1
|
Kansy M, Wert K, Kolb K, Gallwas J, Gründker C. ARHGAP29 Is Involved in Increased Invasiveness of Tamoxifen-resistant Breast Cancer Cells and its Expression Levels Correlate With Clinical Tumor Parameters of Breast Cancer Patients. Cancer Genomics Proteomics 2024; 21:368-379. [PMID: 38944420 PMCID: PMC11215425 DOI: 10.21873/cgp.20454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/27/2024] [Accepted: 06/07/2024] [Indexed: 07/01/2024] Open
Abstract
BACKGROUND/AIM Aggressive breast cancer (BC) cells show high expression of Rho GTPase activating protein 29 (ARHGAP29), a negative regulator of RhoA. In breast cancer cells in which mesenchymal transformation was induced, ARHGAP29 was the only one of 32 GTPase-activating enzymes whose expression increased significantly. Therefore, we investigated whether there is a correlation between expression of ARHGAP29 and tumor progression in BC. Since tamoxifen-resistant BC cells exhibit increased mesenchymal properties and invasiveness, we additionally investigated the relationship between ARHGAP29 and increased invasion rate in tamoxifen resistance. The question arises as to whether ARHGAP29 is a suitable prognostic marker for the progression of BC. MATERIALS AND METHODS Tissue microarrays were used to investigate expression of ARHGAP29 in BC and adjacent normal breast tissues. Knockdown experiments using siRNA were performed to investigate the influence of ARHGAP29 and the possible downstream actors RhoC and pAKT1 on invasive growth of tamoxifen-resistant BC spheroids in vitro. RESULTS Expression of ARHGAP29 was frequently increased in BC tissues compared to adjacent normal breast tissues. In addition, there was evidence of a correlation between high ARHGAP29 expression and advanced clinical tumor stage. Tamoxifen-resistant BC cells show a significantly higher expression of ARHGAP29 compared to their parental wild-type cells. After knockdown of ARHGAP29 in tamoxifen-resistant BC cells, expression of RhoC was significantly reduced. Further, expression of pAKT1 decreased significantly. Invasive growth of three-dimensional tamoxifen-resistant BC spheroids was reduced after knockdown of ARHGAP29. This could be partially reversed by AKT1 activator SC79. CONCLUSION Expression of ARHGAP29 correlates with the clinical tumor parameters of BC patients. In addition, ARHGAP29 is involved in increased invasiveness of tamoxifen-resistant BC cells. ARHGAP29 alone or in combination with its downstream partners RhoC and pAKT1 could be suitable prognostic markers for BC progression.
Collapse
Affiliation(s)
- Maike Kansy
- Department of Gynecology and Obstetrics, University Medical Center Göttingen, Göttingen, Germany
| | - Katharina Wert
- Department of Gynecology and Obstetrics, University Medical Center Göttingen, Göttingen, Germany
| | - Katharina Kolb
- Department of Gynecology and Obstetrics, University Medical Center Göttingen, Göttingen, Germany
| | - Julia Gallwas
- Department of Gynecology and Obstetrics, University Medical Center Göttingen, Göttingen, Germany
| | - Carsten Gründker
- Department of Gynecology and Obstetrics, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
2
|
Mori M, Kubota Y, Durmaz A, Gurnari C, Goodings C, Adema V, Ponvilawan B, Bahaj WS, Kewan T, LaFramboise T, Meggendorfer M, Haferlach C, Barnard J, Wlodarski M, Visconte V, Haferlach T, Maciejewski JP. Genomics of deletion 7 and 7q in myeloid neoplasm: from pathogenic culprits to potential synthetic lethal therapeutic targets. Leukemia 2023; 37:2082-2093. [PMID: 37634012 PMCID: PMC10539177 DOI: 10.1038/s41375-023-02003-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/27/2023] [Accepted: 08/08/2023] [Indexed: 08/28/2023]
Abstract
Complete or partial deletions of chromosome 7 (-7/del7q) belong to the most frequent chromosomal abnormalities in myeloid neoplasm (MN) and are associated with a poor prognosis. The disease biology of -7/del7q and the genes responsible for the leukemogenic properties have not been completely elucidated. Chromosomal deletions may create clonal vulnerabilities due to haploinsufficient (HI) genes contained in the deleted regions. Therefore, HI genes are potential targets of synthetic lethal strategies. Through the most comprehensive multimodal analysis of more than 600 -7/del7q MN samples, we elucidated the disease biology and qualified a list of most consistently deleted and HI genes. Among them, 27 potentially synthetic lethal target genes were identified with the following properties: (i) unaffected genes by hemizygous/homozygous LOF mutations; (ii) prenatal lethality in knockout mice; and (iii) vulnerability of leukemia cells by CRISPR and shRNA knockout screens. In -7/del7q cells, we also identified 26 up or down-regulated genes mapping on other chromosomes as downstream pathways or compensation mechanisms. Our findings shed light on the pathogenesis of -7/del7q MNs, while 27 potential synthetic lethal target genes and 26 differential expressed genes allow for a therapeutic window of -7/del7q.
Collapse
Affiliation(s)
- Minako Mori
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
- Department of Hematology, National Hospital Organization Kyoto Medical Center, Kyoto, Japan
| | - Yasuo Kubota
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Arda Durmaz
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Carmelo Gurnari
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
- Department of Biomedicine and Prevention, Ph.D. in Immunology, Molecular Medicine and Applied Biotechnology, University of Rome Tor Vergata, Rome, Italy
| | - Charnise Goodings
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Vera Adema
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ben Ponvilawan
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Waled S Bahaj
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Tariq Kewan
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Thomas LaFramboise
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | | | | | - John Barnard
- Department of Quantitative Health Sciences, Cleveland Clinic, Lerner Research Institute, Cleveland, OH, USA
| | - Marcin Wlodarski
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Valeria Visconte
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | | | - Jaroslaw P Maciejewski
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic Foundation, Cleveland, OH, USA.
| |
Collapse
|
3
|
Santos JC, Profitós-Pelejà N, Sánchez-Vinces S, Roué G. RHOA Therapeutic Targeting in Hematological Cancers. Cells 2023; 12:cells12030433. [PMID: 36766776 PMCID: PMC9914237 DOI: 10.3390/cells12030433] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/19/2023] [Accepted: 01/26/2023] [Indexed: 02/03/2023] Open
Abstract
Primarily identified as an important regulator of cytoskeletal dynamics, the small GTPase Ras homolog gene family member A (RHOA) has been implicated in the transduction of signals regulating a broad range of cellular functions such as cell survival, migration, adhesion and proliferation. Deregulated activity of RHOA has been linked to the growth, progression and metastasis of various cancer types. Recent cancer genome-wide sequencing studies have unveiled both RHOA gain and loss-of-function mutations in primary leukemia/lymphoma, suggesting that this GTPase may exert tumor-promoting or tumor-suppressive functions depending on the cellular context. Based on these observations, RHOA signaling represents an attractive therapeutic target for the development of selective anticancer strategies. In this review, we will summarize the molecular mechanisms underlying RHOA GTPase functions in immune regulation and in the development of hematological neoplasms and will discuss the current strategies aimed at modulating RHOA functions in these diseases.
Collapse
Affiliation(s)
- Juliana Carvalho Santos
- Lymphoma Translational Group, Josep Carreras Leukaemia Research Institute (IJC), 08916 Badalona, Spain
| | - Núria Profitós-Pelejà
- Lymphoma Translational Group, Josep Carreras Leukaemia Research Institute (IJC), 08916 Badalona, Spain
| | - Salvador Sánchez-Vinces
- Laboratory of Immunopharmacology and Molecular Biology, Sao Francisco University Medical School, Braganca Paulista 01246-100, São Paulo, Brazil
| | - Gaël Roué
- Lymphoma Translational Group, Josep Carreras Leukaemia Research Institute (IJC), 08916 Badalona, Spain
- Correspondence: ; Tel.: +34-935572835
| |
Collapse
|
4
|
Schirmer B, Giehl K, Kubatzky KF. Report of the 24th Meeting on Signal Transduction 2021. Int J Mol Sci 2022; 23:ijms23042015. [PMID: 35216127 PMCID: PMC8877372 DOI: 10.3390/ijms23042015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 02/08/2022] [Indexed: 02/01/2023] Open
Abstract
The annual meeting “Signal Transduction—Receptors, Mediators and Genes” of the Signal Transduction Society (STS) is an interdisciplinary conference which is open to all scientists sharing a common interest in the elucidation of the signaling pathways mediating physiological or pathological processes in the health and disease of humans, animals, plants, fungi, prokaryotes, and protists. The 24th meeting on signal transduction was held from 15 to 17 November 2021 in Weimar, Germany. As usual, keynote presentations by invited scientists introduced the respective workshops, and were followed by speakers chosen from the submitted abstracts. A special workshop focused on “Target Identification and Interaction”. Ample time was reserved for the discussion of the presented data during the workshops. Unfortunately, due to restrictions owing to the SARS-CoV-2 pandemic, the poster sessions—and thus intensive scientific discussions at the posters—were not possible. In this report, we provide a concise summary of the various workshops and further aspects of the scientific program.
Collapse
Affiliation(s)
- Bastian Schirmer
- Institut für Pharmakologie, Medizinische Hochschule Hannover, Carl-Neuberg-Str. 1, 30625 Hannover, Germany;
| | - Klaudia Giehl
- Signaltransduktion Zellulärer Motilität, Innere Medizin V, Justus-Liebig-Universität Giessen, Aulweg 128, 35392 Giessen, Germany;
| | - Katharina F. Kubatzky
- Zentrum für Infektiologie, Medizinische Mikrobiologie und Hygiene, Universitätsklinikum Heidelberg, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany
- Correspondence: ; Tel.: +49-6221-56-38361
| |
Collapse
|
5
|
Charmpi K, Chokkalingam M, Johnen R, Beyer A. Optimizing network propagation for multi-omics data integration. PLoS Comput Biol 2021; 17:e1009161. [PMID: 34762640 PMCID: PMC8664198 DOI: 10.1371/journal.pcbi.1009161] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 12/10/2021] [Accepted: 10/12/2021] [Indexed: 01/11/2023] Open
Abstract
Network propagation refers to a class of algorithms that integrate information from input data across connected nodes in a given network. These algorithms have wide applications in systems biology, protein function prediction, inferring condition-specifically altered sub-networks, and prioritizing disease genes. Despite the popularity of network propagation, there is a lack of comparative analyses of different algorithms on real data and little guidance on how to select and parameterize the various algorithms. Here, we address this problem by analyzing different combinations of network normalization and propagation methods and by demonstrating schemes for the identification of optimal parameter settings on real proteome and transcriptome data. Our work highlights the risk of a ‘topology bias’ caused by the incorrect use of network normalization approaches. Capitalizing on the fact that network propagation is a regularization approach, we show that minimizing the bias-variance tradeoff can be utilized for selecting optimal parameters. The application to real multi-omics data demonstrated that optimal parameters could also be obtained by either maximizing the agreement between different omics layers (e.g. proteome and transcriptome) or by maximizing the consistency between biological replicates. Furthermore, we exemplified the utility and robustness of network propagation on multi-omics datasets for identifying ageing-associated genes in brain and liver tissues of rats and for elucidating molecular mechanisms underlying prostate cancer progression. Overall, this work compares different network propagation approaches and it presents strategies for how to use network propagation algorithms to optimally address a specific research question at hand. Modern technologies enable the simultaneous measurement of tens of thousands of molecules in biological samples. Algorithms called network propagation or network smoothing are frequently used to integrate such data with already known molecular interaction data, such as protein and gene interaction networks. These methods distribute the information on molecular perturbations within the network and help identifying network regions that are enriched for many perturbed (affected) molecules. Despite the popularity of these methods, there is a lack of guidance on how to optimally use them. Here, we highlight possible pitfalls when using incorrect network normalization methods. Further, we present different ways for optimizing the smoothing parameters used during network smoothing: the first approach maximizes the consistency between replicate measurements within a dataset; the second one maximizes the consistency between different types of ‘omics’ measurements, such as proteomics and transcriptomics. Using two multi-omics datasets, one from a cohort of prostate cancer patients, the other one from an ageing study on rat brain and liver tissues, we exemplify the effects of these strategies on real data.
Collapse
Affiliation(s)
- Konstantina Charmpi
- CECAD Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases, Cologne, Germany
| | - Manopriya Chokkalingam
- CECAD Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases, Cologne, Germany
| | - Ronja Johnen
- CECAD Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases, Cologne, Germany
| | - Andreas Beyer
- CECAD Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), Medical Faculty, University of Cologne, Cologne, Germany
- Institute for Genetics, Faculty of Mathematics and Natural Sciences, University of Cologne, Cologne, Germany
- * E-mail:
| |
Collapse
|
6
|
Saliani M, Mirzaiebadizi A, Mosaddeghzadeh N, Ahmadian MR. RHO GTPase-Related Long Noncoding RNAs in Human Cancers. Cancers (Basel) 2021; 13:5386. [PMID: 34771549 PMCID: PMC8582479 DOI: 10.3390/cancers13215386] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/21/2021] [Accepted: 10/22/2021] [Indexed: 12/27/2022] Open
Abstract
RHO GTPases are critical signal transducers that regulate cell adhesion, polarity, and migration through multiple signaling pathways. While all these cellular processes are crucial for the maintenance of normal cell homeostasis, disturbances in RHO GTPase-associated signaling pathways contribute to different human diseases, including many malignancies. Several members of the RHO GTPase family are frequently upregulated in human tumors. Abnormal gene regulation confirms the pivotal role of lncRNAs as critical gene regulators, and thus, they could potentially act as oncogenes or tumor suppressors. lncRNAs most likely act as sponges for miRNAs, which are known to be dysregulated in various cancers. In this regard, the significant role of miRNAs targeting RHO GTPases supports the view that the aberrant expression of lncRNAs may reciprocally change the intensity of RHO GTPase-associated signaling pathways. In this review article, we summarize recent advances in lncRNA research, with a specific focus on their sponge effects on RHO GTPase-targeting miRNAs to crucially mediate gene expression in different cancer cell types and tissues. We will focus in particular on five members of the RHO GTPase family, including RHOA, RHOB, RHOC, RAC1, and CDC42, to illustrate the role of lncRNAs in cancer progression. A deeper understanding of the widespread dysregulation of lncRNAs is of fundamental importance for confirmation of their contribution to RHO GTPase-dependent carcinogenesis.
Collapse
Affiliation(s)
- Mahsa Saliani
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine University, 40225 Düsseldorf, Germany
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran
| | - Amin Mirzaiebadizi
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine University, 40225 Düsseldorf, Germany
| | - Niloufar Mosaddeghzadeh
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine University, 40225 Düsseldorf, Germany
| | - Mohammad Reza Ahmadian
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine University, 40225 Düsseldorf, Germany
| |
Collapse
|
7
|
Schuhmacher J, Heidu S, Balchen T, Richardson JR, Schmeltz C, Sonne J, Schweiker J, Rammensee HG, Thor Straten P, Røder MA, Brasso K, Gouttefangeas C. Vaccination against RhoC induces long-lasting immune responses in patients with prostate cancer: results from a phase I/II clinical trial. J Immunother Cancer 2021; 8:jitc-2020-001157. [PMID: 33184050 PMCID: PMC7662471 DOI: 10.1136/jitc-2020-001157] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/04/2020] [Indexed: 12/13/2022] Open
Abstract
Background Peptide-based vaccination is a rational option for immunotherapy of prostate cancer. In this first-in-man phase I/II study, we assessed the safety, tolerability and immunological impact of a synthetic long peptide vaccine targeting Ras homolog gene family member C (RhoC) in patients with prostate cancer. RhoC is a small GTPase overexpressed in advanced solid cancers, metastases and cancer stem cells. Methods Twenty-two patients who had previously undergone radical prostatectomy received subcutaneous injections of 0.1 mg of a single RhoC-derived 20mer peptide emulsified in Montanide ISA-51 every 2 weeks for the first six times, then five times every 4 weeks for a total treatment time of 30 weeks. The drug safety and vaccine-specific immune responses were assessed during treatment and thereafter within a 13-month follow-up period. Serum level of prostate-specific antigen was measured up to 26 months postvaccination. Results Most patients (18 of 21 evaluable) developed a strong CD4 T cell response against the vaccine, which lasted at least 10 months following the last vaccination. Three promiscuouslypresented HLA-class II epitopes were identified. Vaccine-specific CD4 T cells were polyfunctional and effector memory T cells that stably expressed PD-1 (CD279) and OX-40 (CD134), but not LAG-3 (CD223). One CD8 T cell response was detected in addition. The vaccine was well tolerated and no treatment-related adverse events of grade ≥3 were observed. Conclusion Targeting of RhoC induced a potent and long-lasting T cell immunity in the majority of the patients. The study demonstrates an excellent safety and tolerability profile. Vaccination against RhoC could potentially delay or prevent tumor recurrence and metastasis formation. Trial registration number NCT03199872.
Collapse
Affiliation(s)
- Juliane Schuhmacher
- Department of Immunology, Institute for Cell Biology, University of Tübingen, Tubingen, Germany.,Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany
| | - Sonja Heidu
- Department of Immunology, Institute for Cell Biology, University of Tübingen, Tubingen, Germany.,Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany
| | | | - Jennifer Rebecca Richardson
- Department of Immunology, Institute for Cell Biology, University of Tübingen, Tubingen, Germany.,Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany
| | | | - Jesper Sonne
- Zelo Phase I Unit, DanTrials ApS, Copenhagen, Denmark
| | - Jonas Schweiker
- Department of Oncology, Haematology, Immunology, Rheumatology and Pulmonology, University Hospital of Tübingen, Tübingen, Germany
| | - Hans-Georg Rammensee
- Department of Immunology, Institute for Cell Biology, University of Tübingen, Tubingen, Germany.,Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany.,German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), partner site Tübingen, Tübingen, Germany
| | - Per Thor Straten
- Department of Oncology, Center for Cancer Immune Therapy (CCIT), University Hospital Herlev & Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Martin Andreas Røder
- Department of Urology, Copenhagen Prostate Cancer Center, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Klaus Brasso
- Department of Urology, Copenhagen Prostate Cancer Center, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Cécile Gouttefangeas
- Department of Immunology, Institute for Cell Biology, University of Tübingen, Tubingen, Germany .,Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany.,German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), partner site Tübingen, Tübingen, Germany
| |
Collapse
|
8
|
Zhang B, Yao J, Lian X, Liu B, Wang Y, Wang H, Wang J, Zhang M, Zhao Y, Zhu Y, Liu R, Gao Y. Role of RHOC in evaluating an adverse prognosis in patients with glioma and its potential prognostic value. Mol Clin Oncol 2021; 15:171. [PMID: 34276990 PMCID: PMC8278397 DOI: 10.3892/mco.2021.2333] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 06/07/2021] [Indexed: 12/09/2022] Open
Abstract
In recent years, major discoveries have indicated that Ras homology family member C (RHOC) is involved in the occurrence and pathological progression of a number of malignant tumours; nevertheless, the role served by RHOC in glioma remains unclear. The present study aimed to gain further insight into the biological function and expression of RHOC in human glioma based on the Chinese Glioma Genome Atlas (CGGA). The current study analysed ~1,000 glioma samples from the CGGA. First, RHOC expression was analysed according to the clinical features associated with the prognosis of glioma, such as clinical stage, histological type and age. Second, the Kaplan-Meier method was used, revealing that the survival rate of patients with glioma with high RHOC expression was significantly lower than that of patients with low RHOC expression. Receiver operating characteristic curve analysis indicated that RHOC had moderate diagnostic value for patients with glioma. Gene set enrichment analysis indirectly indicated that RHOC mainly participated in the pathological mechanism of glioma through p53, extracellular matrix receptor interaction and focal adhesion. Finally, the aforementioned results were further verified using The Cancer Genome Atlas data and reverse transcription-quantitative PCR technology. To the best of our knowledge, the present study was the first comprehensive in-depth analysis of RHOC, revealing the potential value of RHOC as a novel oncogene in glioma. The current study provided a novel potential biomarker for the diagnosis and prognosis of glioma, and re-examined the pathological mechanism of glioma from a new perspective.
Collapse
Affiliation(s)
- Bo Zhang
- Henan University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, P.R. China
| | - Jiawei Yao
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Xiaoyu Lian
- Department of Surgery of Spine and Spinal Cord, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, P.R. China
| | - Binfeng Liu
- Department of Surgery of Spine and Spinal Cord, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, P.R. China
| | - Yanbiao Wang
- Department of Surgery of Spine and Spinal Cord, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, P.R. China
| | - Hongbo Wang
- Henan University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, P.R. China
| | - Jialin Wang
- Department of Surgery of Spine and Spinal Cord, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, P.R. China
| | - Mengjun Zhang
- Department of Gynecology Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150086, P.R. China
| | - Yaoye Zhao
- Department of Surgery of Spine and Spinal Cord, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, P.R. China
| | - Yongjie Zhu
- Henan University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, P.R. China
| | - Runze Liu
- Henan University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, P.R. China
| | - Yanzheng Gao
- Department of Surgery of Spine and Spinal Cord, Henan Provincial People's Hospital, Henan International Joint Laboratory of Intelligentized Orthopedics Innovation and Transformation, Henan Key Laboratory for Intelligent Precision Orthopedics, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, Henan 450003, P.R. China
| |
Collapse
|
9
|
Bueno De Paiva L, Aline Bernusso V, Machado-Neto JA, Traina F, Ridley AJ, Olalla-Saad ST, Lazarini M. Effects of RhoA and RhoC upon the sensitivity of prostate cancer cells to glutamine deprivation. Small GTPases 2021; 12:20-26. [PMID: 30449238 PMCID: PMC7781845 DOI: 10.1080/21541248.2018.1546098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 10/24/2018] [Accepted: 10/29/2018] [Indexed: 10/27/2022] Open
Abstract
RhoA and RhoC contribute to the regulation of glutamine metabolism, which is a crucial determinant of cell growth in some types of cancer. Here we investigated the participation of RhoA and RhoC in the response of prostate cancer cells to glutamine deprivation. We found that RhoA and RhoC activities were up- or downregulated by glutamine reduction in PC3 and LNCaP cell lines, which was concomitant to a reduction in cell number and proliferation. Stable overexpression of wild type RhoA or RhoC did not alter the sensitivity to glutamine deprivation. However, PC3 cells expressing dominant negative RhoAN19 or RhoCN19 mutants were more resistant to glutamine deprivation. Our results indicate that RhoA and RhoC activities could affect cancer treatments targeting the glutamine pathway.
Collapse
Affiliation(s)
- Luciana Bueno De Paiva
- Hematology and Bloood Transfusion Center, University of Campinas, Campinas, São Paulo, Brazil
| | - Vanessa Aline Bernusso
- Hematology and Bloood Transfusion Center, University of Campinas, Campinas, São Paulo, Brazil
| | - João Agostinho Machado-Neto
- Department of Internal Medicine, University of São Paulo at Ribeirão Preto Medical School, Ribeirão Preto, São Paulo, Brazil
- Department of Pharmacology, Institute of Biomedical Sciences of the University of São Paulo, São Paulo, Brazil
| | - Fabiola Traina
- Department of Internal Medicine, University of São Paulo at Ribeirão Preto Medical School, Ribeirão Preto, São Paulo, Brazil
| | - Anne J Ridley
- Randall Centre of Cell & Molecular Biophysics, King´s College London, London, UK
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
| | | | - Mariana Lazarini
- Hematology and Bloood Transfusion Center, University of Campinas, Campinas, São Paulo, Brazil
- Department of Pharmaceutical Sciences, Federal University of São Paulo, Diadema, São Paulo, Brazil
| |
Collapse
|
10
|
Lehman HL, Kidacki M, Stairs DB. Twist2 is NFkB-responsive when p120-catenin is inactivated and EGFR is overexpressed in esophageal keratinocytes. Sci Rep 2020; 10:18829. [PMID: 33139779 PMCID: PMC7608670 DOI: 10.1038/s41598-020-75866-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 10/21/2020] [Indexed: 12/28/2022] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is among the most aggressive and fatal cancer types. ESCC classically progresses rapidly and frequently causes mortality in four out of five patients within two years of diagnosis. Yet, little is known about the mechanisms that make ESCC so aggressive. In a previous study we demonstrated that p120-catenin (p120ctn) and EGFR, two genes associated with poor prognosis in ESCC, work together to cause invasion. Specifically, inactivation of p120ctn combined with overexpression of EGFR induces a signaling cascade that leads to hyperactivation of NFkB and a resultant aggressive cell type. The purpose of this present study was to identify targets that are responsive to NFkB when p120ctn and EGFR are modified. Using human esophageal keratinocytes, we have identified Twist2 as an NFkB-responsive gene. Interestingly, we found that when NFkB is hyperactivated in cells with EGFR overexpression and p120ctn inactivation, Twist2 is significantly upregulated. Inhibition of NFkB activity results in nearly complete loss of Twist2 expression, suggesting that this potential EMT-inducing gene, is a responsive target of NFkB. There exists a paucity of research on Twist2 in any cancer type; as such, these findings are important in ESCC as well as in other cancer types.
Collapse
Affiliation(s)
- Heather L Lehman
- Department of Biology, Millersville University, Millersville, PA, 17551, USA
| | - Michal Kidacki
- Department of Internal Medicine, Mercy Catholic Medical Center, Darby, PA, 19023, USA
| | - Douglas B Stairs
- Department of Pathology, The Pennsylvania State University College of Medicine, 500 University Dr., Mail Code H083, Hershey, PA, 17033, USA.
| |
Collapse
|
11
|
Xu M, Huang S, Dong X, Chen Y, Li M, Shi W, Wang G, Huang C, Wang Q, Liu Y, Sun P, Yang S, Xiang R, Chang A. A novel isoform of ATOH8 promotes the metastasis of breast cancer by regulating RhoC. J Mol Cell Biol 2020; 13:59-71. [PMID: 33049034 PMCID: PMC8035989 DOI: 10.1093/jmcb/mjaa050] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 07/20/2020] [Accepted: 08/02/2020] [Indexed: 12/24/2022] Open
Abstract
Metastases are the main cause of cancer-related mortality in breast cancer. Although significant progress has been made in the field of tumor metastasis, the exact molecular mechanisms involved in tumor metastasis are still unclear. Here, we report that ATOH8-V1, a novel isoform of ATOH8, is highly expressed in breast cancer and is a negative prognostic indicator of survival for patients. Forced expression of ATOH8-V1 dramatically enhances, while silencing of ATOH8-V1 decreases the metastasis of breast cancer cell lines. Moreover, ATOH8-V1 directly binds to the RhoC promoter and stimulates the expression of RhoC, which in turn enhances the metastasis of breast cancer. Altogether, our data demonstrate that ATOH8-V1 is a novel pro-metastatic factor that enhances cancer metastasis, suggesting that ATOH8-V1 is a potential therapeutic target for treatment of metastatic cancers.
Collapse
Affiliation(s)
- Mengyao Xu
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Shan Huang
- School of Medicine, Nankai University, Tianjin 300071, China.,Department of Cancer Biology and Comprehensive Cancer Center, Wake Forest University Medical Center, Winston-Salem, NC 27157, USA
| | - Xiaoli Dong
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Yanan Chen
- School of Medicine, Nankai University, Tianjin 300071, China.,International Collaborative Innovation Center of Medicine, Nankai University, Tianjin 300071, China
| | - Miao Li
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Wen Shi
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Guanwen Wang
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Chongbiao Huang
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| | - Qiong Wang
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Yanhua Liu
- School of Medicine, Nankai University, Tianjin 300071, China.,International Collaborative Innovation Center of Medicine, Nankai University, Tianjin 300071, China
| | - Peiqing Sun
- Department of Cancer Biology and Comprehensive Cancer Center, Wake Forest University Medical Center, Winston-Salem, NC 27157, USA
| | - Shuang Yang
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Rong Xiang
- School of Medicine, Nankai University, Tianjin 300071, China.,International Collaborative Innovation Center of Medicine, Nankai University, Tianjin 300071, China
| | - Antao Chang
- School of Medicine, Nankai University, Tianjin 300071, China.,Department of Cancer Biology and Comprehensive Cancer Center, Wake Forest University Medical Center, Winston-Salem, NC 27157, USA.,International Collaborative Innovation Center of Medicine, Nankai University, Tianjin 300071, China
| |
Collapse
|
12
|
AL-Eitan LN, ababa’h DM, Aman HA. The Associations of Common Genetic Susceptibility Variants with Breast Cancer in Jordanian Arabs: A Case-Control Study. Asian Pac J Cancer Prev 2020; 21:3045-3054. [PMID: 33112566 PMCID: PMC7798142 DOI: 10.31557/apjcp.2020.21.10.3045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 10/12/2020] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVE In Jordan, breast cancer (BC) affects a substantial proportion of Jordanian women, highlighting the need for studies to be carried out regarding the genetic component of the disease. The aim of the present study was to investigate the interaction between BC risk and prognosis and polymorphisms in genes (ATM, CASP8, FGFR2, FN1, IGF1, LSP1, MAP3K, MMP7, and RHOC) that were chosen for this study previously reported as having a role in the disease. MATERIALS AND METHODS Blood samples were collected from 242 BC patients and 231 disease-free volunteers recruited from the Jordanian population. DNA was extracted from blood and each sample was sent to the Australian Genome Research Facility for genotyping. RESULTS The rs1219648 SNP of the FGFR2 gene was the only investigated variant to show any direct association with BC in Jordanian women (p-value = 0.04). However, the CASP8rs6760993 SNP was found to be significantly associated with BC (p-value = 0.04) when using the dominant model. Other gene polymorphisms showed varying levels of association between some investigated SNPs and different BC risk and prognostic factors. CONCLUSION Despite reports to the contrary in other populations, most of the investigated genes and their respective SNPs did not show any significant association with BC in Jordanian women. Our results underline the need for independent BC research to be carried out in the Jordanian population to decipher the genetic basis of the disease. .
Collapse
Affiliation(s)
- Laith N AL-Eitan
- Department of Applied Biological Sciences, Jordan University of Science and Technology, Irbid 22110, Jordan.
| | - Doaa M ababa’h
- Department of Biotechnology and Genetic Engineering, Jordan University of Science and Technology, Irbid 22110, Jordan.
| | - Hatem A Aman
- Department of Biotechnology and Genetic Engineering, Jordan University of Science and Technology, Irbid 22110, Jordan.
| |
Collapse
|
13
|
Richter L, Oberländer V, Schmidt G. RhoA/C inhibits proliferation by inducing the synthesis of GPRC5A. Sci Rep 2020; 10:12532. [PMID: 32719397 PMCID: PMC7385118 DOI: 10.1038/s41598-020-69481-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 07/09/2020] [Indexed: 01/05/2023] Open
Abstract
Rho GTPases are important regulators of many cellular functions like cell migration, adhesion and polarity. The molecular switches are often dysregulated in cancer. We detected Rho-dependent upregulation of the orphan seven-transmembrane receptor G-protein-coupled receptor family C group 5 member A (GPRC5A). GPRC5A is highly expressed in breast cancer whereas in lung cancer, it is often downregulated. Here, we analyzed the function of GPRC5A in breast epithelial and breast cancer cells. Activation or expression of RhoA/C led to GPRC5A-dependent inhibition of proliferation and reduction of the colony forming capacity of benign breast epithelial cells. This effect is based on an inhibition of EGFR signalling. Knockout of retinoic acid induced 3 (RAI3, the gene for GPRC5A) in breast cancer cells increased cell division, whereas Rho activation had no effect on proliferation. Knockout of RAI3 in benign breast epithelial cells led to decrease of EGFR expression and diminished proliferation.
Collapse
Affiliation(s)
- Lukas Richter
- Institute for Experimental and Clinical Pharmacology and Toxicology, Albert-Ludwigs-University of Freiburg, Albert-Str. 25, 79104, Freiburg, Germany
| | - Viktoria Oberländer
- Institute for Experimental and Clinical Pharmacology and Toxicology, Albert-Ludwigs-University of Freiburg, Albert-Str. 25, 79104, Freiburg, Germany
| | - Gudula Schmidt
- Institute for Experimental and Clinical Pharmacology and Toxicology, Albert-Ludwigs-University of Freiburg, Albert-Str. 25, 79104, Freiburg, Germany.
| |
Collapse
|
14
|
Guo Y, Wang J, Zhou K, Lv J, Wang L, Gao S, Keller ET, Zhang ZS, Wang Q, Yao Z. Cytotoxic necrotizing factor 1 promotes bladder cancer angiogenesis through activating RhoC. FASEB J 2020; 34:7927-7940. [PMID: 32314833 DOI: 10.1096/fj.201903266rr] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 03/24/2020] [Accepted: 03/27/2020] [Indexed: 12/23/2022]
Abstract
Uropathogenic Escherichia coli (UPEC), a leading cause of urinary tract infections, is associated with prostate and bladder cancers. Cytotoxic necrotizing factor 1 (CNF1) is a key UPEC toxin; however, its role in bladder cancer is unknown. In the present study, we found CNF1 induced bladder cancer cells to secrete vascular endothelial growth factor (VEGF) through activating Ras homolog family member C (RhoC), leading to subsequent angiogenesis in the bladder cancer microenvironment. We then investigated that CNF1-mediated RhoC activation modulated the stabilization of hypoxia-inducible factor 1α (HIF1α) to upregulate the VEGF. We demonstrated in vitro that active RhoC increased heat shock factor 1 (HSF1) phosphorylation, which induced the heat shock protein 90α (HSP90α) expression, leading to stabilization of HIF1α. Active RhoC elevated HSP90α, HIF1α, VEGF expression, and angiogenesis in the human bladder cancer xenografts. In addition, HSP90α, HIF1α, and VEGF expression were also found positively correlated with the human bladder cancer development. These results provide a potential mechanism through which UPEC contributes to bladder cancer progression, and may provide potential therapeutic targets for bladder cancer.
Collapse
Affiliation(s)
- Yaxiu Guo
- Department of Immunology, Key Laboratory of Immune Microenvironment and Disease of the Educational Ministry of China, Tianjin Key Laboratory of Cellular and Molecular Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Jingyu Wang
- Department of Immunology, Key Laboratory of Immune Microenvironment and Disease of the Educational Ministry of China, Tianjin Key Laboratory of Cellular and Molecular Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Kaichen Zhou
- Department of Immunology, Key Laboratory of Immune Microenvironment and Disease of the Educational Ministry of China, Tianjin Key Laboratory of Cellular and Molecular Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Junqiang Lv
- Department of Immunology, Key Laboratory of Immune Microenvironment and Disease of the Educational Ministry of China, Tianjin Key Laboratory of Cellular and Molecular Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Lei Wang
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Collaborative Innovation Center for Biotherapy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
| | - Shan Gao
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Collaborative Innovation Center for Biotherapy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
| | - Evan T Keller
- Department of Urology, University of Michigan, Ann Arbor, MI, USA
| | - Zhi-Song Zhang
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Collaborative Innovation Center for Biotherapy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
| | - Quan Wang
- Department of Immunology, Key Laboratory of Immune Microenvironment and Disease of the Educational Ministry of China, Tianjin Key Laboratory of Cellular and Molecular Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Zhi Yao
- Department of Immunology, Key Laboratory of Immune Microenvironment and Disease of the Educational Ministry of China, Tianjin Key Laboratory of Cellular and Molecular Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.,2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Medical University, Tianjin, China
| |
Collapse
|
15
|
Xie SL, Wang M, Du XH, Zhao ZW, Lv GY. miR-455 Inhibits HepG2 Cell Proliferation and Promotes Apoptosis by Targeting RhoC. Mol Biol 2020. [DOI: 10.1134/s002689332001015x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
16
|
Pranatharthi A, Thomas P, Udayashankar AH, Bhavani C, Suresh SB, Krishna S, Thatte J, Srikantia N, Ross CR, Srivastava S. RhoC regulates radioresistance via crosstalk of ROCK2 with the DNA repair machinery in cervical cancer. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:392. [PMID: 31488179 PMCID: PMC6729006 DOI: 10.1186/s13046-019-1385-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 08/15/2019] [Indexed: 01/06/2023]
Abstract
Background Radioresistance remains a challenge to the successful treatment of various tumors. Intrinsic factors like alterations in signaling pathways regulate response to radiation. RhoC, which has been shown to modulate several tumor phenotypes has been investigated in this report for its role in radioresistance. In vitro and clinical sample-based studies have been performed to understand its contribution to radiation response in cervical cancer and this is the first report to establish the role of RhoC and its effector ROCK2 in cervical cancer radiation response. Methods Biochemical, transcriptomic and immunological approaches including flow cytometry and immunofluorescence were used to understand the role of RhoC and ROCK2. RhoC variants, siRNA and chemical inhibitors were used to alter the function of RhoC and ROCK2. Transcriptomic profiling was performed to understand the gene expression pattern of the cells. Live sorting using an intracellular antigen has been developed to isolate the cells for transcriptomic studies. Results Enhanced expression of RhoC conferred radioprotection on the tumor cells while inhibition of RhoC resulted in sensitization of cells to radiation. The RhoC overexpressing cells had a better DNA repair machinery as observed using transcriptomic analysis. Similarly, overexpression of ROCK2, protected tumor cells against radiation while its inhibition increased radiosensitivity in vitro. Further investigations revealed that ROCK2 inhibition abolished the radioresistance phenotype, conferred by RhoC on SiHa cells, confirming that it is a downstream effector of RhoC in this context. Additionally, transcriptional analysis of the live sorted ROCK2 high and ROCK2 low expressing SiHa cells revealed an upregulation of the DNA repair pathway proteins. Consequently, inhibition of ROCK2 resulted in reduced expression of pH2Ax and MRN complex proteins, critical to repair of double strand breaks. Clinical sample-based studies also demonstrated that ROCK2 inhibition sensitizes tumor cells to irradiation. Conclusions Our data primarily indicates that RhoC and ROCK2 signaling is important for the radioresistance phenotype in cervical cancer tumor cells and is regulated via association of ROCK2 with the proteins of DNA repair pathway involving pH2Ax, MRE11 and RAD50 proteins, partly offering insights into the mechanism of radioresistance in tumor cells. These findings highlight RhoC-ROCK2 signaling involvement in DNA repair and urge the need for development of these molecules as targets to alleviate the non-responsiveness of cervical cancer tumor cells to irradiation treatment. Electronic supplementary material The online version of this article (10.1186/s13046-019-1385-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Annapurna Pranatharthi
- National Centre for Biological Sciences (NCBS), Bangalore, 560065, India.,Rajiv Gandhi University of Health Sciences, Bangalore, 560041, India.,Translational and Molecular Biology Laboratory (TMBL), Department of Medicine, St. John's Medical College Hospital (SJMCH), Bangalore, 560034, India
| | - Pavana Thomas
- School of Integrative Health Sciences, The University of Trans-Disciplinary Health Sciences and Technology (TDU), Bangalore, 560064, India.,Translational and Molecular Biology Laboratory (TMBL), St. John's Research Institute (SJRI), Bangalore, 560034, India
| | - Avinash H Udayashankar
- Department of Radiation Oncology, St John's Medical College Hospital (SJMCH), Bangalore, 560034, India
| | - Chandra Bhavani
- Translational and Molecular Biology Laboratory (TMBL), St. John's Research Institute (SJRI), Bangalore, 560034, India
| | - Srinag Bangalore Suresh
- Rajiv Gandhi University of Health Sciences, Bangalore, 560041, India.,Translational and Molecular Biology Laboratory (TMBL), Department of Medicine, St. John's Medical College Hospital (SJMCH), Bangalore, 560034, India
| | - Sudhir Krishna
- National Centre for Biological Sciences (NCBS), Bangalore, 560065, India
| | - Jayashree Thatte
- National Centre for Biological Sciences (NCBS), Bangalore, 560065, India
| | - Nirmala Srikantia
- Department of Radiation Oncology, St John's Medical College Hospital (SJMCH), Bangalore, 560034, India
| | - Cecil R Ross
- Rajiv Gandhi University of Health Sciences, Bangalore, 560041, India.,Translational and Molecular Biology Laboratory (TMBL), Department of Medicine, St. John's Medical College Hospital (SJMCH), Bangalore, 560034, India
| | - Sweta Srivastava
- Translational and Molecular Biology Laboratory (TMBL), Department of Transfusion Medicine and Immunohematology, St. John's Medical College Hospital (SJMCH), Bangalore, 560034, India. .,School of Integrative Health Sciences, The University of Trans-Disciplinary Health Sciences and Technology (TDU), Bangalore, 560064, India.
| |
Collapse
|
17
|
Thomas P, Pranatharthi A, Ross C, Srivastava S. RhoC: a fascinating journey from a cytoskeletal organizer to a Cancer stem cell therapeutic target. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:328. [PMID: 31340863 PMCID: PMC6651989 DOI: 10.1186/s13046-019-1327-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 07/15/2019] [Indexed: 01/05/2023]
Abstract
Tumor heterogeneity results in differential response to therapy due to the existence of plastic tumor cells, called cancer stem cells (CSCs), which exhibit the property of resistance to therapy, invasion and metastasis. These cells have a distinct, signaling network active at every stage of progression. It is difficult to envisage that the CSCs will have a unique set of signaling pathways regulating every stage of disease progression. Rather, it would be easier to believe that a single pivotal pathway having significant contribution at every stage, which can further turn on a battery of signaling mechanisms specific to that stage, would be instrumental in regulating the signaling network, enabling easy transition from one state to another. In this context, we discuss the role of RhoC which has contributed to several phenotypes during tumor progression. RhoC (Ras homolog gene family member C) has been widely reported to regulate actin organization. It has been shown to impact the motility of cancer cells, resultantly affecting invasion and metastasis, and has contributed to carcinoma progression of the breast, pancreas, lung, ovaries and cervix, among several others. The most interesting finding has been its indispensable role in metastasis. Also, it has the ability to modulate various other phenotypes like angiogenesis, motility, invasion, metastasis, and anoikis resistance. These observations suggest that RhoC imparts the plasticity required by tumor cells to exhibit such diverse functions based on microenvironmental cues. This was further confirmed by recent reports which show that it regulates cancer stem cells in breast, ovary and head and neck cancers. Studies also suggest that the inhibition of RhoC results in abolition of advanced tumor phenotypes. Our review throws light on how RhoC, which is capable of modulating various phenotypes may be the apt core signaling candidate regulating disease progression. Additionally, mice studies show that RhoC is not essential for embryogenesis, giving scope for its development as a possible therapeutic target. This review thus stresses on the need to understand the protein and its functioning in greater detail to enable its development as a stem cell marker and a possible therapeutic target.
Collapse
Affiliation(s)
- Pavana Thomas
- Translational and Molecular Biology Laboratory (TMBL), St. John's Research Institute (SJRI), Bangalore, 560034, India.,School of Integrative Health Sciences, The University of Trans-Disciplinary Health Sciences and Technology (TDU), Bangalore, 560064, India
| | - Annapurna Pranatharthi
- Rajiv Gandhi University of Health Sciences (RGUHS), Bangalore, 560041, India.,National Centre for Biological Sciences (NCBS), Bangalore, 560065, India.,Translational and Molecular Biology Laboratory (TMBL), Department of Medicine, St. John's Medical College Hospital (SJMCH), Bangalore, 560034, India
| | - Cecil Ross
- Translational and Molecular Biology Laboratory (TMBL), Department of Medicine, St. John's Medical College Hospital (SJMCH), Bangalore, 560034, India
| | - Sweta Srivastava
- Translational and Molecular Biology Laboratory (TMBL), Department of Transfusion Medicine and Immunohematology, St. John's Medical College Hospital (SJMCH), Bangalore, 560034, India.
| |
Collapse
|
18
|
Zhao Z, Liu K, Tian X, Sun M, Wei N, Zhu X, Yang H, Wang T, Jiang G, Chen K. Effects of RhoC downregulation on the angiogenesis characteristics of myeloma vascular endothelial cells. Cancer Med 2019; 8:3502-3510. [PMID: 31062507 PMCID: PMC6601571 DOI: 10.1002/cam4.2208] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 04/03/2019] [Accepted: 04/13/2019] [Indexed: 12/17/2022] Open
Abstract
Background Tumor angiogenesis plays an important role in disease progression, and RhoC has been previously found to be expressed in vascular endothelial cells (VECs); however, its role in tumor angiogenesis requires clarification. This study aimed to explore the effects of RhoC downregulation on the cytoskeleton, pseudopod formation, migration ability, and canalization capacity of myeloma vascular endothelial cells (MVECs) in vitro. Materials and methods The expression of RhoC in MVECs and human umbilical vein endothelial cells (HUVECs) was knocked down by shRNA, and the expression levels of RhoC mRNA were detected by quantitative reverse transcription polymerase chain reaction (qRT‐PCR). The cytoskeletal changes and pseudopods were observed by laser scanning confocal and scanning electron microscopy; VECs were incubated in two‐dimensional Matrigel and three‐dimensional microcarriers to observe tube‐like structures and budding status, respectively. The protein expression of RhoC, phosphorylation of mitogen‐activated protein kinase (p‐MAPK), and Rho‐associated coiled‐coil kinase (ROCK) was determined by Western blotting. The expression of RhoC in VECs was downregulated by RhoC shRNA, thereby decreasing the number of pseudopods, two‐dimensional tube‐like structures, and buds. Results When RhoC was downregulated, the expression levels of ROCK and phosphorylation of MAPK were both decreased (P < 0.05). Moreover, the expression levels of RhoC and phosphorylation of MAPK and three‐dimensional budding numbers were higher in MVECs than in HUVECs (P < 0.05). The downregulation of RhoC expression in MVECs and HUVECs inhibited pseudopod formation, migration, canalization ability, and angiogenesis (P < 0.05). Conclusion Our data indicated that MVECs and HUVECs were well suited for angiogenesis research, but the former cell type was shown to be more advantageous in terms of budding numbers. RhoC plays a pivotal role in MVECs angiogenesis, and the downregulation of RhoC expression could inhibit angiogenesis via the RhoC/MAPK and RhoC/ROCK signaling pathways.
Collapse
Affiliation(s)
- Zhihua Zhao
- Henan Province Key Laboratory of Tumor Pathology, Department of Pathology of The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Kai Liu
- Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Xiangyu Tian
- Department of Pathology of The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Miaomiao Sun
- The Affiliated Tumor Hospital of Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Na Wei
- Henan Province Key Laboratory of Tumor Pathology, Department of Pathology of The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Xiaoyan Zhu
- Department of Histology and Embryology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Hongmei Yang
- Henan Province Medical College, Zhengzhou, Henan, People's Republic of China
| | - Tong Wang
- Department of Pathology of The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Guozhong Jiang
- Henan Province Key Laboratory of Tumor Pathology, Department of Pathology of The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China.,Department of Pathology of The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Kuisheng Chen
- Henan Province Key Laboratory of Tumor Pathology, Department of Pathology of The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China.,Department of Pathology of The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| |
Collapse
|
19
|
Tsubaki M, Takeda T, Obata N, Kawashima K, Tabata M, Imano M, Satou T, Nishida S. Combination therapy with dacarbazine and statins improved the survival rate in mice with metastatic melanoma. J Cell Physiol 2019; 234:17975-17989. [PMID: 30834527 DOI: 10.1002/jcp.28430] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 02/04/2019] [Accepted: 02/14/2019] [Indexed: 12/13/2022]
Abstract
Malignant melanoma is a highly aggressive skin cancer, and the overall median survival in patients with metastatic melanoma is only 6-9 months. Although molecular targeted therapies have recently been developed and have improved the overall survival, melanoma patients may show no response and acquisition of resistance to these drugs. Thus, other molecular approaches are essential for the treatment of metastatic melanoma. In the present study, we investigated the effect of cotreatment with dacarbazine and statins on tumor growth, metastasis, and survival rate in mice with metastatic melanomas. We found that cotreatment with dacarbazine and statins significantly inhibited tumor growth and metastasis via suppression of the RhoA/RhoC/LIM domain kinase/serum response factor/c-Fos pathway and enhanced p53, p21, p27, cleaved caspase-3, and cleaved poly(ADP-ribose) polymerase 1 expression in vivo. Moreover, the cotreatment significantly improved the survival rate in metastasis-bearing mice. Importantly, treatment with dacarbazine plus 100 mg/kg simvastatin or fluvastatin prevented metastasis-associated death in 4/20 mice that received dacarbazine + simvastatin and in 8/20 mice that received dacarbazine + fluvastatin (survival rates, 20% and 40%, respectively). These results suggested that cotreatment with dacarbazine and statins may thus serve as a new therapeutic approach to control tumor growth and metastasis in melanoma patients.
Collapse
Affiliation(s)
- Masanobu Tsubaki
- Division of Pharmacotherapy, Kindai University Faculty of Pharmacy, Kowakae, Higoshi-Osaka, Osaka, Japan
| | - Tomoya Takeda
- Division of Pharmacotherapy, Kindai University Faculty of Pharmacy, Kowakae, Higoshi-Osaka, Osaka, Japan
| | - Naoya Obata
- Division of Pharmacotherapy, Kindai University Faculty of Pharmacy, Kowakae, Higoshi-Osaka, Osaka, Japan
| | - Keishi Kawashima
- Division of Pharmacotherapy, Kindai University Faculty of Pharmacy, Kowakae, Higoshi-Osaka, Osaka, Japan
| | - Mitsuki Tabata
- Division of Pharmacotherapy, Kindai University Faculty of Pharmacy, Kowakae, Higoshi-Osaka, Osaka, Japan
| | - Motohiro Imano
- Department of Surgery, Kindai University Faculty of Medicine, Osakasayama, Osaka, Japan
| | - Takao Satou
- Department of Pathology, Kindai University Faculty of Medicine, Osakasayama, Osaka, Japan
| | - Shozo Nishida
- Division of Pharmacotherapy, Kindai University Faculty of Pharmacy, Kowakae, Higoshi-Osaka, Osaka, Japan
| |
Collapse
|
20
|
Hashemi Goradel N, Najafi M, Salehi E, Farhood B, Mortezaee K. Cyclooxygenase-2 in cancer: A review. J Cell Physiol 2018; 234:5683-5699. [PMID: 30341914 DOI: 10.1002/jcp.27411] [Citation(s) in RCA: 474] [Impact Index Per Article: 67.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Accepted: 08/22/2018] [Indexed: 12/17/2022]
Abstract
Cyclooxygenase-2 (COX-2) is frequently expressed in many types of cancers exerting a pleiotropic and multifaceted role in genesis or promotion of carcinogenesis and cancer cell resistance to chemo- and radiotherapy. COX-2 is released by cancer-associated fibroblasts (CAFs), macrophage type 2 (M2) cells, and cancer cells to the tumor microenvironment (TME). COX-2 induces cancer stem cell (CSC)-like activity, and promotes apoptotic resistance, proliferation, angiogenesis, inflammation, invasion, and metastasis of cancer cells. COX-2 mediated hypoxia within the TME along with its positive interactions with YAP1 and antiapoptotic mediators are all in favor of cancer cell resistance to chemotherapeutic drugs. COX-2 exerts most of the functions through its metabolite prostaglandin E2. In some and limited situations, COX-2 may act as an antitumor enzyme. Multiple signals are contributed to the functions of COX-2 on cancer cells or its regulation. Members of mitogen-activated protein kinase (MAPK) family, epidermal growth factor receptor (EGFR), and nuclear factor-κβ are main upstream modulators for COX-2 in cancer cells. COX-2 also has interactions with a number of hormones within the body. Inhibition of COX-2 provides a high possibility to exert therapeutic outcomes in cancer. Administration of COX-2 inhibitors in a preoperative setting could reduce the risk of metastasis in cancer patients. COX-2 inhibition also sensitizes cancer cells to treatments like radio- and chemotherapy. Chemotherapeutic agents adversely induce COX-2 activity. Therefore, choosing an appropriate chemotherapy drugs along with adjustment of the type and does for COX-2 inhibitors based on the type of cancer would be an effective adjuvant strategy for targeting cancer.
Collapse
Affiliation(s)
- Nasser Hashemi Goradel
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Masoud Najafi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Eniseh Salehi
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Farhood
- Departments of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Keywan Mortezaee
- Department of Anatomy, School of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| |
Collapse
|
21
|
Nomikou E, Livitsanou M, Stournaras C, Kardassis D. Transcriptional and post-transcriptional regulation of the genes encoding the small GTPases RhoA, RhoB, and RhoC: implications for the pathogenesis of human diseases. Cell Mol Life Sci 2018; 75:2111-2124. [PMID: 29500478 PMCID: PMC11105751 DOI: 10.1007/s00018-018-2787-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 01/25/2018] [Accepted: 02/26/2018] [Indexed: 12/15/2022]
Abstract
Rho GTPases are highly conserved proteins that play critical roles in many cellular processes including actin dynamics, vesicular trafficking, gene transcription, cell-cycle progression, and cell adhesion. The main mode of regulation of Rho GTPases is through guanine nucleotide binding (cycling between an active GTP-bound form and an inactive GDP-bound form), but transcriptional, post-transcriptional, and post-translational modes of Rho regulation have also been described. In the present review, we summarize recent progress on the mechanisms that control the expression of the three members of the Rho-like subfamily (RhoA, RhoB, and RhoC) at the level of gene transcription as well as their post-transcriptional regulation by microRNAs. We also discuss the progress made in deciphering the mechanisms of cross-talk between Rho proteins and the transforming growth factor β signaling pathway and their implications for the pathogenesis of human diseases such as cancer metastasis and fibrosis.
Collapse
Affiliation(s)
- Eirini Nomikou
- Laboratory of Biochemistry, Department of Medicine, University of Crete, 71003, Heraklion, Greece
| | - Melina Livitsanou
- Laboratory of Biochemistry, Department of Medicine, University of Crete, 71003, Heraklion, Greece
| | - Christos Stournaras
- Laboratory of Biochemistry, Department of Medicine, University of Crete, 71003, Heraklion, Greece
| | - Dimitris Kardassis
- Laboratory of Biochemistry, Department of Medicine, University of Crete, 71003, Heraklion, Greece.
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, 71110, Heraklion, Greece.
| |
Collapse
|