1
|
Hydrogen deuterium exchange mass spectrometry identifies the dominant paratope in CD20 antigen binding to the NCD1.2 monoclonal antibody. Biochem J 2021; 478:99-120. [PMID: 33284343 PMCID: PMC7813475 DOI: 10.1042/bcj20200674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 12/02/2020] [Accepted: 12/07/2020] [Indexed: 11/17/2022]
Abstract
A comparative canine–human therapeutics model is being developed in B-cell lymphoma through the generation of a hybridoma cell that produces a murine monoclonal antibody specific for canine CD20. The hybridoma cell produces two light chains, light chain-3, and light chain-7. However, the contribution of either light chain to the authentic full-length hybridoma derived IgG is undefined. Mass spectrometry was used to identify only one of the two light chains, light chain-7, as predominating in the full-length IgG. Gene synthesis created a recombinant murine–canine chimeric monoclonal antibody expressing light chain-7 that reconstituted the IgG binding to CD20. Using light chain-7 as a reference sequence, hydrogen deuterium exchange mass spectrometry was used to identify the dominant CDR region implicated in CD20 antigen binding. Early in the deuteration reaction, the CD20 antigen suppressed deuteration at CDR3 (VH). In later time points, deuterium suppression occurred at CDR2 (VH) and CDR2 (VL), with the maintenance of the CDR3 (VH) interaction. These data suggest that CDR3 (VH) functions as the dominant antigen docking motif and that antibody aggregation is induced at later time points after antigen binding. These approaches define a methodology for fine mapping of CDR contacts using nested enzymatic reactions and hydrogen deuterium exchange mass spectrometry. These data support the further development of an engineered, synthetic canine–murine monoclonal antibody, focused on CDR3 (VH), for use as a canine lymphoma therapeutic that mimics the human–murine chimeric anti-CD20 antibody Rituximab.
Collapse
|
2
|
Abstract
Comparative oncology clinical trials play an important and growing role in cancer research and drug development efforts. These trials, typically conducted in companion (pet) dogs, allow assessment of novel anticancer agents and combination therapies in a veterinary clinical setting that supports serial biologic sample collections and exploration of dose, schedule and corresponding pharmacokinetic/pharmacodynamic relationships. Further, an intact immune system and natural co-evolution of tumour and microenvironment support exploration of novel immunotherapeutic strategies. Substantial improvements in our collective understanding of the molecular landscape of canine cancers have occurred in the past 10 years, facilitating translational research and supporting the inclusion of comparative studies in drug development. The value of the approach is demonstrated in various clinical trial settings, including single-agent or combination response rates, inhibition of metastatic progression and randomized comparison of multiple agents in a head-to-head fashion. Such comparative oncology studies have been purposefully included in the developmental plan for several US FDA-approved and up-and-coming anticancer drugs. Challenges for this field include keeping pace with technology and data dissemination/harmonization, improving annotation of the canine genome and immune system, and generation of canine-specific validated reagents to support integration of correlative biology within clinical trial efforts.
Collapse
Affiliation(s)
- Amy K LeBlanc
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| | - Christina N Mazcko
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
3
|
Josephs DH, Nakamura M, Bax HJ, Dodev TS, Muirhead G, Saul L, Karagiannis P, Ilieva KM, Crescioli S, Gazinska P, Woodman N, Lombardelli C, Kareemaghay S, Selkirk C, Lentfer H, Barton C, Canevari S, Figini M, Downes N, Dombrowicz D, Corrigan CJ, Nestle FO, Jones PS, Gould HJ, Blower PJ, Tsoka S, Spicer JF, Karagiannis SN. An immunologically relevant rodent model demonstrates safety of therapy using a tumour-specific IgE. Allergy 2018; 73:2328-2341. [PMID: 29654623 PMCID: PMC6492130 DOI: 10.1111/all.13455] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/02/2018] [Indexed: 12/18/2022]
Abstract
BACKGROUND Designing biologically informative models for assessing the safety of novel agents, especially for cancer immunotherapy, carries substantial challenges. The choice of an in vivo system for studies on IgE antibodies represents a major impediment to their clinical translation, especially with respect to class-specific immunological functions and safety. Fcε receptor expression and structure are different in humans and mice, so that the murine system is not informative when studying human IgE biology. By contrast, FcεRI expression and cellular distribution in rats mirror that of humans. METHODS We are developing MOv18 IgE, a human chimeric antibody recognizing the tumour-associated antigen folate receptor alpha. We created an immunologically congruent surrogate rat model likely to recapitulate human IgE-FcεR interactions and engineered a surrogate rat IgE equivalent to MOv18. Employing this model, we examined in vivo safety and efficacy of antitumour IgE antibodies. RESULTS In immunocompetent rats, rodent IgE restricted growth of syngeneic tumours in the absence of clinical, histopathological or metabolic signs associated with obvious toxicity. No physiological or immunological evidence of a "cytokine storm" or allergic response was seen, even at 50 mg/kg weekly doses. IgE treatment was associated with elevated serum concentrations of TNFα, a mediator previously linked with IgE-mediated antitumour and antiparasitic functions, alongside evidence of substantially elevated tumoural immune cell infiltration and immunological pathway activation in tumour-bearing lungs. CONCLUSION Our findings indicate safety of MOv18 IgE, in conjunction with efficacy and immune activation, supporting the translation of this therapeutic approach to the clinical arena.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal, Murine-Derived/administration & dosage
- Antibodies, Monoclonal, Murine-Derived/adverse effects
- Antibodies, Monoclonal, Murine-Derived/metabolism
- Antibodies, Monoclonal, Murine-Derived/therapeutic use
- Cell Line, Tumor
- Folate Receptor 1/immunology
- Humans
- Immunoglobulin E/administration & dosage
- Immunoglobulin E/adverse effects
- Immunoglobulin E/immunology
- Immunoglobulin E/therapeutic use
- Immunoglobulin G/immunology
- Immunoglobulin G/metabolism
- Immunotherapy/methods
- Mice
- Models, Animal
- Neoplasms/pathology
- Neoplasms/therapy
- Protein Binding
- Rats
- Receptors, IgE/metabolism
- Statistics, Nonparametric
- Treatment Outcome
- Tumor Necrosis Factor-alpha/blood
Collapse
Affiliation(s)
- D. H. Josephs
- St. John's Institute of DermatologySchool of Basic & Medical BiosciencesKing's College LondonLondonUK
- School of Cancer & Pharmaceutical SciencesGuy's HospitalKing's College LondonLondonUK
| | - M. Nakamura
- St. John's Institute of DermatologySchool of Basic & Medical BiosciencesKing's College LondonLondonUK
| | - H. J. Bax
- St. John's Institute of DermatologySchool of Basic & Medical BiosciencesKing's College LondonLondonUK
- School of Cancer & Pharmaceutical SciencesGuy's HospitalKing's College LondonLondonUK
| | - T. S. Dodev
- Randall Centre for Cell and Molecular BiophysicsKing's College LondonLondonUK
| | - G. Muirhead
- Department of InformaticsFaculty of Natural and Mathematical SciencesKing's College LondonLondonUK
| | - L. Saul
- St. John's Institute of DermatologySchool of Basic & Medical BiosciencesKing's College LondonLondonUK
- School of Cancer & Pharmaceutical SciencesGuy's HospitalKing's College LondonLondonUK
| | - P. Karagiannis
- St. John's Institute of DermatologySchool of Basic & Medical BiosciencesKing's College LondonLondonUK
- School of Cancer & Pharmaceutical SciencesGuy's HospitalKing's College LondonLondonUK
| | - K. M. Ilieva
- St. John's Institute of DermatologySchool of Basic & Medical BiosciencesKing's College LondonLondonUK
- Breast Cancer Now Research UnitSchool of Cancer & Pharmaceutical SciencesGuy's Cancer CentreKing's College LondonLondonUK
| | - S. Crescioli
- St. John's Institute of DermatologySchool of Basic & Medical BiosciencesKing's College LondonLondonUK
| | - P. Gazinska
- Breast Cancer Now Research UnitSchool of Cancer & Pharmaceutical SciencesGuy's Cancer CentreKing's College LondonLondonUK
- King's Health Partners Cancer BiobankSchool of Cancer & Pharmaceutical SciencesKing's College LondonLondonUK
| | - N. Woodman
- King's Health Partners Cancer BiobankSchool of Cancer & Pharmaceutical SciencesKing's College LondonLondonUK
| | - C. Lombardelli
- King's Health Partners Cancer BiobankSchool of Cancer & Pharmaceutical SciencesKing's College LondonLondonUK
| | - S. Kareemaghay
- King's Health Partners Cancer BiobankSchool of Cancer & Pharmaceutical SciencesKing's College LondonLondonUK
| | - C. Selkirk
- Biotherapeutics Development UnitCancer Research UKSouth MimmsUK
| | - H. Lentfer
- Biotherapeutics Development UnitCancer Research UKSouth MimmsUK
| | - C. Barton
- Centre for Drug DevelopmentCancer Research UKLondonUK
| | - S. Canevari
- Department of Applied Research and Technology DevelopmentFondazione IRCCS Istituto Nazionale dei TumouriMilanItaly
| | - M. Figini
- Department of Applied Research and Technology DevelopmentFondazione IRCCS Istituto Nazionale dei TumouriMilanItaly
| | | | - D. Dombrowicz
- CHU LilleInstitut Pasteur de LilleInsermUniv. LilleLilleFrance
| | - C. J. Corrigan
- Medical Research Council & Asthma UK Centre in Allergic Mechanisms of AsthmaKing's College LondonLondonUK
| | - F. O. Nestle
- St. John's Institute of DermatologySchool of Basic & Medical BiosciencesKing's College LondonLondonUK
- Immunology and Inflammation Therapeutic Research AreaSanofi USCambridgeMAUSA
| | - P. S. Jones
- Centre for Drug DevelopmentCancer Research UKLondonUK
| | - H. J. Gould
- Randall Centre for Cell and Molecular BiophysicsKing's College LondonLondonUK
| | - P. J. Blower
- Imaging Chemistry & BiologyDivision of Imaging Sciences and Biomedical EngineeringSt. Thomas's HospitalKing's College LondonLondonUK
| | - S. Tsoka
- Department of InformaticsFaculty of Natural and Mathematical SciencesKing's College LondonLondonUK
| | - J. F. Spicer
- School of Cancer & Pharmaceutical SciencesGuy's HospitalKing's College LondonLondonUK
| | - S. N. Karagiannis
- St. John's Institute of DermatologySchool of Basic & Medical BiosciencesKing's College LondonLondonUK
- Breast Cancer Now Research UnitSchool of Cancer & Pharmaceutical SciencesGuy's Cancer CentreKing's College LondonLondonUK
| |
Collapse
|
4
|
Nagaya T, Okuyama S, Ogata F, Maruoka Y, Knapp DW, Karagiannis SN, Fazekas-Singer J, Choyke PL, LeBlanc AK, Jensen-Jarolim E, Kobayashi H. Near infrared photoimmunotherapy targeting bladder cancer with a canine anti-epidermal growth factor receptor (EGFR) antibody. Oncotarget 2018; 9:19026-19038. [PMID: 29721181 PMCID: PMC5922375 DOI: 10.18632/oncotarget.24876] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 03/06/2018] [Indexed: 12/23/2022] Open
Abstract
Anti-epidermal growth factor receptor (EGFR) antibody therapy is used in EGFR expressing cancers including lung, colon, head and neck, and bladder cancers, however results have been modest. Near infrared photoimmunotherapy (NIR-PIT) is a highly selective tumor treatment that employs an antibody-photo-absorber conjugate which is activated by NIR light. NIR-PIT is in clinical trials in patients with recurrent head and neck cancers using cetuximab-IR700 as the conjugate. However, its use has otherwise been restricted to mouse models. This is an effort to explore larger animal models with NIR-PIT. We describe the use of a recombinant canine anti-EGFR monoclonal antibody (mAb), can225IgG, conjugated to the photo-absorber, IR700DX, in three EGFR expressing canine transitional cell carcinoma (TCC) cell lines as a prelude to possible canine clinical studies. Can225-IR700 conjugate showed specific binding and cell-specific killing after NIR-PIT on EGFR expressing cells in vitro. In the in vivo study, can225-IR700 conjugate demonstrated accumulation of the fluorescent conjugate with high tumor-to-background ratio. Tumor-bearing mice were separated into 4 groups: (1) no treatment; (2) 100 µg of can225-IR700 i.v. only; (3) NIR light exposure only; (4) 100 µg of can225-IR700 i.v., NIR light exposure. Tumor growth was significantly inhibited by NIR-PIT treatment compared with the other groups (p < 0.001), and significantly prolonged survival was achieved (p < 0.001 vs. other groups) in the treatment groups. In conclusion, NIR-PIT with can225-IR700 is a promising treatment for canine EGFR-expressing cancers, including invasive transitional cell carcinoma in pet dogs, that could provide a pathway to translation to humans.
Collapse
Affiliation(s)
- Tadanobu Nagaya
- Molecular Imaging Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Shuhei Okuyama
- Molecular Imaging Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Fusa Ogata
- Molecular Imaging Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Yasuhiro Maruoka
- Molecular Imaging Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Deborah W. Knapp
- Purdue University Center for Cancer Research, Purdue University, West Lafayette, Indiana, USA
| | - Sophia N. Karagiannis
- St. John’s Institute of Dermatology, School of Basic and Medical Biosciences, King’s College London, London, UK
- Breast Cancer Now Research Unit, School of Cancer and Pharmaceutical Sciences, King’s College London, Guy’s Cancer Centre, London, UK
| | - Judit Fazekas-Singer
- Comparative Medicine, The Interuniversity Messerli Research Institute, University of Veterinary Medicine Vienna, Medical University Vienna and University Vienna, Vienna, Austria
- Institute of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University Vienna, Vienna, Austria
| | - Peter L. Choyke
- Molecular Imaging Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Amy K. LeBlanc
- Comparative Oncology Program, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Erika Jensen-Jarolim
- Comparative Medicine, The Interuniversity Messerli Research Institute, University of Veterinary Medicine Vienna, Medical University Vienna and University Vienna, Vienna, Austria
- Institute of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University Vienna, Vienna, Austria
| | - Hisataka Kobayashi
- Molecular Imaging Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|