1
|
Zhang B, Chen X, Song H, Gao X, Ma S, Ji H, Qu H, Xia S, Shang D. Identification of basement membrane-related prognostic model associated with the immune microenvironment and synthetic therapy response in pancreatic cancer: integrated bioinformatics analysis and clinical validation. J Cancer 2024; 15:6273-6298. [PMID: 39513120 PMCID: PMC11540510 DOI: 10.7150/jca.100891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 09/28/2024] [Indexed: 11/15/2024] Open
Abstract
Pancreatic cancer (PC) is a common and highly malignant tumor. Basement membrane (BM) is formed by the crosslinking of extracellular matrix macromolecules and acts as a barrier against tumor cell metastasis. However, the role of BM in PC prognosis, immune infiltration, and treatment remains unclear. This study collected transcriptome and clinical survival data of PC via TCGA, GEO, and ICGC databases. PC patients (PCs) from the First Affiliated Hospital of Dalian Medical University were obtained as the clinical validation cohort. BM-related genes (BMRGs) were acquired from GeneCards and basement membraneBASE databases. A total of 46 differential-expressed BMRGs were identified. Then the BM-related prognostic model (including DSG3, MET, and PLAU) was built and validated. PCs with a low BM-related score had a better outcome and were more likely to benefit from oxaliplatin, irinotecan, and KRAS(G12C) inhibitor-12, and immunotherapy. Immune analysis revealed that BM-related score was positively correlated with neutrophils, cancer-associated fibroblasts, and macrophages infiltration, but negatively correlated with CD8+ T cells, NK cells, and B cells infiltration. PCs from the clinical cohort further verified that BM-related model could accurately predict PCs' outcomes. DSG3, MET, and PLAU were notably up-regulated within PC tissues and linked to a poor prognosis. In vitro experiments showed that DSG3 knockdown markedly suppressed the proliferation, migration, and invasion of PC cells. Molecular docking indicated that epigallocatechin gallate had a strong binding activity with DSG3, MET, and PLAU and may be used as a potential therapeutic agent for PC. In conclusion, this study developed a BM-related model associated with PC prognosis, immune infiltration, and treatment, which provided new insights into PC stratification and drug intervention.
Collapse
Affiliation(s)
- Biao Zhang
- Pancreas & Biliary Center, Department of General Surgery, Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xu Chen
- Pancreas & Biliary Center, Department of General Surgery, Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Huiyi Song
- Pancreas & Biliary Center, Department of General Surgery, Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Xue Gao
- Department of Pathology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Shurong Ma
- Pancreas & Biliary Center, Department of General Surgery, Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Hongying Ji
- Department of Pathology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Huixian Qu
- Department of Pathology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Shilin Xia
- Pancreas & Biliary Center, Department of General Surgery, Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Dong Shang
- Pancreas & Biliary Center, Department of General Surgery, Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
| |
Collapse
|
2
|
Upadhyay A, Bakkalci D, Micalet A, Butler M, Bergin M, Moeendarbary E, Loizidou M, Cheema U. Dense Collagen I as a Biomimetic Material to Track Matrix Remodelling in Renal Carcinomas. ACS OMEGA 2024; 9:41419-41432. [PMID: 39398183 PMCID: PMC11465592 DOI: 10.1021/acsomega.4c04442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 09/17/2024] [Accepted: 09/20/2024] [Indexed: 10/15/2024]
Abstract
Aims: Renal tissue is a dynamic biophysical microenvironment, regulating healthy function and influencing tumor development. Matrix remodelling is an iterative process and aberrant tissue repair is prominent in kidney fibrosis and cancer. Biomimetic 3D models recapitulating the collagen composition and mechanical fidelity of native renal tissue were developed to investigate cell-matrix interactions in renal carcinomas. Methods: Collagen I and laminin hydrogels were engineered with renal cancer cells (ACHN and 786-O), which underwent plastic compression to generate dense matrices. Mechanical properties were determined using shear rheology and qPCR determined the gene expression of matrix markers. Results: The shear modulus and phase angle of acellular dense collagen I gels (474 Pa and 10.7) are similar to human kidney samples (1410 Pa and 10.5). After 21 days, 786-O cells softened the dense matrix (∼155 Pa), with collagen IV downregulation and upregulation of matrix metalloproteinases (MMP7 and MMP8). ACHN cells were found to be less invasive and stiffened the matrix to ∼1.25 kPa, with gene upregulation of collagen IV and the cross-linking enzyme LOX. Conclusions: Renal cancer cells remodel their biophysical environment, altering the material properties of tissue stroma in 3D models. These models can generate physiologically relevant stiffness to investigate the different matrix remodelling mechanisms utilized by cancer cells.
Collapse
Affiliation(s)
- Anuja Upadhyay
- UCL
Centre for 3D Models of Health and Disease, Division of Surgery and
Interventional Science, University College
London, Charles Bell House, 43-45 Foley Street, W1W 7TS London, United Kingdom
| | - Deniz Bakkalci
- UCL
Centre for 3D Models of Health and Disease, Division of Surgery and
Interventional Science, University College
London, Charles Bell House, 43-45 Foley Street, W1W 7TS London, United Kingdom
| | - Auxtine Micalet
- UCL
Centre for 3D Models of Health and Disease, Division of Surgery and
Interventional Science, University College
London, Charles Bell House, 43-45 Foley Street, W1W 7TS London, United Kingdom
- Department
of Mechanical Engineering, Roberts Building, University College London, WC1E 6BT London, United Kingdom
| | - Matt Butler
- UCB
Pharma, 216 Bath Road, SL1 3WE Slough, United Kingdom
| | | | - Emad Moeendarbary
- Department
of Mechanical Engineering, Roberts Building, University College London, WC1E 6BT London, United Kingdom
| | - Marilena Loizidou
- Division
of Surgery and Interventional Science, University
College London, Royal
Free Campus, Rowland Hill Street, NW3
2PF London, United
Kingdom
| | - Umber Cheema
- UCL
Centre for 3D Models of Health and Disease, Division of Surgery and
Interventional Science, University College
London, Charles Bell House, 43-45 Foley Street, W1W 7TS London, United Kingdom
| |
Collapse
|
3
|
Tang H, Li YX, Lian JJ, Ng HY, Wang SSY. Personalized treatment using predictive biomarkers in solid organ malignancies: A review. TUMORI JOURNAL 2024; 110:386-404. [PMID: 39091157 DOI: 10.1177/03008916241261484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
In recent years, the influence of specific biomarkers in the diagnosis and prognosis of solid organ malignancies has been increasingly prominent. The relevance of the use of predictive biomarkers, which predict cancer response to specific forms of treatment provided, is playing a more significant role than ever before, as it affects diagnosis and initiation of treatment, monitoring for efficacy and side effects of treatment, and adjustment in treatment regimen in the long term. In the current review, we explored the use of predictive biomarkers in the treatment of solid organ malignancies, including common cancers such as colorectal cancer, breast cancer, lung cancer, prostate cancer, and cancers associated with high mortalities, such as pancreatic cancer, liver cancer, kidney cancer and cancers of the central nervous system. We additionally analyzed the goals and types of personalized treatment using predictive biomarkers, and the management of various types of solid organ malignancies using predictive biomarkers and their relative efficacies so far in the clinical settings.
Collapse
|
4
|
Erlmeier M, Mikuteit M, Zschäbitz S, Autenrieth M, Weichert W, Hartmann A, Steffens S, Erlmeier F. Immunohistochemical expression of the hepatocyte growth factor in chromophobe renal cell carcinoma. BMC Urol 2023; 23:90. [PMID: 37170275 PMCID: PMC10176764 DOI: 10.1186/s12894-023-01263-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 04/28/2023] [Indexed: 05/13/2023] Open
Abstract
BACKGROUND The prognostic value of Hepatocyte growth factor (HGF) in non-clear cell renal cell carcinoma (RCC) is still unclear. The aim of this study is to evaluate the prognostic impact of HGF expression in a large cohort of chromophobe RCC (chRCC). METHODS Patients who underwent renal surgery due to chRCC were recruited. Clinical data was retrospectively evaluated. Tumor specimen were analyzed for HGF expression by immunohistochemistry. RESULTS 81 chRCC patients were eligible for analysis, thereof 37 (45.7%) patients were positive for HGF. No significant associations were found for HGF expression and clinical attributes in patients with chRCC. Kaplan-Meier analysis revealed no differences in 5-year overall survival (OS) for patients with HGF- compared to HGF+ tumors (95.0% versus 90.9%; p = 0.410). CONCLUSIONS In chRCC HGF expression is not associated with parameters of aggressiveness or survival.
Collapse
Affiliation(s)
| | - Marie Mikuteit
- Department for Rheumatology and Immunology, Hannover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany.
| | - Stefanie Zschäbitz
- Dept. of Medical Oncology, National Center of Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany
| | - Michael Autenrieth
- Department of Urology, Technical University of Munich, Klinikum Rechts der Isar, München, Germany
| | - Wilko Weichert
- Institute for Pathology and Pathological Anatomy, Technical University Munich, Munich, Germany
| | - Arndt Hartmann
- Institute of Pathology, University Hospital of Erlangen, Erlangen, Germany
| | - Sandra Steffens
- Department for Rheumatology and Immunology, Hannover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany
- Department of Urology, University Hospital Münster, Münster, Germany
| | - Franziska Erlmeier
- Institute of Pathology, University Hospital of Erlangen, Erlangen, Germany
| |
Collapse
|
5
|
Alamshany ZM, Algamdi EM, Othman IMM, Anwar MM, Nossier ES. New pyrazolopyridine and pyrazolothiazole-based compounds as anti-proliferative agents targeting c-Met kinase inhibition: design, synthesis, biological evaluation, and computational studies. RSC Adv 2023; 13:12889-12905. [PMID: 37114032 PMCID: PMC10128108 DOI: 10.1039/d3ra01931d] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
c-Met tyrosine kinase plays a key role in the oncogenic process. Inhibition of the c-Met has emerged as an attractive target for human cancer treatment. This work deals with the design and synthesis of a new set of derivatives bearing pyrazolo[3,4-b]pyridine, pyrazolo[3,4-b]thieno[3,2-e]pyridine, and pyrazolo[3,4-d]thiazole-5-thione scaffolds, 5a,b, 8a-f, and 10a,b, respectively, utilizing 3-methyl-1-tosyl-1H-pyrazol-5(4H)-one (1) as a key starting material. All the new compounds were evaluated as antiproliferative agents against HepG-2, MCF-7, and HCT-116 human cancer cell lines utilizing 5-fluorouracil and erlotinib as two standard drugs. Compounds 5a,b and 10a,b represented the most promising cytotoxic activity of IC50 values ranging from 3.42 ± 1.31 to 17.16 ± 0.37 μM. Both 5a and 5b showed the most cytotoxicity and selectivity toward HepG-2, with IC50 values of 3.42 ± 1.31 μM and 3.56 ± 1.5 μM, respectively. The enzyme assay demonstrated that 5a and 5b had inhibition potency on c-Met with IC50 values in nanomolar range of 4.27 ± 0.31 and 7.95 ± 0.17 nM, respectively in comparison with the reference drug cabozantinib (IC50; 5.38 ± 0.35 nM). The impact of 5a on the cell cycle and apoptosis induction potential in HepG-2 and on the apoptotic parameters; Bax, Bcl-2, p53, and caspase-3 was also investigated. Finally, the molecular docking simulation of the most promising derivatives 5a and 5b was screened against c-Met to investigate the binding patterns of both compounds in the active site of the c-Met enzyme. In silico ADME studies were also performed for 5a and 5b to predict their physicochemical and pharmacokinetic characteristics.
Collapse
Affiliation(s)
- Zahra M Alamshany
- Department of Chemistry, Faculty of Science, King Abdulaziz University P.O. Box 42805 Jeddah 21551 Saudi Arabia
| | - Eman M Algamdi
- Department of Chemistry, Faculty of Science, King Abdulaziz University P.O. Box 42805 Jeddah 21551 Saudi Arabia
| | - Ismail M M Othman
- Department of Chemistry, Faculty of Science, Al-Azhar University Assiut 71524 Egypt
| | - Manal M Anwar
- Department of Therapeutic Chemistry, National Research Centre Dokki Cairo 12622 Egypt
| | - Eman S Nossier
- Department of Pharmaceutical Medicinal Chemistry and Drug Design, Faculty of Pharmacy (Girls), Al-Azhar University Cairo 11754 Egypt
- The National Committee of Drugs, Academy of Scientific Research and Technology Cairo 11516 Egypt
| |
Collapse
|
6
|
An In Vitro Analysis of TKI-Based Sequence Therapy in Renal Cell Carcinoma Cell Lines. Int J Mol Sci 2023; 24:ijms24065648. [PMID: 36982721 PMCID: PMC10058472 DOI: 10.3390/ijms24065648] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/01/2023] [Accepted: 03/09/2023] [Indexed: 03/18/2023] Open
Abstract
The tyrosine kinase inhibitor (TKI) cabozantinib might impede the growth of the sunitinib-resistant cell lines by targeting MET and AXL overexpression in metastatic renal cell carcinoma (mRCC). We studied the role of MET and AXL in the response to cabozantinib, particularly following long-term administration with sunitinib. Two sunitinib-resistant cell lines, 786-O/S and Caki-2/S, and the matching 786-O/WT and Caki-2/WT cells were exposed to cabozantinib. The drug response was cell-line-specific. The 786-O/S cells were less growth-inhibited by cabozantinib than 786-O/WT cells (p-value = 0.02). In 786-O/S cells, the high level of phosphorylation of MET and AXL was not affected by cabozantinib. Despite cabozantinib hampering the high constitutive phosphorylation of MET, the Caki-2 cells showed low sensitivity to cabozantinib, and this was independent of sunitinib pretreatment. In both sunitinib-resistant cell lines, cabozantinib increased Src-FAK activation and impeded mTOR expression. The modulation of ERK and AKT was cell-line-specific, mirroring the heterogeneity among the patients. Overall, the MET- and AXL-driven status did not affect cell responsiveness to cabozantinib in the second-line treatment. The activation of Src-FAK might counteract cabozantinib activity and contribute to tumor survival and may be considered an early indicator of therapy response.
Collapse
|
7
|
Su P, Zhang M, Kang X. Targeting c-Met in the treatment of urologic neoplasms: Current status and challenges. Front Oncol 2023; 13:1071030. [PMID: 36959792 PMCID: PMC10028134 DOI: 10.3389/fonc.2023.1071030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 02/23/2023] [Indexed: 03/09/2023] Open
Abstract
At present, studies have found that c-Met is mainly involved in epithelial-mesenchymal transition (EMT) of tumor tissues in urologic neoplasms. Hepatocyte growth factor (HGF) combined with c-Met promotes the mitosis of tumor cells, and then induces motility, angiogenesis, migration, invasion and drug resistance. Therefore, c-Met targeting therapy may have great potential in urologic neoplasms. Many strategies targeting c-Met have been widely used in the study of urologic neoplasms. Although the use of targeting c-Met therapy has a strong biological basis for the treatment of urologic neoplasms, the results of current clinical trials have not yielded significant results. To promote the application of c-Met targeting drugs in the clinical treatment of urologic neoplasms, it is very important to study the detailed mechanism of c-Met in urologic neoplasms and innovate c-Met targeted drugs. This paper firstly discussed the value of c-Met targeted therapy in urologic neoplasms, then summarized the related research progress, and finally explored the potential targets related to the HGF/c-Met signaling pathway. It may provide a new concept for the treatment of middle and late urologic neoplasms.
Collapse
|
8
|
Song L, Zhang L, Zhou Y, Shao X, Xu Y, Pei D, Wang Q. ORP5 promotes tumor metastasis via stabilizing c-Met in renal cell carcinoma. Cell Death Dis 2022; 8:219. [PMID: 35449154 PMCID: PMC9023482 DOI: 10.1038/s41420-022-01023-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 04/04/2022] [Accepted: 04/07/2022] [Indexed: 12/29/2022]
Abstract
ORP5, a lipid transporter, has been reported to increase the metastasis of several cancers. However, the potential mechanisms of ORP5 in renal cell carcinoma (RCC) remain unclear. In this study, we demonstrated that ORP5 was commonly overexpressed in tumor cells and tissues of RCC, and associated with tumor progression. Overexpression of ORP5 could promote RCC cells migration and invasion. In addition, the results suggested that the expression of ORP5 was favorably associated with c-Met expression, and ORP5 promoted RCC cells metastasis by upregulating c-Met in vitro and in vivo. Mechanistically, ORP5 facilitated the ubiquitination and degradation of c-Cbl (the E3 ligase of c-Met), and thus inhibited c-Met lysosomal degradation, which resulted in the stabilization of c-Met. In general, these findings revealed the role of ORP5 in contributing to tumorigenesis via upregulating c-Met in RCC.
Collapse
Affiliation(s)
- Li Song
- Department of Pathology, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China
| | - Lin Zhang
- Department of Pathology, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China
| | - Yun Zhou
- Department of Radiation Oncology, Xuzhou Central Hospital, Xuzhou, Jiangsu, 221000, China
| | - Xiaotong Shao
- Department of Pathology, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China
| | - Yuting Xu
- Department of Pathology, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China
| | - Dongsheng Pei
- Department of Pathology, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China.
| | - Qingling Wang
- Department of Pathology, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China.
| |
Collapse
|
9
|
The Emerging Role of c-Met in Carcinogenesis and Clinical Implications as a Possible Therapeutic Target. JOURNAL OF ONCOLOGY 2022; 2022:5179182. [PMID: 35069735 PMCID: PMC8776431 DOI: 10.1155/2022/5179182] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 12/15/2021] [Accepted: 12/29/2021] [Indexed: 02/08/2023]
Abstract
Background c-MET is a receptor tyrosine kinase receptor (RTK) for the hepatocyte growth factor (HGF). The binding of HGF to c-MET regulates several cellular functions: differentiation, proliferation, epithelial cell motility, angiogenesis, and epithelial-mesenchymal transition (EMT). Moreover, it is known to be involved in carcinogenesis. Comprehension of HGF-c-MET signaling pathway might have important clinical consequences allowing to predict prognosis, response to treatment, and survival rates based on its expression and dysregulation. Discussion. c-MET represents a useful molecular target for novel engineered drugs. Several clinical trials are underway for various solid tumors and the development of new specific monoclonal antibodies depends on the recent knowledge about the definite c-MET role in each different malignance. Recent clinical trials based on c-MET molecular targets result in good safety profile and represent a promising therapeutic strategy for solid cancers, in monotherapy or in combination with other target drugs. Conclusion The list of cell surface receptors crosslinking with the c-MET signaling is constantly growing, highlighting the importance of this pathway for personalized target therapy. Research on the combination of c-MET inhibitors with other drugs will hopefully lead to discovery of new effective treatment options.
Collapse
|
10
|
68Ga-EMP-100 PET/CT-a novel ligand for visualizing c-MET expression in metastatic renal cell carcinoma-first in-human biodistribution and imaging results. Eur J Nucl Med Mol Imaging 2021; 49:1711-1720. [PMID: 34708249 PMCID: PMC8940803 DOI: 10.1007/s00259-021-05596-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 10/13/2021] [Indexed: 01/29/2023]
Abstract
Background 68Ga-EMP-100 is a novel positron emission tomography (PET) ligand that directly targets tumoral c-MET expression. Upregulation of the receptor tyrosin kinase c-MET in renal cell carcinoma (RCC) is correlated with overall survival in metastatic disease (mRCC). Clinicopathological staging of c-MET expression could improve patient management prior to systemic therapy with for instance inhibitors targeting c-MET such as cabozantinib. We present the first in-human data of 68Ga-EMP-100 in mRCC patients evaluating uptake characteristics in metastases and primary RCC. Methods Twelve patients with mRCC prior to anticipated cabozantinib therapy underwent 68Ga-EMP-100 PET/CT imaging. We compared the biodistribution in normal organs and tumor uptake of mRCC lesions by standard uptake value (SUVmean) and SUVmax measurements. Additionally, metastatic sites on PET were compared to contrast-enhanced computed tomography (CT) and the respective, quantitative PET parameters were assessed and then compared inter- and intra-individually. Results Overall, 87 tumor lesions were analyzed. Of these, 68/87 (79.3%) were visually rated c-MET-positive comprising a median SUVmax of 4.35 and SUVmean of 2.52. Comparing different tumor sites, the highest uptake intensity was found in tumor burden at the primary site (SUVmax 9.05 (4.86–29.16)), followed by bone metastases (SUVmax 5.56 (0.97–15.85)), and lymph node metastases (SUVmax 3.90 (2.13–6.28)) and visceral metastases (SUVmax 3.82 (0.11–16.18)). The occurrence of visually PET-negative lesions (20.7%) was distributed heterogeneously on an intra- and inter-individual level; the largest proportion of PET-negative metastatic lesions were lung and liver metastases. The highest physiological 68Ga-EMP-100 accumulation besides the urinary bladder content was seen in the kidneys, followed by moderate uptake in the liver and the spleen, whereas significantly lower uptake intensity was observed in the pancreas and the intestines. Conclusion Targeting c-MET expression, 68Ga-EMP-100 shows distinctly elevated uptake in mRCC patients with partially high inter- and intra-individual differences comprising both c-MET-positive and c-MET-negative lesions. Our first clinical results warrant further systemic studies investigating the clinical use of 68Ga-EMP-100 as a biomarker in mRCC patients.
Collapse
|
11
|
Fu J, Su X, Li Z, Deng L, Liu X, Feng X, Peng J. HGF/c-MET pathway in cancer: from molecular characterization to clinical evidence. Oncogene 2021; 40:4625-4651. [PMID: 34145400 DOI: 10.1038/s41388-021-01863-w] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 05/17/2021] [Accepted: 05/24/2021] [Indexed: 02/07/2023]
Abstract
This review provides a comprehensive landscape of HGF/c-MET (hepatocyte growth factor (HGF) /mesenchymal-epithelial transition factor (c-MET)) signaling pathway in cancers. First, we generalize the compelling influence of HGF/c-MET pathway on multiple cellular processes. Then, we present the genomic characterization of HGF/c-MET pathway in carcinogenesis. Furthermore, we extensively illustrate the malignant biological behaviors of HGF/c-MET pathway in cancers, in which hyperactive HGF/c-MET signaling is considered as a hallmark. In addition, we investigate the current clinical trials of HGF/c-MET-targeted therapy in cancers. We find that although HGF/c-MET-targeted therapy has led to breakthroughs in certain cancers, monotherapy of targeting HGF/c-MET has failed to demonstrate significant clinical efficacy in most cancers. With the advantage of the combinations of HGF/c-MET-targeted therapy, the exploration of more options of combinational targeted therapy in cancers may be the major challenge in the future.
Collapse
Affiliation(s)
- Jianjiang Fu
- Department of Pathology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- The Third Clinical School of Guangzhou Medical University, Guangzhou, China
- Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, Guangzhou, China
| | - Xiaorui Su
- Department of Pathology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- The Third Clinical School of Guangzhou Medical University, Guangzhou, China
- Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, Guangzhou, China
| | - Zhihua Li
- The Third Clinical School of Guangzhou Medical University, Guangzhou, China
- Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, Guangzhou, China
- Department of Fetal Medicine and Prenatal Diagnosis, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Ling Deng
- Department of Molecular Diagnostics, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xiawei Liu
- Department of Pathology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- The Third Clinical School of Guangzhou Medical University, Guangzhou, China
- Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, Guangzhou, China
| | - Xuancheng Feng
- Department of Pathology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
- The Third Clinical School of Guangzhou Medical University, Guangzhou, China.
- Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, Guangzhou, China.
| | - Juan Peng
- Department of Pathology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
- The Third Clinical School of Guangzhou Medical University, Guangzhou, China.
- Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, Guangzhou, China.
| |
Collapse
|
12
|
Bagchi A, Madaj Z, Engel KB, Guan P, Rohrer DC, Valley DR, Wolfrum E, Feenstra K, Roche N, Hostetter G, Moore HM, Jewell SD. Impact of Preanalytical Factors on the Measurement of Tumor Tissue Biomarkers Using Immunohistochemistry. J Histochem Cytochem 2021; 69:297-320. [PMID: 33641490 PMCID: PMC8091543 DOI: 10.1369/0022155421995600] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 01/28/2021] [Indexed: 12/26/2022] Open
Abstract
Analysis of formalin-fixed paraffin-embedded (FFPE) tissue by immunohistochemistry (IHC) is commonplace in clinical and research laboratories. However, reports suggest that IHC results can be compromised by biospecimen preanalytical factors. The National Cancer Institute's Biospecimen Preanalytical Variables Program conducted a systematic study to examine the potential effects of delay to fixation (DTF) and time in fixative (TIF) on IHC using 24 cancer biomarkers. Differences in IHC staining, relative to controls with a DTF of 1 hr, were observed in FFPE kidney tumor specimens after a DTF of ≥2 hr. Reductions in H-score and/or staining intensity were observed for c-MET, p53, PAX2, PAX8, pAKT, and survivin, whereas increases were observed for RCC1, EGFR, and CD10. Prolonged TIF of 72 hr resulted in significantly reduced H-scores of CD44 and c-Met in kidney tumor specimens, compared with controls with 12-hr TIF. An elevated probability of altered staining intensity due to DTF was observed for nine antigens, whereas for prolonged TIF an elevated probability was observed for one antigen. Results reported here and elsewhere across tumor types and antigens support limiting DTF to ≤1 hr when possible and fixing tissues in formalin for 12-24 hr to avoid confounding effects of these preanalytical factors on IHC.
Collapse
Affiliation(s)
- Aditi Bagchi
- Pathology and Biorepository Core, Van Andel Institute, Grand Rapids, Michigan
- Spectrum Health Helen DeVos Children’s Hospital, Grand Rapids, Michigan
- St. Jude Children’s Research Hospital, Memphis, Tennessee
| | - Zachary Madaj
- Bioinformatics and Biostatistics Core, Van Andel Institute, Grand Rapids, Michigan
| | | | - Ping Guan
- Biorepositories and Biospecimen Research Branch, National Cancer Institute, Bethesda, Maryland
| | | | | | - Emily Wolfrum
- Bioinformatics and Biostatistics Core, Van Andel Institute, Grand Rapids, Michigan
| | - Kristin Feenstra
- Pathology and Biorepository Core, Van Andel Institute, Grand Rapids, Michigan
| | - Nancy Roche
- Leidos Biomedical Research, Inc., Frederick, Maryland
| | - Galen Hostetter
- Pathology and Biorepository Core, Van Andel Institute, Grand Rapids, Michigan
| | - Helen M. Moore
- Biorepositories and Biospecimen Research Branch, National Cancer Institute, Bethesda, Maryland
| | - Scott D. Jewell
- Pathology and Biorepository Core, Van Andel Institute, Grand Rapids, Michigan
| |
Collapse
|
13
|
Yılmaz Y, Batur T, Korhan P, Öztürk M, Atabey N. Targeting c-Met and AXL Crosstalk for the Treatment of Hepatocellular Carcinoma. LIVER CANCER IN THE MIDDLE EAST 2021:333-364. [DOI: 10.1007/978-3-030-78737-0_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
14
|
Pharmaceutical strategies in the emerging era of antibody-based biotherapeutics for the treatment of cancers overexpressing MET receptor tyrosine kinase. Drug Discov Today 2020; 26:106-121. [PMID: 33171292 DOI: 10.1016/j.drudis.2020.11.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 09/23/2020] [Accepted: 11/03/2020] [Indexed: 12/26/2022]
Abstract
Pharmaceutical innovation in the development of novel antibody-based biotherapeutics with increased therapeutic indexes makes MET-targeted cancer therapy a clinical reality.
Collapse
|
15
|
Silva Paiva R, Gomes I, Casimiro S, Fernandes I, Costa L. c-Met expression in renal cell carcinoma with bone metastases. J Bone Oncol 2020; 25:100315. [PMID: 33024658 PMCID: PMC7527574 DOI: 10.1016/j.jbo.2020.100315] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 08/26/2020] [Accepted: 08/27/2020] [Indexed: 12/12/2022] Open
Abstract
Bone is a common metastatic site in renal cell carcinoma (RCC). HGF/c-Met pathway is particularly relevant in tumors with bone metastases. c-Met/HGF pathway is involved in RCC progression, conferring poor prognosis. Several c-Met targeting therapies are currently in clinical development. c-Met expression is an important therapeutic target in RCC with bone metastases.
Hepatocyte growth factor (HGF)/c-Met pathway is implicated in embryogenesis and organ development and differentiation. Germline or somatic mutations, chromosomal rearrangements, gene amplification, and transcriptional upregulation in MET or alterations in autocrine or paracrine c-Met signalling have been associated with cancer cell proliferation and survival, including in renal cell carcinoma (RCC), and associated with disease progression. HGF/c-Met pathway has been shown to be particularly relevant in tumors with bone metastases (BMs). However, the efficacy of targeting c-Met in bone metastatic disease, including in RCC, has not been proven. Therefore, further investigation is required focusing the particular role of HGF/c-Met pathway in bone microenvironment (BME) and how to effectively target this pathway in the context of bone metastatic disease.
Collapse
Key Words
- ALK, anaplastic lymphoma kinase gene
- AR, androgen receptor
- ATP, adenosine triphosphate
- AXL, AXL Receptor Tyrosine Kinase
- BME, bone microenvironment
- BMPs, bone morphogenetic proteins
- BMs, bone metastases
- BPs, Bisphosphonates
- BTAs, Bone-targeting agents
- Bone metastases
- CCL20, chemokine (C-C motif) ligand 20
- CI, confidence interval
- CRPC, Castration Resistant Prostate Cancer
- CSC, cancer stem cells
- CTC, circulating tumor cells
- CaSR, calcium/calcium-sensing receptor
- EMA, European Medicines Agency
- EMT, epithelial-to-mesenchymal transition
- FDA, US Food and Drug Administration
- FLT-3, FMS-like tyrosine kinase 3
- GEJ, Gastroesophageal Junction
- HCC, Hepatocellular Carcinoma
- HGF, hepatocyte growth factor
- HGF/c-Met
- HIF, hypoxia-inducible factors
- HR, hazard ratio
- IGF, insulin-like growth factor
- IGF2BP3, insulin mRNA Binding Protein-3
- IL, interleukin
- IRC, independent review committees
- KIT, tyrosine-protein kinase KIT
- Kidney cancer
- M-CSF, macrophage colony-stimulating factor
- MET, MET proto-oncogene, receptor tyrosine kinase
- NSCLC, non-small cell lung carcinoma
- ORR, overall response rate
- OS, overall survival
- PDGF, platelet-derived growth factor
- PFS, progression free survival
- PTHrP, parathyroid hormone-related peptide
- RANKL, receptor activator of nuclear factor-κB ligand
- RCC, renal cell carcinoma
- RET, rearranged during transfection proto-oncogene
- ROS, proto-oncogene tyrosine-protein kinase ROS
- RTK, receptor tyrosine kinase
- SCLC, Squamous Cell Lung Cancer
- SREs, skeletal-related events
- SSE, symptomatic skeletal events
- TGF-β, transforming growth factor-β
- TIE-2, Tyrosine-Protein Kinase Receptor TIE-2
- TKI, tyrosine kinase inhibitor
- TRKB, Tropomyosin receptor kinase B
- Targeted therapy
- VEGFR, vascular endothelial growth factor receptor
- VHL, Hippel-Lindau tumor suppressor gene
- ZA, zoledronic acid
- ccRCC, clear-cell RCC
- mAb, monoclonal antibodies
- pRCC, papillary renal cell carcinoma
Collapse
Affiliation(s)
- Rita Silva Paiva
- Oncology Division, Hospital de Santa Maria, CHULN, 1649-035 Lisboa, Portugal
| | - Inês Gomes
- Instituto de Medicina Molecular - João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal
| | - Sandra Casimiro
- Instituto de Medicina Molecular - João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal
| | - Isabel Fernandes
- Oncology Division, Hospital de Santa Maria, CHULN, 1649-035 Lisboa, Portugal
- Instituto de Medicina Molecular - João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal
| | - Luís Costa
- Oncology Division, Hospital de Santa Maria, CHULN, 1649-035 Lisboa, Portugal
- Instituto de Medicina Molecular - João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal
- Corresponding author at: Oncology Division, Hospital de Santa Maria, 1649-035 Lisbon, Portugal.
| |
Collapse
|
16
|
Yao HP, Hudson R, Wang MH. Progress and challenge in development of biotherapeutics targeting MET receptor for treatment of advanced cancer. Biochim Biophys Acta Rev Cancer 2020; 1874:188425. [PMID: 32961258 DOI: 10.1016/j.bbcan.2020.188425] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 09/15/2020] [Accepted: 09/15/2020] [Indexed: 12/15/2022]
Abstract
Advanced epithelial cancers such as gastric, lung, and pancreatic tumors are featured by invasive proliferation, distant metastasis, acquired chemoresistance, and tumorigenic stemness. For the last decade, molecular-targeted therapies using therapeutic antibodies, small molecule kinase inhibitors and immune-checkpoint blockades have been applied for these diseases with significant clinical benefits. Nevertheless, there is still a large gap to achieve curative outcomes. MET (mesenchymal-epithelial transition protein), a receptor tyrosine kinase, is a tumorigenic determinant that regulates epithelial cancer initiation, progression, and malignancy. Increased MET expression also has prognostic value for cancer progression and patient survival. These features provide the rationale to target MET for cancer treatment. In this review, we discuss the importance of MET in epithelial tumorigenesis and the development of antibody-based biotherapeutics, including bispecific antibodies and antibody-drug conjugates, for clinical application. The findings from both preclinical and clinical studies highlight the potential of MET-targeted biotherapeutics for cancer therapy in the future.
Collapse
Affiliation(s)
- Hang-Ping Yao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; National Clinical Research Center for Infectious Diseases, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Rachel Hudson
- Cancer Biology Research Center, Texas Tech University Health Sciences Center, Amarillo, TX, USA; Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, USA
| | - Ming-Hai Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; National Clinical Research Center for Infectious Diseases, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Cancer Biology Research Center, Texas Tech University Health Sciences Center, Amarillo, TX, USA; Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, USA.
| |
Collapse
|
17
|
Khetani VV, Portal DE, Shah MR, Mayer T, Singer EA. Combination drug regimens for metastatic clear cell renal cell carcinoma. World J Clin Oncol 2020; 11:541-562. [PMID: 32879843 PMCID: PMC7443831 DOI: 10.5306/wjco.v11.i8.541] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 05/11/2020] [Accepted: 07/18/2020] [Indexed: 02/06/2023] Open
Abstract
Renal cell carcinomas (RCC) make up about 90% of kidney cancers, of which 80% are of the clear cell subtype. About 20% of patients are already metastatic at the time of diagnosis. Initial treatment is often cytoreductive nephrectomy, but systemic therapy is required for advanced RCC. Single agent targeted therapies are moderately toxic and only somewhat effective, leading to development of immunotherapies and combination therapies. This review identifies limitations of monotherapies for metastatic renal cell carcinoma, discusses recent advances in combination therapies, and highlights therapeutic options under development. The goal behind combining various modalities of systemic therapy is to potentiate a synergistic antitumor effect. However, combining targeted therapies may cause increased toxicity. The initial attempts to create therapeutic combinations based on inhibition of the vascular endothelial growth factor or mammalian target of rapamycin pathways were largely unsuccessful in achieving a profile of increased synergy without increased toxicity. To date, five combination therapies have been approved by the U.S. Food and Drug Administration, with the most recently approved therapies being a combination of checkpoint inhibition plus targeted therapy. Several other combination therapies are under development, including some in the phase 3 stage. The new wave of combination therapies for metastatic RCC has the potential to increase response rates and improve survival outcomes while maintaining tolerable side effect profiles.
Collapse
Affiliation(s)
- Viraj V Khetani
- Rutgers Cancer Institute of New Jersey, Robert Wood Johnson Medical School, New Brunswick, NJ 08903, United States
| | - Daniella E Portal
- Rutgers Cancer Institute of New Jersey, Robert Wood Johnson Medical School, New Brunswick, NJ 08903, United States
| | - Mansi R Shah
- Rutgers Cancer Institute of New Jersey, Robert Wood Johnson Medical School, New Brunswick, NJ 08903, United States
| | - Tina Mayer
- Rutgers Cancer Institute of New Jersey, Robert Wood Johnson Medical School, New Brunswick, NJ 08903, United States
| | - Eric A Singer
- Rutgers Cancer Institute of New Jersey, Robert Wood Johnson Medical School, New Brunswick, NJ 08903, United States
| |
Collapse
|
18
|
Pereira PMR, Norfleet J, Lewis JS, Escorcia FE. Immuno-PET Detects Changes in Multi-RTK Tumor Cell Expression Levels in Response to Targeted Kinase Inhibition. J Nucl Med 2020; 62:366-371. [PMID: 32646879 PMCID: PMC8049345 DOI: 10.2967/jnumed.120.244897] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 06/10/2020] [Indexed: 01/25/2023] Open
Abstract
Receptor tyrosine kinase (RTK) coexpression facilitates tumor resistance due to redundancies in the phosphatidylinositol-3′-kinase/protein kinase B and KRAS/extracellular-signal–regulated kinase signaling pathways, among others. Crosstalk between the oncogenic RTK hepatocyte growth factor receptor (MET), epidermal growth factor receptor (EGFR), and human epidermal growth factor receptor 2 (HER2) are involved in tumor resistance to RTK-targeted therapies. Methods: In a relevant renal cell carcinoma patient–derived xenograft model, we use the 89Zr-labeled anti-RTK antibodies (immuno-PET) onartuzumab, panitumumab, and trastuzumab to monitor MET, EGFR, and HER2 protein levels, respectively, during treatment with agents to which the model was resistant (cetuximab) or sensitive (INC280 and trametinib). Results: Cetuximab treatment resulted in continued tumor growth, as well as an increase in all RTK protein levels at the tumor in vivo on immuno-PET and ex vivo at the cellular level. Conversely, after dual MET/mitogen-activated protein kinase inhibition, tumor growth was significantly blunted and corresponded to a decrease in RTK levels. Conclusion: These data show the utility of RTK-targeted immuno-PET to annotate RTK changes in protein expression and inform tumor response to targeted therapies.
Collapse
Affiliation(s)
- Patricia M R Pereira
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Jalen Norfleet
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Jason S Lewis
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York.,Molecular Pharmacology Program and Radiochemistry and Molecular Imaging Probes Core, Memorial Sloan Kettering Cancer Center, and Departments of Pharmacology and Radiology, Weill Cornell Medical College, New York, New York; and
| | - Freddy E Escorcia
- Molecular Imaging Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
19
|
Bergerot P, Lamb P, Wang E, Pal SK. Cabozantinib in Combination with Immunotherapy for Advanced Renal Cell Carcinoma and Urothelial Carcinoma: Rationale and Clinical Evidence. Mol Cancer Ther 2020; 18:2185-2193. [PMID: 31792125 DOI: 10.1158/1535-7163.mct-18-1399] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 05/29/2019] [Accepted: 08/29/2019] [Indexed: 11/16/2022]
Abstract
The treatment landscape for metastatic renal cell carcinoma (mRCC) and urothelial carcinoma (mUC) has evolved rapidly in recent years with the approval of several checkpoint inhibitors. Despite these advances, survival rates for metastatic disease remain poor, and additional strategies will be needed to improve the efficacy of checkpoint inhibitors. Combining anti-VEGF/VEGFR agents with checkpoint inhibitors has emerged as a potential strategy to advance the immunotherapy paradigm, because VEGF inhibitors have immunomodulatory potential. Cabozantinib is a tyrosine kinase inhibitor (TKI) whose targets include MET, AXL, and VEGFR2. Cabozantinib has a unique immunomodulatory profile and has demonstrated clinical efficacy as a monotherapy in mRCC and mUC, making it a potentially suitable partner for checkpoint inhibitor therapy. In this review, we summarize the current status of immunotherapy for mRCC and mUC and discuss the development of immunotherapy-TKI combinations, with a focus on cabozantinib. We discuss the rationale for such combinations based on our growing understanding of the tumor microenvironment, and we review in detail the preclinical and clinical studies supporting their use.
Collapse
Affiliation(s)
- Paulo Bergerot
- City of Hope National Medical Center, Duarte, California
| | | | | | - Sumanta K Pal
- City of Hope National Medical Center, Duarte, California.
| |
Collapse
|
20
|
Versmissen J, Mirabito Colafella KM, Koolen SLW, Danser AHJ. Vascular Cardio-Oncology: Vascular Endothelial Growth Factor inhibitors and hypertension. Cardiovasc Res 2020; 115:904-914. [PMID: 30726882 DOI: 10.1093/cvr/cvz022] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 12/16/2018] [Accepted: 01/24/2019] [Indexed: 12/27/2022] Open
Abstract
Since the formation of new blood vessels is essential for tumour growth and metastatic spread, inhibition of angiogenesis by targeting the vascular endothelial growth factor (VEGF) pathway is an effective strategy for various types of cancer, most importantly renal cell carcinoma, thyroid cancer, and hepatocellular carcinoma. However, VEGF inhibitors have serious side effects, most importantly hypertension and nephropathy. In case of fulminant hypertension, this may only be handled by lowering the dosage since the blood pressure rise is proportional to the amount of VEGF inhibition. These effects pathophysiologically and clinically resemble the most severe complication of pregnancy, preeclampsia, in which case an insufficient placenta leads to a rise in sFlt-1 levels causing a decrease in VEGF availability. Due to this overlap, studies in preeclampsia may provide important information for VEGF inhibitor-induced toxicity and vice versa. In both VEGF inhibitor-induced toxicity and preeclampsia, endothelin (ET)-1 appears to be a pivotal player. In this review, after briefly summarizing the anticancer effects, we discuss the mechanisms that potentially underlie the unwanted effects of VEGF inhibitors, focusing on ET-1, nitric oxide and oxidative stress, the renin-angiotensin-aldosterone system, and rarefaction. Given the salt sensitivity of this phenomenon, as well as the beneficial effects of aspirin in preeclampsia and cancer, we next provide novel treatment options for VEGF inhibitor-induced toxicity, including salt restriction, ET receptor blockade, and cyclo-oxygenase inhibition, in addition to classical antihypertensive and renoprotective drugs. We conclude with the recommendation of therapeutic drug monitoring to improve patient outcome.
Collapse
Affiliation(s)
- Jorie Versmissen
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus MC University Medical Center, CA Rotterdam, The Netherlands
| | - Katrina M Mirabito Colafella
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus MC University Medical Center, CA Rotterdam, The Netherlands.,Cardiovascular Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Australia.,Department of Physiology, Monash University, Melbourne, Australia
| | - Stijn L W Koolen
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands.,Hospital Pharmacy, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - A H Jan Danser
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus MC University Medical Center, CA Rotterdam, The Netherlands
| |
Collapse
|
21
|
Saad KM, Shaker ME, Shaaban AA, Abdelrahman RS, Said E. The c-Met inhibitor capmatinib alleviates acetaminophen-induced hepatotoxicity. Int Immunopharmacol 2020; 81:106292. [PMID: 32062076 DOI: 10.1016/j.intimp.2020.106292] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 02/03/2020] [Accepted: 02/04/2020] [Indexed: 02/08/2023]
Abstract
Acetaminophen (APAP)-induced hepatotoxicity comes among the most frequent humans' toxicities caused by drugs. So far, therapeutic interventions for such type of drug-induced toxicity are still limited. In the current study, we examined the influence of capmatinib (Cap), a novel c-Met inhibitor, on APAP-induced hepatotoxicity in mice when administered 2 h prior, 2 h post and 4 h post APAP-challenge. The results revealed that Cap administration significantly attenuated APAP-induced liver injury when administered only 2 h prior and post APAP-administration. Cap hepatoprotective effect was mediated by lowering the excessive formation of lipid peroxidation and nitrosative stress products caused by APAP. Besides, Cap attenuated APAP-induced overproduction and release of proinflammatory mediators like TNF-α, IL-1β, IL-17A, IL-6, and MCP-1. Cap treatment also led to avoidance of APAP-subsequent repair by abating APAP-induced elevation of hepatic IL-22 and PCNA expressions. In conclusion, c-Met receptor inhibition may be a potential strategy for alleviating APAP-hepatotoxicity, especially when administered in the early phase of intoxication.
Collapse
Affiliation(s)
- Kareem M Saad
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Mohamed E Shaker
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt; Department of Pharmacology, Faculty of Pharmacy, Jouf University, Sakaka 2014, Saudi Arabia.
| | - Ahmed A Shaaban
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt; Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Aqaba University of Technology, Aqaba 77110, Jordan
| | - Rehab S Abdelrahman
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Taibah University, Al Madinah Al-Munawwarah 30001, Saudi Arabia
| | - Eman Said
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| |
Collapse
|
22
|
Aurilio G, Santoni M, Cimadamore A, Massari F, Scarpelli M, Lopez-Beltran A, Cheng L, Battelli N, Nolé F, Montironi R. Renal Cell Carcinoma: genomic landscape and clinical implications. EXPERT REVIEW OF PRECISION MEDICINE AND DRUG DEVELOPMENT 2020. [DOI: 10.1080/23808993.2020.1733407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Gaetano Aurilio
- Medical Oncology Division of Urogenital and Head and Neck Tumours, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | | | - Alessia Cimadamore
- Section of Pathological Anatomy, Polytechnic University of the Marche Region, School of Medicine, Ancona, Italy
| | | | - Marina Scarpelli
- Section of Pathological Anatomy, Polytechnic University of the Marche Region, School of Medicine, Ancona, Italy
| | | | - Liang Cheng
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | | | - Franco Nolé
- Medical Oncology Division of Urogenital and Head and Neck Tumours, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Rodolfo Montironi
- Section of Pathological Anatomy, Polytechnic University of the Marche Region, School of Medicine, Ancona, Italy
| |
Collapse
|
23
|
Hara T, Kimura A, Miyazaki T, Tanaka H, Morimoto M, Nakai K, Soeda J. Cabozantinib inhibits AXL- and MET-dependent cancer cell migration induced by growth-arrest-specific 6 and hepatocyte growth factor. Biochem Biophys Rep 2020; 21:100726. [PMID: 32055714 PMCID: PMC7005370 DOI: 10.1016/j.bbrep.2020.100726] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 12/20/2019] [Accepted: 01/07/2020] [Indexed: 12/15/2022] Open
Abstract
Cabozantinib is known as an inhibitor of receptor tyrosine kinases mainly targeting AXL receptor tyrosine kinase (AXL), MET proto-oncogene-encoded receptor tyrosine kinase (MET), and vascular endothelial growth factor receptor 2. Growth arrest-specific 6 (GAS6) and hepatocyte growth factor (HGF), the natural ligands of AXL and MET, respectively, are associated with the induction of cancer cell proliferation or metastasis. Currently, it is still unclear how cabozantinib regulates cancer cell migration and invasion by inhibiting AXL and MET. This study was conducted to investigate the mechanism underlying the anti-cancer effects of cabozantinib through regulation of AXL and MET signaling. The results of Boyden chamber assays showed that cancer cell migration was induced by GAS6 and HGF in SKOV3 cells in serum-free medium. Combinatorial treatment with GAS6 and HGF exerted an additive effect on cell migration. Furthermore, we examined the role of AXL and MET signaling in cell migration. Short interfering RNA targeting AXL and MET inhibited GAS6- and HGF-induced migration, respectively. Double knockdown of AXL and MET completely suppressed cell migration induced by combination treatment with GAS6 and HGF compared to AXL or MET inhibition alone. Finally, we investigated the effects of cabozantinib on cell migration and invasion. Cabozantinib inhibited AXL and MET phosphorylation and downregulated the downstream mediators, phosphorylated SRC in the presence of both GAS6 and HGF in SKOV3 cells. The cell migration and invasion induced by combined GAS6 and HGF treatment were suppressed by cabozantinib, but not by capmatinib, a selective MET inhibitor. Our data indicate that the GAS6-AXL and HGF-MET signal pathways markedly contribute to cancer cell migration and invasion in an independent manner, suggesting that simultaneous inhibition of these two pathways contributes to the anti-cancer effects of cabozantinib.
Collapse
Affiliation(s)
- Takahito Hara
- Innovation Promotion, Shonan Research Central Office, Research, Takeda Pharmaceutical Company Limited, 2-26-1 Muraoka-Higashi, Fujisawa-shi, Kanagawa, 251-8555, Japan
| | - Akiko Kimura
- Oncology Therapeutic Area Unit for Japan & Asia, Takeda Pharmaceutical Company Limited, 4-1-1 Dosho-machi Chuo-ku Osaka-shi, Osaka, 540-8645, Japan
| | - Tohru Miyazaki
- Department of Japan Medical Affairs, Japan Oncology Business Unit, Takeda Pharmaceutical Company Limited, 2-1-1 Nihonbashi-Honcho, Chuo-ku, Tokyo, 103-8668, Japan
| | - Hiroshi Tanaka
- Axcelead Drug Discovery Partners, Inc., 2-26-1Muraoka-Higashi, Fujisawa-shi, Kanagawa, 251-0012, Japan
| | - Megumi Morimoto
- Innovation Promotion, Shonan Research Central Office, Research, Takeda Pharmaceutical Company Limited, 2-26-1 Muraoka-Higashi, Fujisawa-shi, Kanagawa, 251-8555, Japan
| | - Katsuhiko Nakai
- Oncology Therapeutic Area Unit for Japan & Asia, Takeda Pharmaceutical Company Limited, 4-1-1 Dosho-machi Chuo-ku Osaka-shi, Osaka, 540-8645, Japan
| | - Junpei Soeda
- Department of Japan Medical Affairs, Japan Oncology Business Unit, Takeda Pharmaceutical Company Limited, 2-1-1 Nihonbashi-Honcho, Chuo-ku, Tokyo, 103-8668, Japan
| |
Collapse
|
24
|
Gymnopoulos M, Betancourt O, Blot V, Fujita R, Galvan D, Lieuw V, Nguyen S, Snedden J, Stewart C, Villicana J, Wojciak J, Wong E, Pardo R, Patel N, D'Hooge F, Vijayakrishnan B, Barry C, Hartley JA, Howard PW, Newman R, Coronella J. TR1801-ADC: a highly potent cMet antibody-drug conjugate with high activity in patient-derived xenograft models of solid tumors. Mol Oncol 2019; 14:54-68. [PMID: 31736230 PMCID: PMC6944112 DOI: 10.1002/1878-0261.12600] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 10/23/2019] [Accepted: 11/14/2019] [Indexed: 12/13/2022] Open
Abstract
cMet is a well‐characterized oncogene that is the target of many drugs including small molecule and biologic pathway inhibitors, and, more recently, antibody–drug conjugates (ADCs). However, the clinical benefit from cMet‐targeted therapy has been limited. We developed a novel cMet‐targeted ‘third‐generation’ ADC, TR1801‐ADC, that was optimized at different levels including specificity, stability, toxin–linker, conjugation site, and in vivo efficacy. Our nonagonistic cMet antibody was site‐specifically conjugated to the pyrrolobenzodiazepine (PBD) toxin–linker tesirine and has picomolar activity in cancer cell lines derived from different solid tumors including lung, colorectal, and gastric cancers. The potency of our cMet ADC is independent of MET gene copy number, and its antitumor activity was high not only in high cMet‐expressing cell lines but also in medium‐to‐low cMet cell lines (40 000–90 000 cMet/cell) in which a cMet ADC with tubulin inhibitor payload was considerably less potent. In vivo xenografts with low–medium cMet expression were also very responsive to TR1801‐ADC at a single dose, while a cMet ADC using a tubulin inhibitor showed a substantially reduced efficacy. Furthermore, TR1801‐ADC had excellent efficacy with significant antitumor activity in 90% of tested patient‐derived xenograft models of gastric, colorectal, and head and neck cancers: 7 of 10 gastric models, 4 of 10 colorectal cancer models, and 3 of 10 head and neck cancer models showed complete tumor regression after a single‐dose administration. Altogether, TR1801‐ADC is a new generation cMet ADC with best‐in‐class preclinical efficacy and good tolerability in rats.
Collapse
Affiliation(s)
| | | | - Vincent Blot
- Tanabe Research Laboratories U.S.A., Inc., San Diego, CA, USA
| | - Ryo Fujita
- Tanabe Research Laboratories U.S.A., Inc., San Diego, CA, USA
| | - Diana Galvan
- Tanabe Research Laboratories U.S.A., Inc., San Diego, CA, USA
| | - Vincent Lieuw
- Tanabe Research Laboratories U.S.A., Inc., San Diego, CA, USA
| | - Sophie Nguyen
- Tanabe Research Laboratories U.S.A., Inc., San Diego, CA, USA
| | | | | | - Jose Villicana
- Tanabe Research Laboratories U.S.A., Inc., San Diego, CA, USA
| | - Jon Wojciak
- Tanabe Research Laboratories U.S.A., Inc., San Diego, CA, USA
| | - Eley Wong
- Tanabe Research Laboratories U.S.A., Inc., San Diego, CA, USA
| | - Raul Pardo
- Spirogen, a member of the AstraZeneca Group, London, UK
| | - Neki Patel
- Spirogen, a member of the AstraZeneca Group, London, UK
| | | | | | - Conor Barry
- Spirogen, a member of the AstraZeneca Group, London, UK
| | | | | | - Roland Newman
- Tanabe Research Laboratories U.S.A., Inc., San Diego, CA, USA
| | - Julia Coronella
- Tanabe Research Laboratories U.S.A., Inc., San Diego, CA, USA
| |
Collapse
|
25
|
Moosavi F, Giovannetti E, Saso L, Firuzi O. HGF/MET pathway aberrations as diagnostic, prognostic, and predictive biomarkers in human cancers. Crit Rev Clin Lab Sci 2019; 56:533-566. [PMID: 31512514 DOI: 10.1080/10408363.2019.1653821] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Cancer is a major cause of death worldwide. MET tyrosine kinase receptor [MET, c-MET, hepatocyte growth factor (HGF) receptor] pathway activation is associated with the appearance of several hallmarks of cancer. The HGF/MET pathway has emerged as an important actionable target across many solid tumors; therefore, biomarker discovery becomes essential in order to guide clinical intervention and patient stratification with the aim of moving towards personalized medicine. The focus of this review is on how the aberrant activation of the HGF/MET pathway in tumor tissue or the circulation can provide diagnostic and prognostic biomarkers and predictive biomarkers of drug response. Many meta-analyses have shown that aberrant activation of the MET pathway in tumor tissue, including MET gene overexpression, gene amplification, exon 14 skipping and other activating mutations, is almost invariably associated with shorter survival and poor prognosis. Most meta-analyses have been performed in non-small cell lung cancer (NSCLC), breast, head and neck cancers as well as colorectal, gastric, pancreatic and other gastrointestinal cancers. Furthermore, several studies have shown the predictive value of MET biomarkers in the identification of patients who gain the most benefit from HGF/MET targeted therapies administered as single or combination therapies. The highest predictive values have been observed for response to foretinib and savolitinib in renal cancer, as well as tivantinib in NSCLC and colorectal cancer. However, some studies, especially those based on MET expression, have failed to show much value in these stratifications. This may be rooted in lack of standardization of methodologies, in particular in scoring systems applied in immunohistochemistry determinations or absence of oncogenic addiction of cancer cells to the MET pathway, despite detection of overexpression. Measurements of amplification and mutation aberrations are less likely to suffer from these pitfalls. Increased levels of MET soluble ectodomain (sMET) in circulation have also been associated with poor prognosis; however, the evidence is not as strong as it is with tissue-based biomarkers. As a diagnostic biomarker, sMET has shown its value in distinguishing cancer patients from healthy individuals in prostate and bladder cancers and in melanoma. On the other hand, increased circulating HGF has also been presented as a valuable prognostic and diagnostic biomarker in many cancers; however, there is controversy on the predictive value of HGF as a biomarker. Other biomarkers such as circulating tumor DNA (ctDNA) and tumor HGF levels have also been briefly covered. In conclusion, HGF/MET aberrations can provide valuable diagnostic, prognostic and predictive biomarkers and represent vital assets for personalized cancer therapy.
Collapse
Affiliation(s)
- Fatemeh Moosavi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences , Shiraz , Iran
| | - Elisa Giovannetti
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center (VUmc) , Amsterdam , The Netherlands.,Cancer Pharmacology Lab, AIRC Start Up Unit, Fondazione Pisana per la Scienza Onlus , Pisa , Italy
| | - Luciano Saso
- Department of Physiology and Pharmacology, "Vittorio Erspamer," Sapienza University , Rome , Italy
| | - Omidreza Firuzi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences , Shiraz , Iran
| |
Collapse
|
26
|
Xu X, Zhang G, He L, Zhu Y. Clinicopathological impacts of c-Met overexpression in bladder cancer: evidence from 1,336 cases. Onco Targets Ther 2019; 12:2695-2702. [PMID: 31114223 PMCID: PMC6497828 DOI: 10.2147/ott.s197540] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Accepted: 02/19/2019] [Indexed: 12/13/2022] Open
Abstract
Background: The clinicopathological impacts of c-Met overexpression in bladder cancer have been investigated in several studies with conflicting results. We performed this systematic review and meta-analysis to assess the pathologic and prognostic roles of c-Met status in bladder cancer patients. Methods: Eligible studies were searched and identified from the PubMed and China National Knowledge Infrastructure (CNKI) databases (up until October 4, 2018). The DerSimonian-Laird random-effects model was used to calculate the pooled risk estimates. Results: Eight studies including 1,336 bladder cancer cases were eventually included in this meta-analysis. We detected a significantly increased risk of poor overall survival (OS) associated with the high expression of c-Met (HR=2.42, 95% CI 1.36-4.32). There was no association between c-Met status and nuclear grade (OR=0.82, 95% CI 0.29-2.31) or tumor stage (OR=1.42, 95% CI 0.41-4.89). Conclusion: This study shows that the overexpression of c-Met in primary cancer tissues is associated with a worse OS in human bladder cancer. However, larger studies using standardized methods and criteria are warranted to verify these findings.
Collapse
Affiliation(s)
- Xin Xu
- Department of Urology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang, People's Republic of China
| | - Guanjun Zhang
- Department of Urology, Hospital of Traditional Chinese Medicine of Shangyu, Shangyu 312300, Zhejiang, People's Republic of China
| | - Liujia He
- Department of Urology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang, People's Republic of China
| | - Yi Zhu
- Department of Urology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang, People's Republic of China
| |
Collapse
|
27
|
Kim JH, Jang HJ, Kim HS, Kim BJ, Park SH. Prognostic impact of high c-Met expression in ovarian cancer: a meta-analysis. J Cancer 2018; 9:3427-3434. [PMID: 30310499 PMCID: PMC6171012 DOI: 10.7150/jca.26071] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 07/17/2018] [Indexed: 12/21/2022] Open
Abstract
High c-Met expression has been observed in epithelial ovarian cancer (EOC). However, its clinicopathological impacts remain controversial. We conducted this meta-analysis to evaluate the pathologic and prognostic significance of c-Met overexpression in patients with EOC. A systematic computerized search of the electronic databases PubMed, PMC, EMBASE, and Google scholar (up to April 2018) was carried out. From seven studies, 568 patients with EOC were included in the meta-analysis. Although there was no statistical significance, EOCs with c-Met overexpression tended to show higher FIGO stage (III-IV) (odds ratio = 2.18, 95% confidence interval: 0.86-5.53, p = 0.10) and higher rate of lymph node metastasis (odds ratio = 3.05, 95% confidence interval: 0.85-10.98, p = 0.09), compared with tumors with low c-Met expression. In terms of prognosis, patients with c-Met-high EOC showed significantly worse survival than those with c-Met-low tumor (hazard ratio = 2.11, 95% confidence interval: 1.51-2.94, p < 0.0001). In conclusion, this meta-analysis indicates that high c-Met expression represents an adverse prognostic marker for patients with EOC.
Collapse
Affiliation(s)
- Jung Han Kim
- Department of Internal Medicine, Hallym University Medical Center, Hallym University College of Medicine, Seoul, Republic of Korea
| | - Hyun Joo Jang
- Department of Internal Medicine, Hallym University Medical Center, Hallym University College of Medicine, Seoul, Republic of Korea
| | - Hyeong Su Kim
- Department of Internal Medicine, Hallym University Medical Center, Hallym University College of Medicine, Seoul, Republic of Korea
| | - Bum Jun Kim
- Department of Internal Medicine, Hallym University Medical Center, Hallym University College of Medicine, Seoul, Republic of Korea.,Department of Internal Medicine, National Army Capital Hospital, The Armed Forces Medical Command, Sungnam, Gyeonggi-Do, Republic of Korea
| | - Sung Ho Park
- Department of Obstetrics and Gynecology, Kangnam Sacred-Heart Hospital, Hallym University Medical Center, Hallym University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
28
|
Kim JH, Kim BJ, Kim HS. Clinicopathological impacts of high c-Met expression in head and neck squamous cell carcinoma: a meta-analysis and review. Oncotarget 2017; 8:113120-113128. [PMID: 29348891 PMCID: PMC5762576 DOI: 10.18632/oncotarget.21303] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 09/15/2017] [Indexed: 12/17/2022] Open
Abstract
High c-Met expression has been observed in head and neck squamous cell carcinoma (HNSCC). However, its clinicopathological impact remains controversial. We performed this meta-analysis to evaluate the pathologic and prognostic impacts of c-Met overexpression in patients with HNSCC. A systematic computerized search of the electronic databases was carried out. From 16 studies, 1,948 patients with HNSCC were included in the meta-analysis. Compared with HNSCCs showing low c-Met expression, tumors with high c-Met expression were significantly associated with higher rate of lymph node metastasis (odds ratio = 3.26, 95% CI: 2.27–4.69, P < 0.00001) and higher T stage (odds ratio = 1.33, 95% CI: 1.03–1.71, P = 0.03). In addition, patients with c-Met-high HNSCC showed significantly worse disease-free survival (hazard ratio = 1.49, 95% CI: 1.04–2.14, P = 0.03) and overall survival (hazard ratio = 1.83, 95% CI: 1.29–2.60, P = 0.0007) than those with c-Met-low tumor. In conclusion, this meta-analysis demonstrates that high c-Met expression is significantly associated with worse pathological features and prognosis, indicating c-Met overexpression is an adverse prognostic marker for patients with HNSCC.
Collapse
Affiliation(s)
- Jung Han Kim
- Division of Hemato-Oncology, Department of Internal Medicine, Kangnam Sacred-Heart Hospital, Hallym University Medical Center, Hallym University College of Medicine, Seoul, Republic of Korea
| | - Bum Jun Kim
- Division of Hemato-Oncology, Department of Internal Medicine, Kangnam Sacred-Heart Hospital, Hallym University Medical Center, Hallym University College of Medicine, Seoul, Republic of Korea.,Department of Internal Medicine, National Army Capital Hospital, The Armed Forces Medical Command, Sungnam, Gyeonggi-do, Republic of Korea
| | - Hyeong Su Kim
- Division of Hemato-Oncology, Department of Internal Medicine, Kangnam Sacred-Heart Hospital, Hallym University Medical Center, Hallym University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
29
|
Kim JH, Kim HS, Kim BJ. MET inhibitors in advanced non-small-cell lung cancer: a meta-analysis and review. Oncotarget 2017; 8:75500-75508. [PMID: 29088885 PMCID: PMC5650440 DOI: 10.18632/oncotarget.20824] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 08/27/2017] [Indexed: 12/19/2022] Open
Abstract
The alterations of MET have been detected in non-small-cell lung cancer (NSCLC). However, survival benefit of MET inhibitors remains controversial. We performed this meta-analysis to evaluate the survival benefit of MET inhibitors combined with an epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI) or standard chemotherapy in patients with advanced or metastatic NSCLC. A systematic computerized search of the electronic databases was carried out. From seven studies, 2,577 patients were included in the meta-analysis. Compared with patients in the placebo group, patients who received an additional MET inhibitor did not show significantly improved progression-free survival (hazard ration (HR) = 0.92 [95% confidence interval (CI): 0.79–1.08], P = 0.33) and overall survival (HR = 1.0 [95% CI: 0.90–1.11], P = 0.97). In the subgroup analysis, patients with MET-high NSCLC tended to show longer survival when treated with an additional MET inhibitor than those in the placebo group (HR = 0.76, [95% CI: 0.58–1.01], P = 0.06). In conclusion, this meta-analysis indicates that the addition of a MET inhibitor to an EGFR TKI or chemotherapy has no survival benefit over placebo in patients with advanced or metastatic NSCLC. Although patients with MET-high tumor tended to show better survival, further studies to explore more specific biomarkers are warranted to identify ideal candidates for MET inhibitors in NSCLC.
Collapse
Affiliation(s)
- Jung Han Kim
- Division of Hemato-Oncology, Department of Internal Medicine, Kangnam Sacred-Heart Hospital, Hallym University Medical Center, Hallym University College of Medicine, Seoul 07441, Republic of Korea
| | - Hyeong Su Kim
- Division of Hemato-Oncology, Department of Internal Medicine, Kangnam Sacred-Heart Hospital, Hallym University Medical Center, Hallym University College of Medicine, Seoul 07441, Republic of Korea
| | - Bum Jun Kim
- Division of Hemato-Oncology, Department of Internal Medicine, Kangnam Sacred-Heart Hospital, Hallym University Medical Center, Hallym University College of Medicine, Seoul 07441, Republic of Korea.,Department of Internal Medicine, National Army Capital Hospital, The Armed Forces Medical Command, Sungnam 13574, Republic of Korea
| |
Collapse
|