptor (EGFR) expression level with internalization kinetics, biodistribution and imaging accuracy using Balb/c mice and New Zealand White rabbit (NZWR) animal model. The amount of p-SCN-Bn-DTPA attached to h-R3 was assessed by measuring relative absorbance at 652 nm with ultraviolet (UV) spectrophotometer. High-performance liquid chromatography (HPLC) was used to determine percent radiochemical purity (%RCP) and in vitro stability using excess amount of diethylenetriamine pentaacetate (DTPA). The in vitro stability in rat serum was estimated using iTLC-SG. EGFR expression level in each tumor was assessed by chemiluminescence. In vivo uptake in different organs of Balb/c mice and non-invasive imaging potential using NZWR bearing HCC4006 tumor, was evaluated with gamma camera. UV spectroscopy has confirmed the attachment of five p-SCN-Bn-DTPA (chelate) with one antibody. The HPLC indicated 98.85 ± 0.14% (n = 3) %RCP with high yield (>96%), specific activity 3.5 ± 0.0.25 mCi per mg and 94.25 ± 0.34% in vitro stability at 37 °C in mice serum. In excess DTPA no considerable transchelation was experiential from the 111In labeled p-SCN-Bn-DTPA-h-R3 to the challenger. The EGFR expression in HCC4006 was higher amongst all with band density of 23.53 relative to 1.00 of H226. Initially internalization was lower which went up 1.05 × 104 molecules per HCC4006 cell in 48 h. The optimal concentration of h-R3 for maximum uptake was 15 μg per animal. Higher uptake in target organ was observed in animal infected with HCC4006 cells. However, in excess pure h-R3 the uptake was significantly reduced indicating tumor specificity. HCC4006 target site was undistinguishable relative to background activity in the initial phase of imaging due to poor uptake. However, within 60 h the HCC4006 tumor was quite apparent. This experiment suggests that at optimal dosage of 111In labeled h-R3 can be used for localization and identification of EGFR positive NSCLC using gamma camera.
Collapse
Affiliation(s)
- Gul-e Raana
- Biochemistry & Nuclear Medicine Research Laboratory , Institute of Chemical Sciences, University of Peshawar , Peshawar , 25120 K.P.K , Pakistan
| | - Syed Qaiser Shah
- Biochemistry & Nuclear Medicine Research Laboratory , Institute of Chemical Sciences, University of Peshawar , Peshawar , 25120 K.P.K , Pakistan
| |
Collapse
|
10
|
Ku A, Kondo M, Cai Z, Meens J, Li MR, Ailles L, Reilly RM. Dose predictions for [ 177Lu]Lu-DOTA-panitumumab F(ab') 2 in NRG mice with HNSCC patient-derived tumour xenografts based on [ 64Cu]Cu-DOTA-panitumumab F(ab') 2 - implications for a PET theranostic strategy. EJNMMI Radiopharm Chem 2021; 6:25. [PMID: 34383182 PMCID: PMC8360260 DOI: 10.1186/s41181-021-00140-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/16/2021] [Accepted: 07/06/2021] [Indexed: 12/24/2022] Open
Abstract
Background Epidermal growth factor receptors (EGFR) are overexpressed on many head and neck squamous cell carcinoma (HNSCC). Radioimmunotherapy (RIT) with F(ab')2 of the anti-EGFR monoclonal antibody panitumumab labeled with the β-particle emitter, 177Lu may be a promising treatment for HNSCC. Our aim was to assess the feasibility of a theranostic strategy that combines positron emission tomography (PET) with [64Cu]Cu-DOTA-panitumumab F(ab')2 to image HNSCC and predict the radiation equivalent doses to the tumour and normal organs from RIT with [177Lu]Lu-DOTA-panitumumab F(ab')2. Results Panitumumab F(ab')2 were conjugated to DOTA and complexed to 64Cu or 177Lu in high radiochemical purity (95.6 ± 2.1% and 96.7 ± 3.5%, respectively) and exhibited high affinity EGFR binding (Kd = 2.9 ± 0.7 × 10− 9 mol/L). Biodistribution (BOD) studies at 6, 24 or 48 h post-injection (p.i.) of [64Cu]Cu-DOTA-panitumumab F(ab')2 (5.5–14.0 MBq; 50 μg) or [177Lu]Lu-DOTA-panitumumab F(ab')2 (6.5 MBq; 50 μg) in NRG mice with s.c. HNSCC patient-derived xenografts (PDX) overall showed no significant differences in tumour uptake but modest differences in normal organ uptake were noted at certain time points. Tumours were imaged by microPET/CT with [64Cu]Cu-DOTA-panitumumab F(ab')2 or microSPECT/CT with [177Lu]Lu-DOTA-panitumumab F(ab')2 but not with irrelevant [177Lu]Lu-DOTA-trastuzumab F(ab')2. Tumour uptake at 24 h p.i. of [64Cu]Cu-DOTA-panitumumab F(ab')2 [14.9 ± 1.1% injected dose/gram (%ID/g) and [177Lu]Lu-DOTA-panitumumab F(ab')2 (18.0 ± 0.4%ID/g) were significantly higher (P < 0.05) than [177Lu]Lu-DOTA-trastuzumab F(ab')2 (2.6 ± 0.5%ID/g), demonstrating EGFR-mediated tumour uptake. There were no significant differences in the radiation equivalent doses in the tumour and most normal organs estimated for [177Lu]Lu-DOTA-panitumumab F(ab')2 based on the BOD of [64Cu]Cu-DOTA-panitumumab F(ab')2 compared to those estimated directly from the BOD of [177Lu]Lu-DOTA-panitumumab F(ab')2 except for the liver and whole body which were modestly underestimated by [64Cu]Cu-DOTA-panitumumab F(ab')2. Region-of-interest (ROI) analysis of microPET/CT images provided dose estimates for the tumour and liver that were not significantly different for the two radioimmunoconjugates. Human doses from administration of [177Lu]Lu-DOTA-panitumumab F(ab')2 predicted that a 2 cm diameter HNSCC tumour in a patient would receive 1.1–1.5 mSv/MBq and the whole body dose would be 0.15–0.22 mSv/MBq. Conclusion A PET theranostic strategy combining [64Cu]Cu-DOTA-panitumumab F(ab')2 to image HNSCC tumours and predict the equivalent radiation doses in the tumour and normal organs from RIT with [177Lu]Lu-DOTA-panitumumab F(ab')2 is feasible. RIT with [177Lu]Lu-DOTA-panitumumab F(ab')2 may be a promising approach to treatment of HNSCC due to frequent overexpression of EGFR. Supplementary Information The online version contains supplementary material available at 10.1186/s41181-021-00140-1.
Collapse
Affiliation(s)
- Anthony Ku
- Department of Pharmaceutical Sciences, University of Toronto, Toronto, ON, Canada
| | - Misaki Kondo
- Department of Pharmaceutical Sciences, University of Toronto, Toronto, ON, Canada
| | - Zhongli Cai
- Department of Pharmaceutical Sciences, University of Toronto, Toronto, ON, Canada
| | - Jalna Meens
- Princess Margaret Cancer Centre, Toronto, ON, Canada
| | - Min Rong Li
- Department of Pharmaceutical Sciences, University of Toronto, Toronto, ON, Canada
| | - Laurie Ailles
- Princess Margaret Cancer Centre, Toronto, ON, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Raymond M Reilly
- Department of Pharmaceutical Sciences, University of Toronto, Toronto, ON, Canada. .,Princess Margaret Cancer Centre, Toronto, ON, Canada. .,Department of Medical Imaging, University of Toronto, Toronto, ON, Canada. .,Joint Department of Medical Imaging, University Health Network, Toronto, ON, Canada.
| |
Collapse
|
11
|
White JM, Escorcia FE, Viola NT. Perspectives on metals-based radioimmunotherapy (RIT): moving forward. Theranostics 2021; 11:6293-6314. [PMID: 33995659 PMCID: PMC8120204 DOI: 10.7150/thno.57177] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/15/2020] [Accepted: 03/22/2021] [Indexed: 12/18/2022] Open
Abstract
Radioimmunotherapy (RIT) is FDA-approved for the clinical management of liquid malignancies, however, its use for solid malignancies remains a challenge. The putative benefit of RIT lies in selective targeting of antigens expressed on the tumor surface using monoclonal antibodies, to systemically deliver cytotoxic radionuclides. The past several decades yielded dramatic improvements in the quality, quantity, recent commercial availability of alpha-, beta- and Auger Electron-emitting therapeutic radiometals. Investigators have created new or improved existing bifunctional chelators. These bifunctional chelators bind radiometals and can be coupled to antigen-specific antibodies. In this review, we discuss approaches to develop radiometal-based RITs, including the selection of radiometals, chelators and antibody platforms (i.e. full-length, F(ab')2, Fab, minibodies, diabodies, scFv-Fc and nanobodies). We cite examples of the performance of RIT in the clinic, describe challenges to its implementation, and offer insights to address gaps toward translation.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/administration & dosage
- Antibodies, Monoclonal/therapeutic use
- Antigens, Neoplasm/immunology
- Antineoplastic Agents, Immunological/administration & dosage
- Antineoplastic Agents, Immunological/metabolism
- Antineoplastic Agents, Immunological/therapeutic use
- Chelating Agents/administration & dosage
- Chelating Agents/metabolism
- Click Chemistry
- Clinical Trials as Topic
- Dose Fractionation, Radiation
- Drug Delivery Systems
- Forecasting
- Humans
- Immunoglobulin Fab Fragments/administration & dosage
- Immunoglobulin Fab Fragments/therapeutic use
- Lymphoma, Non-Hodgkin/radiotherapy
- Mice
- Molecular Targeted Therapy
- Neoplasm Proteins/antagonists & inhibitors
- Neoplasms, Experimental/diagnostic imaging
- Neoplasms, Experimental/radiotherapy
- Organ Specificity
- Precision Medicine
- Radiation Tolerance
- Radioimmunotherapy/methods
- Radiopharmaceuticals/administration & dosage
- Radiopharmaceuticals/therapeutic use
- Receptor Protein-Tyrosine Kinases/antagonists & inhibitors
- Single-Chain Antibodies/administration & dosage
- Single-Chain Antibodies/therapeutic use
- Single-Domain Antibodies/administration & dosage
- Single-Domain Antibodies/therapeutic use
- Yttrium Radioisotopes/administration & dosage
- Yttrium Radioisotopes/therapeutic use
Collapse
Affiliation(s)
- Jordan M. White
- Cancer Biology Graduate Program, Wayne State University School of Medicine, Detroit, MI 48201
- Department of Oncology, Karmanos Cancer Institute, Detroit, MI 48201
| | - Freddy E. Escorcia
- Molecular Imaging Branch, Radiation Oncology Branch, National Cancer Institute, Bethesda, MD 20814
| | - Nerissa T. Viola
- Department of Oncology, Karmanos Cancer Institute, Detroit, MI 48201
| |
Collapse
|
12
|
|
13
|
Song IH, Jeong MS, Hong HJ, Shin JI, Park YS, Woo SK, Moon BS, Kim KI, Lee YJ, Kang JH, Lee TS. Development of a Theranostic Convergence Bioradiopharmaceutical for Immuno-PET Based Radioimmunotherapy of L1CAM in Cholangiocarcinoma Model. Clin Cancer Res 2019; 25:6148-6159. [PMID: 31337646 DOI: 10.1158/1078-0432.ccr-19-1157] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/06/2019] [Revised: 05/31/2019] [Accepted: 07/18/2019] [Indexed: 11/16/2022]
Abstract
PURPOSE Cholangiocarcinoma is a malignancy of bile duct with a poor prognosis. Conventional chemotherapy and radiotherapy are generally ineffective, and surgical resection is the only curative treatment for cholangiocarcinoma. L1-cell adhesion molecule (L1CAM) has been known as a novel prognostic marker and therapeutic target for cholangiocarcinoma. This study aimed to evaluate the feasibility of immuno-PET imaging-based radioimmunotherapy using radiolabeled anti-L1CAM antibody in cholangiocarcinoma xenograft model. EXPERIMENTAL DESIGN We prepared a theranostic convergence bioradiopharmaceutical using chimeric anti-L1CAM antibody (cA10-A3) conjugated with 1,4,7-triazacyclononane-1,4,7-triacetic acid (NOTA) chelator and labeled with 64Cu or 177Lu and evaluated the immuno-PET or SPECT/CT imaging and biodistribution with 64Cu-/177Lu-cA10-A3 in various cholangiocarcinoma xenograft models. Therapeutic efficacy and response monitoring were performed by 177Lu-cA10-A3 and 18F-FDG-PET, respectively, and immunohistochemistry was done by TUNEL and Ki-67. RESULTS Radiolabeled cA10-A3 antibodies specifically recognized L1CAM in vitro, clearly visualized cholangiocarcinoma tumors in immuno-PET and SPECT/CT imaging, and differentiated the L1CAM expression level in cholangiocarcinoma xenograft models. 177Lu-cA10-A3 (12.95 MBq/100 μg) showed statistically significant reduction in tumor volumes (P < 0.05) and decreased glucose metabolism (P < 0.01). IHC analysis revealed 177Lu-cA10-A3 treatment increased TUNEL-positive and decreased Ki-67-positive cells, compared with saline, cA10-A3, or 177Lu-isotype. CONCLUSIONS Anti-L1CAM immuno-PET imaging using 64Cu-cA10-A3 could be translated into the clinic for characterizing the pharmacokinetics and selecting appropriate patients for radioimmunotherapy. Radioimmunotherapy using 177Lu-cA10-A3 may provide survival benefit in L1CAM-expressing cholangiocarcinoma tumor. Theranostic convergence bioradiopharmaceutical strategy would be applied as imaging biomarker-based personalized medicine in L1CAM-expressing patients with cholangiocarcinoma.
Collapse
Affiliation(s)
- In Ho Song
- Division of RI Application, Korea Institute of Radiological and Medical Sciences, Seoul, South Korea.,Department of Biomedical Laboratory Science, Yonsei University, Wonju, South Korea
| | - Mun Sik Jeong
- Department of Systems Immunology, Kangwon National University, Chuncheon, South Korea
| | - Hyo Jeong Hong
- Department of Systems Immunology, Kangwon National University, Chuncheon, South Korea.,Scripps Korea Antibody Institute, Chuncheon, South Korea
| | - Jong Il Shin
- Division of RI Application, Korea Institute of Radiological and Medical Sciences, Seoul, South Korea
| | - Yong Serk Park
- Department of Biomedical Laboratory Science, Yonsei University, Wonju, South Korea
| | - Sang-Keun Woo
- Division of RI Application, Korea Institute of Radiological and Medical Sciences, Seoul, South Korea
| | - Byung Seok Moon
- Department of Nuclear Medicine, Ewha Womans University Seoul Hospital, Ewha Womans University School of Medicine, Seoul, South Korea
| | - Kwang Il Kim
- Division of RI Application, Korea Institute of Radiological and Medical Sciences, Seoul, South Korea
| | - Yong Jin Lee
- Division of RI Application, Korea Institute of Radiological and Medical Sciences, Seoul, South Korea
| | - Joo Hyun Kang
- Division of RI Application, Korea Institute of Radiological and Medical Sciences, Seoul, South Korea
| | - Tae Sup Lee
- Division of RI Application, Korea Institute of Radiological and Medical Sciences, Seoul, South Korea.
| |
Collapse
|
14
|
Burley TA, Da Pieve C, Martins CD, Ciobota DM, Allott L, Oyen WJG, Harrington KJ, Smith G, Kramer-Marek G. Affibody-Based PET Imaging to Guide EGFR-Targeted Cancer Therapy in Head and Neck Squamous Cell Cancer Models. J Nucl Med 2019; 60:353-361. [PMID: 30213849 PMCID: PMC6424230 DOI: 10.2967/jnumed.118.216069] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/14/2018] [Accepted: 09/05/2018] [Indexed: 01/12/2023] Open
Abstract
In head and neck squamous cell cancer, the human epidermal growth factor receptor 1 (EGFR) is the dominant signaling molecule among all members of the family. So far, cetuximab is the only approved anti-EGFR monoclonal antibody used for the treatment of head and neck squamous cell cancer, but despite the benefits of adding it to standard treatment regimens, attempts to define a predictive biomarker to stratify patients for cetuximab treatment have been unsuccessful. We hypothesized that imaging with EGFR-specific radioligands may facilitate noninvasive measurement of EGFR expression across the entire tumor burden and allow for dynamic monitoring of cetuximab-mediated changes in receptor expression. Methods: EGFR-specific Affibody molecule (ZEGFR:03115) was radiolabeled with 89Zr and 18F. The radioligands were characterized in vitro and in mice bearing subcutaneous tumors with varying levels of EGFR expression. The protein dose for imaging studies was assessed by injecting 89Zr-deferoxamine-ZEGFR:03115 (2.4-3.6 MBq, 2 μg) either together with or 30 min after increasing amounts of unlabeled ZEGFR:03115 (1, 5, 10, 15, and 20 μg). PET images were acquired at 3, 24, and 48 h after injection, and the image quantification data were correlated with the biodistribution results. The EGFR expression and biodistribution of the tracer were assessed ex vivo by immunohistochemistry, Western blot, and autoradiography. To downregulate the EGFR level, treatment with cetuximab was performed, and 18F-aluminium fluoride-NOTA-ZEGFR:03115 (12 μg, 1.5-2 MBq/mouse) was used to monitor receptor changes. Results: In vivo studies demonstrated that coinjecting 10 μg of nonlabeled molecules with 89Zr-deferoxamine-ZEGFR:03115 allows for clear tumor visualization 3 h after injection. The radioconjugate tumor accumulation was EGFR-specific, and PET imaging data showed a clear differentiation between xenografts with varying EGFR expression levels. A strong correlation was observed between PET analysis, ex vivo estimates of tracer concentration, and receptor expression in tumor tissues. Additionally, 18F-aluminium fluoride-NOTA-ZEGFR:03115 could measure receptor downregulation in response to EGFR inhibition. Conclusion: ZEGFR:03115-based radioconjugates can assess different levels of EGFR level in vivo and measure receptor expression changes in response to cetuximab, indicating a potential for assessment of adequate treatment dosing with anti-EGFR antibodies.
Collapse
Affiliation(s)
- Thomas A Burley
- Division of Radiotherapy and Imaging, Institute of Cancer Research, London, United Kingdom; and
| | - Chiara Da Pieve
- Division of Radiotherapy and Imaging, Institute of Cancer Research, London, United Kingdom; and
| | - Carlos D Martins
- Division of Radiotherapy and Imaging, Institute of Cancer Research, London, United Kingdom; and
| | - Daniela M Ciobota
- Division of Radiotherapy and Imaging, Institute of Cancer Research, London, United Kingdom; and
| | - Louis Allott
- Division of Radiotherapy and Imaging, Institute of Cancer Research, London, United Kingdom; and
| | - Wim J G Oyen
- Division of Radiotherapy and Imaging, Institute of Cancer Research, London, United Kingdom; and
- Department of Nuclear Medicine, Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Kevin J Harrington
- Division of Radiotherapy and Imaging, Institute of Cancer Research, London, United Kingdom; and
| | - Graham Smith
- Division of Radiotherapy and Imaging, Institute of Cancer Research, London, United Kingdom; and
| | - Gabriela Kramer-Marek
- Division of Radiotherapy and Imaging, Institute of Cancer Research, London, United Kingdom; and
| |
Collapse
|
15
|
Lee TS, Song IH, Shin JI, Park YS, Kim JY, Kim KI, Lee YJ, Kang JH. PET Imaging Biomarkers of Anti-EGFR Immunotherapy in Esophageal Squamous Cell Carcinoma Models. Cells 2018; 7:cells7110187. [PMID: 30373221 PMCID: PMC6262544 DOI: 10.3390/cells7110187] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/10/2018] [Revised: 10/24/2018] [Accepted: 10/26/2018] [Indexed: 11/16/2022] Open
Abstract
Epidermal growth factor receptor (EGFR) is overexpressed and considered as a proper molecular target for diagnosis and targeted therapy of esophageal squamous cell carcinoma (ESCC). This study evaluated the usefulness of PET imaging biomarkers with 64Cu-PCTA-cetuximab and 18F-FDG-PET for anti-EGFR immunotherapy in ESCC models. In vivo EGFR status and glucose metabolism by cetuximab treatment were evaluated using 64Cu-PCTA-cetuximab and 18F-FDG-PET, respectively. Therapeutic responses with imaging biomarkers were confirmed by western blot and immunohistochemistry. TE-4 and TE-8 tumors were clearly visualized by 64Cu-PCTA-cetuximab, and EGFR expression on TE-8 tumors showed 2.6-fold higher uptake than TE-4. Tumor volumes were markedly reduced by cetuximab in TE-8 tumor (92.5 ± 5.9%), but TE-4 tumors were refractory to cetuximab treatment. The SUVs in 64Cu-PCTA-cetuximab and 18F-FDG-PET images were statistically significantly reduced by cetuximab treatment in TE-8 but not in TE-4. 64Cu-PCTA-cetuximab and 18F-FDG-PET images were well correlated with EGFR and pAkt levels. 64Cu-PCTA-cetuximab immuno-PET had a potential for determining EGFR level and monitoring therapeutic response by anti-EGFR therapy. 18F-FDG-PET was also attractive for monitoring efficacy of anti-EGFR therapy. In conclusion, PET imaging biomarkers may be useful for selecting patients that express target molecules and for monitoring therapeutic efficacy of EGFR-targeted therapy in ESCC patients.
Collapse
Affiliation(s)
- Tae Sup Lee
- Division of RI Application, Korea Institute of Radiological and Medical Sciences (KIRAMS), Seoul 01812, Korea.
| | - In Ho Song
- Division of RI Application, Korea Institute of Radiological and Medical Sciences (KIRAMS), Seoul 01812, Korea.
| | - Jong Il Shin
- Division of RI Application, Korea Institute of Radiological and Medical Sciences (KIRAMS), Seoul 01812, Korea.
| | - Yong Serk Park
- Department of Biomedical Laboratory Science, College of Health Science, Yonsei University, Wonju 26493, Korea.
| | - Jung Young Kim
- Division of RI Application, Korea Institute of Radiological and Medical Sciences (KIRAMS), Seoul 01812, Korea.
| | - Kwang Il Kim
- Division of RI Application, Korea Institute of Radiological and Medical Sciences (KIRAMS), Seoul 01812, Korea.
| | - Yong Jin Lee
- Division of RI Application, Korea Institute of Radiological and Medical Sciences (KIRAMS), Seoul 01812, Korea.
| | - Joo Hyun Kang
- Division of RI Application, Korea Institute of Radiological and Medical Sciences (KIRAMS), Seoul 01812, Korea.
| |
Collapse
|
16
|
Marcu LG, Reid P, Bezak E. The Promise of Novel Biomarkers for Head and Neck Cancer from an Imaging Perspective. Int J Mol Sci 2018; 19:E2511. [PMID: 30149561 PMCID: PMC6165113 DOI: 10.3390/ijms19092511] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/20/2018] [Revised: 08/18/2018] [Accepted: 08/23/2018] [Indexed: 01/25/2023] Open
Abstract
It is an agreed fact that overall survival among head and neck cancer patients has increased over the last decade. Several factors however, are still held responsible for treatment failure requiring more in-depth evaluation. Among these, hypoxia and proliferation-specific parameters are the main culprits, along with the more recently researched cancer stem cells. This paper aims to present the latest developments in the field of biomarkers for hypoxia, stemness and tumour proliferation, from an imaging perspective that includes both Positron Emission Tomography (PET) and Single Photon Emission Computed Tomography (SPECT) as well as functional magnetic resonance imaging (MRI). Quantitative imaging of biomarkers is a prerequisite for accurate treatment response assessment, bringing us closer to the highly needed personalised therapy.
Collapse
Affiliation(s)
- Loredana G Marcu
- Faculty of Science, University of Oradea, 410087 Oradea, Romania.
- Cancer Research Institute and School of Health Sciences, University of South Australia, Adelaide, SA 5001, Australia.
| | - Paul Reid
- Cancer Research Institute and School of Health Sciences, University of South Australia, Adelaide, SA 5001, Australia.
| | - Eva Bezak
- Cancer Research Institute and School of Health Sciences, University of South Australia, Adelaide, SA 5001, Australia.
- Department of Physics, University of Adelaide, Adelaide, SA 5005, Australia.
| |
Collapse
|
17
|
Yoshii Y, Yoshimoto M, Matsumoto H, Tashima H, Iwao Y, Takuwa H, Yoshida E, Wakizaka H, Yamaya T, Zhang MR, Sugyo A, Hanadate S, Tsuji AB, Higashi T. Integrated treatment using intraperitoneal radioimmunotherapy and positron emission tomography-guided surgery with 64Cu-labeled cetuximab to treat early- and late-phase peritoneal dissemination in human gastrointestinal cancer xenografts. Oncotarget 2018; 9:28935-28950. [PMID: 29989003 PMCID: PMC6034757 DOI: 10.18632/oncotarget.25649] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/04/2018] [Accepted: 06/03/2018] [Indexed: 02/03/2023] Open
Abstract
Peritoneal dissemination is a common cause of death from gastrointestinal cancers and is difficult to treat using current therapeutic options, particularly late-phase disease. Here, we investigated the feasibility of integrated therapy using 64Cu-intraperitoneal radioimmunotherapy (ipRIT), alone or in combination with positron emission tomography (PET)-guided surgery using a theranostic agent (64Cu-labeled anti-epidermal growth factor receptor antibody cetuximab) to treat early- and late-phase peritoneal dissemination in mouse models. In this study, we utilized the OpenPET system, which has open space for conducting surgery while monitoring objects at high resolution in real time, as a novel approach to make PET-guided surgery feasible. 64Cu-ipRIT with cetuximab inhibited tumor growth and prolonged survival with little toxicity in mice with early-phase peritoneal dissemination of small lesions. For late-phase peritoneal dissemination, a combination of 64Cu-ipRIT for down-staging and subsequent OpenPET-guided surgery for resecting large tumor masses effectively prolonged survival. OpenPET clearly detected tumors (≥3 mm in size) behind other organs in the peritoneal cavity and was useful for confirming the presence or absence of residual tumors during an operation. These findings suggest that integrated 64Cu therapy can serve as a novel treatment strategy for peritoneal dissemination.
Collapse
Affiliation(s)
- Yukie Yoshii
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Mitsuyoshi Yoshimoto
- Division of Functional Imaging, National Cancer Center Hospital East, Chiba, Japan
| | | | - Hideaki Tashima
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Yuma Iwao
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Hiroyuki Takuwa
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Eiji Yoshida
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Hidekatsu Wakizaka
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Taiga Yamaya
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Ming-Rong Zhang
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Aya Sugyo
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Sayaka Hanadate
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Atsushi B Tsuji
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Tatsuya Higashi
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| |
Collapse
|
18
|
Recent Development of Nuclear Molecular Imaging in Thyroid Cancer. BIOMED RESEARCH INTERNATIONAL 2018; 2018:2149532. [PMID: 29951528 PMCID: PMC5987314 DOI: 10.1155/2018/2149532] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Academic Contribution Register] [Received: 12/27/2017] [Revised: 03/25/2018] [Accepted: 04/02/2018] [Indexed: 12/21/2022]
Abstract
Therapies targeting specific tumor pathways are easy to enter the clinic. To monitor molecular changes, cellular processes, and tumor microenvironment, molecular imaging is becoming the key technology for personalized medicine because of its high efficacy and low side effects. Thyroid cancer is the most common endocrine malignancy, and its theranostic radioiodine has been widely used to diagnose or treat differentiated thyroid cancer. This article summarizes recent development of molecular imaging in thyroid cancer, which may accelerate the development of personalized thyroid cancer therapy.
Collapse
|